Remote Sensing and Hydrology Using Thermal Infrared Sensors

Size: px
Start display at page:

Download "Remote Sensing and Hydrology Using Thermal Infrared Sensors"

Transcription

1 Remote Sensing and Hydrology Using Thermal Infrared Sensors J. van der Kwast & S.M. de Jong Faculty of Geosciences Utrecht University, the Netherlands Contents Introduction Theory of Thermal Remote Sensing Sensors Hydrological application Case study Barrax, Spain & Al Sehoul, Morocco Methods Assignment Aha

2 Radiant temperature Kinetic temperature Objects have different thermal properties Radiant temperature, Kinetic temperature Kinetic temperature is defined as the average energy of microscopic motions of particles. On the macroscopic scale, temperature is the unique physical property that determines the direction of heat flow between two objects placed in thermal contact. Radiant temperature: emitted energy by radiation

3 Thermal Energy Transfer: thermal convection thermal conduction radiation & Transpiration / condensation Etna, July 29th 2001 ASTER VNIR: 3,2,1 Introduction Introduction Study area Methods Results Discussion Conclusion

4 Etna, July 29th 2001 ASTER Thermal composite Introduction Introduction Study area Methods Results Discussion Conclusion RGB =??? Thermal Remote Sensing Satellites with thermal/optical sensors offer means to derive spatial and temporal values of surface temperature Useful for soil moisture estimates, irrigation, heat loss survey of buildings, ocean currents derived from sea surface temperature, surface energy balance models. Prerequisite for deriving reliable surface temperature: 1. accurate atmospheric corrections 2. account for surface emissivity

5 Important practical appliction of thermal scanners Visible wavelengths smoke Thermal wavelengths burning fire lines in yellow Attenuation to radiation of different wavelengths by atmospheric constituents and other particles 10

6 Draining (thermal) in Rotterdam Harbour Night time image Day time image Heat loss from buildings

7 Heat loss from buildings Airborne heat loss mapping in Nijmegen

8 Airborne heat loss mapping in Nijmegen Roof ridge Hollow walls Warm/cold cars Thermal imagery: Bank full conditions in the winter river bed: relative warm seepage water under the dike

9 TIR: Wavelengths from 3.5 to 20 μm Two useful TIR atmospheric windows and μm First window limited day time applications due to solar reflective component

10 TIR: Low solar irradiation low reflection Remotely sensed TIR emission Blackbody (hypothetical object): All objects at temperature above 0 K (-273 ºC) emit electromagnetic radiation. Jozef Stefan & Ludwig Boltzman law: 0 M ( λ) dλ = σt 4 M: total energy emitted in W m -2 σ: Stefan-Boltzman constant (5.6697*10-8 W m -2 K -4 ) T: Absolute temperature (K) λ: Wavelength Wien s law: A λ max = T λ max : wavelength of maximum spectral radiant exitance (μm) A: Wien s constant 2898 (μm K) T: Absolute temperature (K)

11 Theory BB TIR 10 5 Sun 6000 K Relative electromagnetic intensity Molten Lava 5400 K Forest Fire 1000 K Hot Spring 380 K Ambient 290 K Arctic Ice 220 K Wavelength (micrometers) Essentially all of the radiation from the human body and its ordinary surroundings is in the thermal infrared portion of the electromagnetic spectrum Engine Human body, λ max ~ 9.7µ

12 Real materials do not behave as blackbodies So, Trad Tkin Emissivity: the emitting ability of a real material, compared to that of a blackbody ε(λ) = radiant exitance of an object at a given temperature radiant exitance of a blackbody at the same temperature Values between 0 and 1 Varies with wavelength, viewing angle, temperature Besides blackbodies there are: Graybodies: ε<1 and constant at all wavelengths Selective radiator: ε varies with wavelength In practice when broadband thermal sensor are used, emissivity is considered constant in the 8 to 14 μm range

13 Rules of thumb for emissivity of objects: Emissivity (physical object property) function of: Colour: good absorbers (dark) are good emitters, good reflectors are poor emitters (Kirchoff); Surface roughness: greater the surface roughness, more surface for absorption and re-emittance Moisture content: more moisture, better emitter (like water bodies); Compaction more dense soils, higher emissivity Emissivity, some examples (8-13 μm) Vegetation: Grass: Sunflower: Maize: Pine: Wheat: Soils and rocks: Basalt: Dolomite: 0.97 Andosol: 0.96 Others: - Water: Aluminum: 0.03

14 Can of 5º C <- low radiant thermal flux high radiant thermal flux -> Thermal image of a beer can from fridge 5ºC Why is the can not homogeneously chilled? Small piece of tape on beer can changes the emissivity of the alluminium can Thermal sensors measure Radiance Temperature of an object (T rad ) For real bodies we need to convert radiance temperature to Kinetic Temperature (T kin ) 4 T rad = ε 1/ T kin

15 Effect of emissivity differences on radiant temperature 10.0 C Kinetic temperature 4 T rad = ε 1/ T kin Suppose kinetic temperature of beer can is 5ºC, what is the radiant flux?? what is radiant temperature?? Suppose ε of paint on beer can is 0.98: F rad = (278K) = W / cm.25 T rad = 0.98 Tkin.25 T rad = 0.02 Tkin ο = C = ο Suppose ε of aluminium of beer can is 0.02: F rad = (278K) = W / cm = C C = ο ο C

16 Sensors Infrared Thermometers: points Infrared Thermometer Blackbody calibration Device has fixed emissivity e.g Methods Temperature & Emissivity, non-imaging Field Emissivity Measurements ε = L L BB 2 La L a

17 Sensors - Satellite Sensor Channel Wavelength (μm) Resolution (m) Landsat TM 4 & Landsat TM ASTER Sensors - Satellite

18 Understanding & solving the Surface Energy Balance Example of the Surface Energy Balance

19 Thermal properties of the earth surface Thermal properties of the earth surface Heat Capacity (C) in J/(kg K) : measure of increase in thermal energy content (Q) per degree of temperature rise. The capacity of a material to store heat. Thermal Conductivity (K) in J/(sec m K): Rate at which heat passes through a specific thickness of a substance Thermal Inertia (P) in J/(m 2 sec 0.5 K): Resistance of material to temperature change, indicated by the time dependent variations in temperature during a full heating/cooling cycle (a 24-hour day for Earth); Thermal Diffusivity (D) in m²/s: rate at which heat passes through a specific thickness of a substance

20 Thermal properties of some objects: K: thermal Conductivity c: heat capacity d: therm. diffusivty P: therm. inertia Water Soil Basalt Steel TVX plot: integrating Surface temperature & NDVI Envi demo DAIS Scatterplots Full canopy Ts used to estimate patterns of air temperature Bare areas: used to estimate patterns of top soil moisture

21 TVX Plot La Peyne of DAIS7915 images Ts -> NDVI -> Original optical/thermal DAIS image Top soil moisture map for fallow land ƒ(top soil moisture,ts) ƒ(top soil moisture,ndvi)

22 48 hours simulation of surface temperature Temperature C 55 C N 15 C T e m p e r a t u r e Time Surface Energy Balance, model results Temperature [Celcius] Calibrated modelled and measured surface temperatures, for each landcover type Maquis modelled Maquis measured Garrigue modelled Garrigue measured Pine forest modelled Pine forest measured Vineyard modelled Vineyard measured Grassland modelled Grassland measured Bare soil modelled Bare soil measured 0 11:00 16:00 21:00 2:00 7:00 12:00 17:00 22:00 3:00 8:00 Time [hour] Land cover type Modelled Measured Difference Maquis Garrigue Pine forest Vineyard Grassland Bare soil

23 Hydrological application Pivot irrigation in the Barrax study site (Spain) ASTER VNIR, 321 low ASTER Temperature high Hydrological application using SEBS Pivot irrigation in the Barrax study site (Spain)

24 Instrumentation for Barrax Experiment Eddy Correlation (CSAT 3, Li-COR 7500), 2 sets Scintillometer, 2 Sets Radiation components Soil Heat flux plates Temperature profile (air & soil) Goniometer Thermal camera, Everest thermal radiometer ASD spectrometer Digital camera Li-COR LAI2000 (Thermal couples) Component temperatures ITC MSG-1 facility Hydrological Application Surface Energy Balance Energy Balance equation R n = G 0 + H + λe G 0 = soil heat flux density (W m -2 ) H = sensible heat flux (W m -2 ) λe = latent heat flux (W m -2 ) Partitioning of net radiation depends on exhalation of water through: Stomata Bare soil Open water bodies R n H λe G 0

25 Methods Simulations aims at understanding the entire energy balance What is the albedo? Empirical albedo relations for bare soil areas: - based on the Landsat Thematic Mapper - after radiometric calibration - developed for the central US (Duguay and LeDrew, 1991): α = 0.256R (2) R(4) R(7) Liang 2001: α sw = 0.356R(1) R(3) R(4) R(5) R(7) Empirical albedo relations for snow / ice surfaces: - based on the Landsat Thematic Mapper - after radiometric calibration - developed for Switzerland by (Knapp, 1997): α = 0.251R (2) R(4) R(4) 2

26 Barax Spain measurements of the components of the surface energy balance Net radiance, soil flux, sensible heat, latent heat Hydrological Application using SEBS Remote Sensing and hydrological modelling Photogrammetry Thermal IR Optical DEM Radiation Vegetation maps Meteorological parameters Evapotranspiration Soil parameters Soil Moisture Input from remote sensing Output from remote sensing Models Data assimilation algorithm

27 Case Study Study Area Community of Sehoul (Morocco) Rabat Casablanca Morocco MODIS image - January 26, 2003 Introduction Theory Sensors --- Hydrological Application Case Study Methods Assignment Case Study Study Area QuickBird image (June 5 th, 2002)

28 Case Study Sehoul basin Quercus suber (cork oak) forest Reservoir Lake Case Study Study Area Rainfed Agriculture Irrigated Cucurbita pepo (courgette) Submersion irrigation of Mentha piperita (mint) Arachis hypogaea (peanuts)

29 Case Study Surface Energy Balance System (SEBS) (Su, 2002): Estimates atmospheric turbulent fluxes and surface evaporation using satellite earth observation data in the visible, near infrared, and thermal infrared frequency range. Preprocessing to derive radiation balance Submodel to derive roughness length for heat transfer Submodel to derive stability parameters Energy balance at limiting cases Energy balance terms (R n, G 0, H, λe) Surface Energy Balance System (SEBS) 1. Derivation of energy balance terms Energy Balance equation R n = G 0 + H + λe Net Radiation R n = ( 1 α) R + ε R ε σt swd a lwd s 4 0 Soil Heat Flux [ Γ + (1 ) ( Γ Γ )] G = R n f 0 c c s c R n H λe Γc, Γs: ratio of soil heat flux for full canopy/bare soil to net radiation G 0

30 Surface Energy Balance System (SEBS) 2. Submodel to derive roughness length of heat transfer Roughness length expresses the roughness of the surface (Z 0 ). Affects intensity of Mechanical turbulence Fluxes Low roughness length less exchange between surface and atmosphere stronger wind near ground H Surface Energy Balance System (SEBS) 3. Submodel to derive stability parameters Atmospheric Boundary Layer Atmospheric Surface Layer (ASL): Monin-Obukhov Similarity (MOS) Hypothesis: Wind, temperature and humidity profiles are similar above extensive horizontal homogeneous terrain Relates surface fluxes to surface variables Mixed Layer ABL Bulk Atmospheric Boundary Layer (ABL) Similarity (BAS) Wind, temperature and humidity profiles are constant with height Relates surface fluxes to surface variables and mixed layer variables Mixed Layer ASL H

31 Energy Balance at limiting cases R n λe R n H H G 0 Wet low ASTER Temperature high G 0 Dry Case Study Surface Energy Balance System (SEBS) Λ R n H λe Λ: evaporative fraction between extremes wet/dry G 0

32 Meteo tower yield necessary field data (one location) Installation of meteo tower on representative site in order to obtain data for surface energy balance model Sensors: Anemometer (3.87 m) Pyranometer (3.87 m) Hygrometer (3.25 m) Thermometer (3.25 m) Barometer (2.55 m) Not logging: Evaporation pan Rain gauge Case Study Outputs from SEBS Net Radiation Soil Heat Flux Sensible Heat Flux Latent Heat Flux Relative Evaporation Evaporative Fraction Evapotranspiration rate

33 Al Sehoul study area ASTER image Lake Bare soil Open forest Golf course Agric fields Case Study Outputs from SEBS: R n

34 Case Study Outputs from SEBS: H Case Study Outputs from SEBS: H and the Oasis Effect irrigation golf court water bodies

35 Case Study Outputs from SEBS: H and the Oasis Effect Wind direction Desert boundary layer Moisture profile Oasis boundary layer H LE H LE H Increased moisture content Case Study Outputs from SEBS: LE

36 Case Study Outputs from SEBS: Evapotranspiration Rate Class Room Exercise

37 Pivot irrigation of agricultural crops Lecture Source: Thermal Hans Remote van Sensing der Kwast Utrecht

38 Lecture Source: Thermal Hans Remote van Sensing der Kwast Utrecht SEBS Energy Balance at limiting cases R n H λe R n H G 0 Wet low ASTER Temperature high G 0 Dry

39 Thank you for your attention

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared November 2014 lava flow on Kilauea (USGS Volcano Observatory) (http://hvo.wr.usgs.gov) Landsat-based thermal change of Nisyros Island (volcanic) Thermal Remote Sensing Distinguishing materials on the ground

More information

Surface temperature what does this data tell us about micro-meteorological processes?

Surface temperature what does this data tell us about micro-meteorological processes? Surface temperature what does this data tell us about micro-meteorological processes? Prof. Dr. Eberhard Parlow Meteorology, Climatology and Remote Sensing (MCR Lab) Department of Environmental Sciences

More information

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015

Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015 Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015 1) Solar radiation basics 2) Energy balance 3) Other relevant biophysics 4) A few selected applications of RS in ecosystem

More information

METRIC tm. Mapping Evapotranspiration at high Resolution with Internalized Calibration. Shifa Dinesh

METRIC tm. Mapping Evapotranspiration at high Resolution with Internalized Calibration. Shifa Dinesh METRIC tm Mapping Evapotranspiration at high Resolution with Internalized Calibration Shifa Dinesh Outline Introduction Background of METRIC tm Surface Energy Balance Image Processing Estimation of Energy

More information

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach Dr.Gowri 1 Dr.Thirumalaivasan 2 1 Associate Professor, Jerusalem College of Engineering, Department of Civil

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Photogrammetry: Definition & applications What are we trying to do? Data acquisition systems 3-D viewing of 2-D imagery Automation (matching problem) Necessary tools: Image formation

More information

Temperature and Emissivity from AHS data in the framework of the AGRISAR and EAGLE campaigns

Temperature and Emissivity from AHS data in the framework of the AGRISAR and EAGLE campaigns AGRISAR and EAGLE Campaigns Final Workshop 15-16 October 2007 (ESA/ESTEC, Noordwijk, The Netherlands) Temperature and Emissivity from AHS data in the framework of the AGRISAR and EAGLE campaigns J. A.

More information

An experimental study of angular variations of brightness surface temperature for some natural surfaces

An experimental study of angular variations of brightness surface temperature for some natural surfaces An experimental study of angular variations of brightness surface temperature for some natural surfaces Juan Cuenca, José A. Sobrino, and Guillem Soria University of Valencia, c./ Dr. Moliner 5, 46 Burjassot,

More information

INTRODUCTION TO THERMAL REMOTE SENSING

INTRODUCTION TO THERMAL REMOTE SENSING INTRODUCTION TO THERMAL REMOTE SENSING Professor Constantinos Cartalis Department of Environmental Physics Remote Sensing and Image Processing Research Unit National and Kapodistrian University of Athens

More information

Lecture 3A: Interception

Lecture 3A: Interception 3-1 GEOG415 Lecture 3A: Interception What is interception? Canopy interception (C) Litter interception (L) Interception ( I = C + L ) Precipitation (P) Throughfall (T) Stemflow (S) Net precipitation (R)

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Field Emissivity Measurements during the ReSeDA Experiment

Field Emissivity Measurements during the ReSeDA Experiment Field Emissivity Measurements during the ReSeDA Experiment C. Coll, V. Caselles, E. Rubio, E. Valor and F. Sospedra Department of Thermodynamics, Faculty of Physics, University of Valencia, C/ Dr. Moliner

More information

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing!

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Course Philosophy" Rendering! Computer graphics! Estimation! Computer vision! Robot vision" Remote sensing! lhm

More information

TRANSMISSION OF HEAT

TRANSMISSION OF HEAT TRANSMISSION OF HEAT Synopsis :. In general heat travels from one point to another whenever there is a difference of temperatures.. Heat flows from a body at higher temperature to a lower temperature..

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

Glaciology HEAT BUDGET AND RADIATION

Glaciology HEAT BUDGET AND RADIATION HEAT BUDGET AND RADIATION A Heat Budget 1 Black body radiation Definition. A perfect black body is defined as a body that absorbs all radiation that falls on it. The intensity of radiation emitted by a

More information

Land Surface Processes and Their Impact in Weather Forecasting

Land Surface Processes and Their Impact in Weather Forecasting Land Surface Processes and Their Impact in Weather Forecasting Andrea Hahmann NCAR/RAL with thanks to P. Dirmeyer (COLA) and R. Koster (NASA/GSFC) Forecasters Conference Summer 2005 Andrea Hahmann ATEC

More information

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature Lectures 7 and 8: 14, 16 Oct 2008 Sea Surface Temperature References: Martin, S., 2004, An Introduction to Ocean Remote Sensing, Cambridge University Press, 454 pp. Chapter 7. Robinson, I. S., 2004, Measuring

More information

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Energy and Radiation GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Last lecture: the Atmosphere! Mainly nitrogen (78%) and oxygen (21%)! T, P and ρ! The Ideal Gas Law! Temperature profiles Lecture outline!

More information

EVAPORATION GEOG 405. Tom Giambelluca

EVAPORATION GEOG 405. Tom Giambelluca EVAPORATION GEOG 405 Tom Giambelluca 1 Evaporation The change of phase of water from liquid to gas; the net vertical transport of water vapor from the surface to the atmosphere. 2 Definitions Evaporation:

More information

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation Review of Remote Sensing Fundamentals Allen Huang Cooperative Institute for Meteorological Satellite Studies Space Science & Engineering Center University of Wisconsin-Madison, USA Topics: Visible & Infrared

More information

Modeling of Environmental Systems

Modeling of Environmental Systems Modeling of Environmental Systems While the modeling of predator-prey dynamics is certainly simulating an environmental system, there is more to the environment than just organisms Recall our definition

More information

THERMAL MEASUREMENTS IN THE FRAMEWORK OF SPARC

THERMAL MEASUREMENTS IN THE FRAMEWORK OF SPARC THERMAL MEASUREMENTS IN THE FRAMEWORK OF SPARC J.A. Sobrino (1), M. Romaguera (1), G. Sòria (1), M. M. Zaragoza (1), M. Gómez (1), J. Cuenca (1), Y. Julien (1), J.C. Jiménez-Muñoz (1), Z. Su (2), L. Jia

More information

9/12/2011. Training Course Remote Sensing - Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing - Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing - Basic Theory & Image Processing Methods 19 23 September 2011 Introduction to Remote Sensing Michiel Damen (September 2011) damen@itc.nl 1 Overview Electro Magnetic (EM)

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

Topic 5 Practice Test

Topic 5 Practice Test Base your answers to questions 1 and 2 on the diagram below, which represents the greenhouse effect in which heat energy is trapped in Earth's atmosphere 1. The Earth surface that best absorbs short-wave

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Or, what happens to the energy received from the sun? First We Need to Understand The Ways in Which Heat Can be Transferred in the Atmosphere

More information

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows.

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows. Outline Stock Flow and temperature Earth as a black body Equation models for earth s temperature { { Albedo effect Greenhouse effect Balancing earth s energy flows Exam questions How does earth maintain

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Thermal Infrared (TIR) Remote Sensing: Challenges in Hot Spot Detection

Thermal Infrared (TIR) Remote Sensing: Challenges in Hot Spot Detection Thermal Infrared (TIR) Remote Sensing: Challenges in Hot Spot Detection ASF Seminar Series Anupma Prakash Day : Tuesday Date : March 9, 2004 Time : 2.00 pm to 2.30 pm Place : GI Auditorium Geophysical

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

Flux Tower Data Quality Analysis in the North American Monsoon Region

Flux Tower Data Quality Analysis in the North American Monsoon Region Flux Tower Data Quality Analysis in the North American Monsoon Region 1. Motivation The area of focus in this study is mainly Arizona, due to data richness and availability. Monsoon rains in Arizona usually

More information

AT622 Section 3 Basic Laws

AT622 Section 3 Basic Laws AT6 Section 3 Basic Laws There are three stages in the life of a photon that interest us: first it is created, then it propagates through space, and finally it can be destroyed. The creation and destruction

More information

Climate Roles of Land Surface

Climate Roles of Land Surface Lecture 5: Land Surface and Cryosphere (Outline) Climate Roles Surface Energy Balance Surface Water Balance Sea Ice Land Ice (from Our Changing Planet) Surface Albedo Climate Roles of Land Surface greenhouse

More information

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011 METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance Spring Semester 2011 February 8, 10 & 14, 2011 Reading Arya, Chapters 2 through 4 Surface Energy Fluxes (Ch2) Radiative Fluxes (Ch3)

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

The Two Source Energy Balance model using satellite, airborne and proximal remote sensing

The Two Source Energy Balance model using satellite, airborne and proximal remote sensing The using satellite, airborne and proximal remote sensing 7 years in a relationship Héctor Nieto Hector.nieto@irta.cat Resistance Energy Balance Models (REBM) E R e n H G Physics based on an analogy to

More information

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures PRINCIPLES OF REMOTE SENSING Electromagnetic Energy and Spectral Signatures Remote sensing is the science and art of acquiring and analyzing information about objects or phenomena from a distance. As humans,

More information

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA Advances in Geosciences Vol. 16: Atmospheric Science (2008) Eds. Jai Ho Oh et al. c World Scientific Publishing Company LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING

More information

Remote sensing estimates of actual evapotranspiration in an irrigation district

Remote sensing estimates of actual evapotranspiration in an irrigation district Engineers Australia 29th Hydrology and Water Resources Symposium 21 23 February 2005, Canberra Remote sensing estimates of actual evapotranspiration in an irrigation district Cressida L. Department of

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

FOR 435/535: Remote Sensing for Fire Management. FOR 435: Remote Sensing for Fire Management. FOR 435: Thermal Properties of Fires

FOR 435/535: Remote Sensing for Fire Management. FOR 435: Remote Sensing for Fire Management. FOR 435: Thermal Properties of Fires FOR 435/535: Remote Sensing for Fire Management FOR 435: Remote Sensing for Fire Management 4. Active Fire Behavior Thermal Properties of Fires Field Measures Remote Sensing The amount of heat per unit

More information

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION VISUAL PHYSICS ONLINE THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION Radiation is the energy transferred by electromagnetic waves mainly infrared (IR), visible and ultraviolet (UV). All materials radiate

More information

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 14: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Today, HW#5 is posted Quiz Today on Chapter 3, too. Mid Term

More information

Evaluation of SEBAL Model for Evapotranspiration Mapping in Iraq Using Remote Sensing and GIS

Evaluation of SEBAL Model for Evapotranspiration Mapping in Iraq Using Remote Sensing and GIS Evaluation of SEBAL Model for Evapotranspiration Mapping in Iraq Using Remote Sensing and GIS Hussein Sabah Jaber* Department of Civil Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor,

More information

Many of remote sensing techniques are generic in nature and may be applied to a variety of vegetated landscapes, including

Many of remote sensing techniques are generic in nature and may be applied to a variety of vegetated landscapes, including Remote Sensing of Vegetation Many of remote sensing techniques are generic in nature and may be applied to a variety of vegetated landscapes, including 1. Agriculture 2. Forest 3. Rangeland 4. Wetland,

More information

Contents. 1. Evaporation

Contents. 1. Evaporation Contents 1 Evaporation 1 1a Evaporation from Wet Surfaces................... 1 1b Evaporation from Wet Surfaces in the absence of Advection... 4 1c Bowen Ratio Method........................ 4 1d Potential

More information

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 Jensen, Jensen, Ways of of Energy Transfer Energy is is the the ability to to do do work. In In the the process of of doing work, energy

More information

Emissivity and Remote Sensing

Emissivity and Remote Sensing Emissivity and Remote Sensing Introduction: In the last laboratory with reflectivity we touched on the subject of emissivity. In comparison to reflectivity, emissivity is actually a bit more complex from

More information

Emissivity and Remote Sensing

Emissivity and Remote Sensing Emissivity and Remote Sensing Introduction: In the last laboratory with reflectivity we touched on the subject of emissivity. In comparison to reflectivity, emissivity is actually a bit more complex from

More information

Infrared Temperature Calibration 101 Using the right tool means better work and more productivity

Infrared Temperature Calibration 101 Using the right tool means better work and more productivity Infrared Temperature Calibration 101 Using the right tool means better work and more productivity Application Note Infrared thermometers let you measure a target s surface temperature from a distance without

More information

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name:

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name: Remote Sensing C Science Olympiad North Regional Tournament at the University of Florida Rank: Points: Name(s): Team Name: School Name: Team Number: Instructions: DO NOT BEGIN UNTIL GIVEN PERMISSION. DO

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration 1. Light and other forms of electromagnetic radiation are given off by stars using energy released during A) nuclear fusion B) conduction C) convection D) radioactive decay 2. At which temperature would

More information

Lecture 10. Surface Energy Balance (Garratt )

Lecture 10. Surface Energy Balance (Garratt ) Lecture 10. Surface Energy Balance (Garratt 5.1-5.2) The balance of energy at the earth s surface is inextricably linked to the overlying atmospheric boundary layer. In this lecture, we consider the energy

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

AATSR derived Land Surface Temperature from heterogeneous areas.

AATSR derived Land Surface Temperature from heterogeneous areas. AATSR derived Land Surface Temperature from heterogeneous areas. Guillem Sòria, José A. Sobrino Global Change Unit, Department of Thermodynamics, Faculty of Physics, University of Valencia, Av Dr. Moliner,

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

Learning goals. Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature

Learning goals. Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature Greenhouse effect Learning goals Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature Wavelength (color) and temperature related: Wein s displacement law Sun/Hot:

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure.

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure. Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Evaporation and Evapotranspiration

Evaporation and Evapotranspiration Evaporation and Evapotranspiration Wossenu Abtew Assefa Melesse Evaporation and Evapotranspiration Measurements and Estimations 123 Dr. Wossenu Abtew South Florida Water Management District West Palm

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals in air radition properties Lecture 8 Lessons 22-24

More information

Thermal Crop Water Stress Indices

Thermal Crop Water Stress Indices Page 1 of 12 Thermal Crop Water Stress Indices [Note: much of the introductory material in this section is from Jackson (1982).] The most established method for detecting crop water stress remotely is

More information

ESM 186 Environmental Remote Sensing and ESM 186 Lab Syllabus Winter 2012

ESM 186 Environmental Remote Sensing and ESM 186 Lab Syllabus Winter 2012 ESM 186 Environmental Remote Sensing and ESM 186 Lab Syllabus Winter 2012 Instructor: Susan Ustin (slustin@ucdavis.edu) Phone: 752-0621 Office: 233 Veihmeyer Hall and 115A, the Barn Office Hours: Tuesday

More information

Snow II: Snowmelt and energy balance

Snow II: Snowmelt and energy balance Snow II: Snowmelt and energy balance The are three basic snowmelt phases 1) Warming phase: Absorbed energy raises the average snowpack temperature to a point at which the snowpack is isothermal (no vertical

More information

Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice

Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice Henk de Bruin During the visit to Pachacamac we contemplate about the 4 elements, fire, air, water and

More information

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL Date deliverance : UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL Definition remote sensing and its components Electromagnetic spectrum wavelength regions important to remote sensing Wave

More information

Mapping surface fluxes using Visible - Near Infrared and Thermal Infrared data with the SEBAL Algorithm

Mapping surface fluxes using Visible - Near Infrared and Thermal Infrared data with the SEBAL Algorithm Mapping surface fluxes using Visible - Near Infrared and Thermal Infrared data with the SEBAL Algorithm F. Jacob 1, A. Olioso 1, X.F. Gu 1, J.F. Hanocq 1, O. Hautecoeur 2, and M. Leroy 2 1 INRA bioclimatologie,

More information

Lecture 3: Light and Temperature

Lecture 3: Light and Temperature Lecture 3: Light and Temperature terrestrial radiative cooling Solar radiative warming (Light) Global Temperature atmosphere ocean land Light Temperature Different forms of energy Energy conservation energy,

More information

Radiation, Sensible Heat Flux and Evapotranspiration

Radiation, Sensible Heat Flux and Evapotranspiration Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature Heat Transfer Conduction, Convection, and Radiation Review: Temperature! Temperature is:! The quantity that tells how hot or cold something is compared with a standard! A measure of the average kinetic

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Total: 50 pts Absorption of IR radiation O 3 band ~ 9.6 µm Vibration-rotation interaction of CO 2 ~

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

The role of soil moisture in influencing climate and terrestrial ecosystem processes

The role of soil moisture in influencing climate and terrestrial ecosystem processes 1of 18 The role of soil moisture in influencing climate and terrestrial ecosystem processes Vivek Arora Canadian Centre for Climate Modelling and Analysis Meteorological Service of Canada Outline 2of 18

More information

ATMOS 5140 Lecture 7 Chapter 6

ATMOS 5140 Lecture 7 Chapter 6 ATMOS 5140 Lecture 7 Chapter 6 Thermal Emission Blackbody Radiation Planck s Function Wien s Displacement Law Stefan-Bolzmann Law Emissivity Greybody Approximation Kirchhoff s Law Brightness Temperature

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 14 Temperature and Heat Thermodynamics Starting a different area of physics called thermodynamics Thermodynamics focuses on energy rather than

More information

SEBS - Surface Energy Balance System for estimation of turbulent heat fluxes and evapotranspiration

SEBS - Surface Energy Balance System for estimation of turbulent heat fluxes and evapotranspiration SEBS - Surface Energy Balance System for estimation of turbulent heat fluxes and evapotranspiration Z. (Bob) Su International Institute for Geo-Information Science and Earth Observation (ITC), Enschede,

More information

Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor?

Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor? Exercises 22.1 Conduction (pages 431 432) 1. Define conduction. 2. What is a conductor? 3. are the best conductors. 4. In conduction, between particles transfer thermal energy. 5. Is the following sentence

More information

) was measured using net radiometers. Soil heat flux (Q g

) was measured using net radiometers. Soil heat flux (Q g Paper 4 of 18 Determination of Surface Fluxes Using a Bowen Ratio System V. C. K. Kakane* and E. K. Agyei Physics Department, University of Ghana, Legon, Ghana * Corresponding author, Email: vckakane@ug.edu.gh

More information

Dr. Linlin Ge The University of New South Wales

Dr. Linlin Ge  The University of New South Wales GMAT 9600 Principles of Remote Sensing Week2 Electromagnetic Radiation: Definition & Physics Dr. Linlin Ge www.gmat.unsw.edu.au/linlinge Basic radiation quantities Outline Wave and quantum properties Polarization

More information

ET Theory 101. USCID Workshop. CUP, SIMETAW (DWR link)

ET Theory 101. USCID Workshop.   CUP, SIMETAW (DWR link) ET Theory 101 USCID Workshop http://biomet.ucdavis.edu PMhr, PMday, PMmon CUP, SIMETAW (DWR link) R.L. Snyder, Biometeorology Specialist Copyright Regents of the University of California Methods of eat

More information

HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION

HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION CHAPTER 4 HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION MULTIPLE CHOICE QUESTIONS 1. Heat is *a. the name given to the energy transferred between objects at different temperatures. b. the equivalent of

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

Fundamentals of Remote Sensing

Fundamentals of Remote Sensing Division of Spatial Information Science Graduate School Life and Environment Sciences University of Tsukuba Fundamentals of Remote Sensing Prof. Dr. Yuji Murayama Surantha Dassanayake 10/6/2010 1 Fundamentals

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

Environmental Fluid Dynamics

Environmental Fluid Dynamics Environmental Fluid Dynamics ME EN 7710 Spring 2015 Instructor: E.R. Pardyjak University of Utah Department of Mechanical Engineering Definitions Environmental Fluid Mechanics principles that govern transport,

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

Remote sensing estimation of land surface evapotranspiration of typical river basins in China

Remote sensing estimation of land surface evapotranspiration of typical river basins in China 220 Remote Sensing for Environmental Monitoring and Change Detection (Proceedings of Symposium HS3007 at IUGG2007, Perugia, July 2007). IAHS Publ. 316, 2007. Remote sensing estimation of land surface evapotranspiration

More information

GMES: calibration of remote sensing datasets

GMES: calibration of remote sensing datasets GMES: calibration of remote sensing datasets Jeremy Morley Dept. Geomatic Engineering jmorley@ge.ucl.ac.uk December 2006 Outline Role of calibration & validation in remote sensing Types of calibration

More information

THE EXOSPHERIC HEAT BUDGET

THE EXOSPHERIC HEAT BUDGET E&ES 359, 2008, p.1 THE EXOSPHERIC HEAT BUDGET What determines the temperature on earth? In this course we are interested in quantitative aspects of the fundamental processes that drive the earth machine.

More information

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1 Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation Energy is the capacity to perform work (but physicists have a special definition for work, too!) Part of the trouble is that scientists have appropriated

More information