Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Size: px
Start display at page:

Download "Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X"

Transcription

1 Stochastic groundwater flow using boundary elements C. Z. Karakostas* and G. D. Manolis** ^Institute ofengineering Seismology and Earthquake Engineering, P. O. Box 53, Thessaloniki GR 55102, Greece **Department of Civil Engineering, Aristotle University, Thessaloniki GR 54006, Greece Abstract A boundary element solution for two dimensional, transient groundwater flow in confined aquifers with random diffusivity is presented. Firstly, fundamental solutions for the diffusion equation with a random coefficient are derived using the perturbation method.. Subsequently, perturbations are again used for building a boundary element solution for the covariance matrix of the response for general boundary-value problems. The entire methodology is defined in the Laplace transform domain, and an efficient inversion scheme is employed for capturing the transient response in terms of a mean solution plus a variance. A series of examples serves to illustrate the methodology. 1 Introduction In order to overcome difficulties associated with deterministic modeling of flow through heterogeneous porous formations, it has become quite common recently to view aquifer properties and flow variables as random variables/"^ Two main approaches have been followed so far : First, the geostatistical approach*, which is mainly concerned with the problem of statistical interpolation, i.e., how to predict best estimates and variances of variables measured on relatively few points in a spatial grid. Second, methodologies based on determination of the statistical structure of the flow given the statistical structure of material properties, geometry and boundary conditions of the problem. The latter approach is essentially based on stochastic differential

2 516 Boundary Elements equations for modeling groundwater flow and has attracted the attention of a number of researchers.^ The main difference between these two approaches is that geostatistical methods consider measured values as fixed and allow for random fluctuations at the remaining points of the grid, which means that conditional probabilities are used. This is in contrast to stochastic modeling of groundwater flow, where hydraulic properties fluctuate throughout the continuum according to their corresponding probability density functions. A variety of stochastic models have been introduced including the stochastic BEM for groundwater flow under random boundary conditions and recharge caused by stream stagefluctuations,tidal wave actions, random precipitation patterns, etc.^ The governing equation for steady-state groundwater flow in a rigid porous formation is replaced by a stochastic integral equation of the indirect type, whereby an unknown fictitious density source is used as an intermediate step. Routine numerical discretization gave response covariances which required double surface and volume integrals and resulted in good solution accuracy for two dimensional, confined aquifer flow. In this work, a direct boundary element formulation is developed for the mean vector plus covariance matrix solutions of two dimensional transient groundwater flow in confined aquifers with random diffusivity. The perturbation method is used in conjunction with the appropriate boundary integral equations to produce a compact boundary element scheme. The entire methodology is defined in the Laplace transform domain and an inverse transformation algorithm is employed for reconstructing the temporal response. Numerical examples for stochastic with mixed boundary conditions of arbitrary time variation serve to illustrate the proposed methodology. 2 Flow through a 2D confined aquifer Groundwater flow through a confined, compressible aquifer under 2D conditions is given as** (1) where h=p/y+z is the piezometric head (p, y and z respectively are pressure, specific weight and height) and c=t/s is the diffusion coefficient (S and T respectively are storativity and transmissivity). Finally, boundary conditions involve the piezometric head and the fluid flux q=9h/bn, where n is the direction normal to the surface. Application of Laplace's transform with respect to the time variable, which is defined as L(h)= h (x,s) = f (x,t) e^ dt (2)

3 Boundary Elements 517 for the direct transform and L-'(h) = h(x,t) = f(x,s)e*'ds (3) 2711 'b-ioo for the inverse transform (s is the transform parameter), to the governing equation of groundwater flow yields V^ h(x,s)- -h(x,s) = 0 (4) c for zero initial conditions. The above formulation can be recast as a boundary integral equation in the Laplace transformed space as" a(xo) h (xo) = JJ { G(x,Xo) q (%)_ F(x,x«) h (x) } ds(x) (5) where G is the fundamental solution (Green's function) for eq.(l) under a unit point load 8(x-Xo) and radiation boundary conditions, while XD and x are respectively known as source and receiver. Furthermore, F=BG/9n, while where KO is the modified Bessel function of second kind and zero order, while radial distance r = I x-xj. If both x, Xo are defined at the surface of the problem, then jump term a(xp) is equal to 0.5 for a smooth surface.. Routine numerical discretization of the above boundary integral equation using quadratic surface elements yields The above system of algebraic equations can now be used for solving well posed boundary value problems. The final step is to perform an inverse Laplace transform so as to recover the unknown piezometric heads h and fluid fluxes q from their transformed values h and q, respectively. This is achieved numerically through integration over the complex plane as dictated by eq.(3) using Durbin's algorithm^. It requires that the function of interest be sampled at Sm = b + im (2%/T) (8)

4 518 Boundary Elements points, where 5 < bt < 10, m = 0,1,2,...,M-1, M > 50 in multiples of 2 and 5 and T is the total time interval of interest. The inverted function is then obtained at M equidistant points U= m At = m T/M. 3 Fundamental solutions for random diffusivity In order to simulate some of the complications arising from groundwater flow through geological media, it is necessary to resort to a stochastic representation of the diffusion coefficient as perturbation of the form c(y) = c, + 6Ci(y) (9) about mean value c«with fluctuation ci being a zero-mean function of random parameter y and with known variance o^ «1.0. A similar Taylor series expansion about the mean is used in conjunction with fundamental solution G, i.e. G(r,e) = G(r,6=0) 4- e " / L=o +... (10) de In view of eq.(6), we have that G(r,6=0) = Go(r) = K«(u) (1 la) and - I s=o = Gi(r,y) = KI(U) u = Ci(y) Gj (u) (1 Ib) where argument u*= sr^/co and KI is the modified Bessel function of second kind, first order. The same expansion is used in conjunction with the second fundamental solution corresponding tofluidflux,i.e. where F(r,e) = Fo(r)4-GFi(r,y) (12) Fo(r) = -Ki(u) v - dn (13a) {2Ki(u) v - v" r K:(u)} -= Ci(y) F^ (r ) (13b)

5 Boundary Elements 519 with u defined as before and v^ = s/c<,. Statistical moments for the aforementioned expansions are derived through introduction of the expectation operator to give a mean value (for the first fundamental solution) mg(r) = <G(r,6)> = Go(R) (14) and a covariance defined about the mean as where u^= sr^/co and similarly for U2. Furthermore, a<? is the variance of the diffusion coefficient, for which any distribution can be assumed. As far as the variance of the fundamental solution is concerned, we have varg(r) = covg(r,=r2) = ^ G / ( r ) = Oc' K^(u) u' / (4c/) ( 1 6) Exactly the same procedure yields the statistical measures varf for the second fundamental solution. rrif, covf and 4 BEM formulation for stochastic groundwater flow Assuming the dependent variables of the problem to be functions of random parameter y, the boundary integral statement given by eq.(5) is rewritten as a(xo) h (xo) = jj { G(r,y) q (x,y) - F(r,y) h (x,y) } ds(x) (17) By perturbing both piezometric head and flux in the manner employed for the fundamental solutions G and F, substituting all these expansions in eq.(17) and sorting out powers of 8 we obtain the following zeroth and first order solutions a(xo) h, (xo) = jj { G,(r) q,(x) - F,(r) h, (x) } ds(x) (18a) a(xo) h\ (x,,y) = Jj { Go(r) q^ (x,y) - F«(r) h^ (x,y) } ds(x) { Gi(r,y) q,(x) - Fi(r,y) h,(x) } ds(x) (18b)

6 520 Boundary Elements As expected, the first equation is the deterministic solution for mean values h\ and q^, while the solution for the fluctuating terms hj and q^ follows the convolution-like pattern of the second equation. A numerical discretization of eqs.(18) yields the following systems of algebraic equations (19a) [Go] {q,} + [G,] {q,} = [Fo] {h,} + [F,] {k} (19b) Assume, for simplicity, that the piezometric head is prescribed and that the correspondingfluidfluxesare unknown Then {<U = [Go]-'[Fo]{hJ = [A]{nJ (20a) { q, (Y)} = [Go] -' [Fo] { h, (Y)}+ [Go] -' ([F,] - [G,] [Go] "' [F.]) {hj = [A]{h,(Y)} + [B(Y)]{hJ (20b) Introducing the expectation operator leaves eq.(20) unchanged, while eq.(20b) yields the covariance matrix of { q } as = [A] < {h,(y)} {h,(y>r> [Af + [A] < { {ho} {ho}^[b(y)f > (21) As special case we identify deterministic boundary conditions, i.e. {hi(y)}={0}. Then, eq.(21) simplifies considerably and yields [covj = < [B(Y)J {ho} {ho}lb(y)f > (22) Taking into account the structure of the fundamental solution, eq.(22) can be re-written as [covj =<[B]ci(y){ho} {ho}^ci(y)[bf > = c^<[b] {ho} {hor[b]^> (23) Thus, the covariance matrix of the response [ q (y)] is proportional to the variance Ci(y) of the diffusion coefficient. Both mean value { q^ } and covariance [covj are defined in the Laplace transform domain, which implies that the inverse Laplace transformation discussed must be utilized. Furthermore, mean values and covariances can be obtained for any mixed boundary value problem by introducing appropriate partitioning in eqs.(20).

7 Boundary Elements Numerical examples Consider the simple example of Fig.(l), whereby a confined aquifer of dimensions 1=2 m and d=l m has prescribed piezometric heads of hi= -1 f(t) and \\2= 1 f(t) (in meters, with f(t) a dimensionless function of time) along the left and right vertical boundaries, respectively, while there is a no-flow condition (q=0) along the two horizontal boundaries. As far as the aquifer mean properties are concerned, we have T= 0.01 mvsec and S= , hence Co = T/S= 200 nf/sec and K = T/d= 0.01 m/sec. We further assume that the boundary conditions are deterministic, while the variance of the diffusion coefficient is simply a constant, i.e. o/ = 0.4 nwsec^. The confined aquifer surfaces are discretized using quadratic, three-noded elements and the basic mesh consists of 12 elements and 24 nodes. 5.1 Mean solution At first, the quasi-static solution is recovered by using the H(t-O) time variation in conjunction with a very large observation time, namely T= sec. It is compared against the constant flow solution in Fig.(2a) and excellent accuracy is observed for 50 steps in the inverse Laplace transformation algorithm. Next, Fig.(2b) plots the results to the same problem but for a total time duration of T=0.25 sec, where the transient character of the long-term solution is clearly manifested. More examples are found in [13]. 5.2 Response Covariance The covariance matrix of the response is evaluated here. Specifically, due to the fact that the inverse Laplace transformation is computationally intensive, only the diagonal terms (autocovariances) are inverted to the time domain for the nodes specified. Figure 3 plots the variance o^ of the piezometric head at 1=1.67 m on the bottom side (node 6) as a function of time for a duration of T=0.05 sec. Concurrently plotted is the variance G<? of the fluid flux at the middle of the left vertical side (node 22). We first note that the randomness in the medium affects the flux much more than the piezometric head. Furthermore, a variance of order 10"* in the diffusion coefficient translates into a variance of the order of 10" for the flux and 10" for the piezometric head. Finally, the piezometric head and flux variances, at nodes 6 and 22 respectively, for the rectangular aquifer with boundary conditions that vary as f(t)=t^ are plotted in Fig.4. It is observed that the time variation of the variance is similar to the time variation of the corresponding mean solution.

8 522 Boundary Elements 6 Conclusions The introduction of stochasticity in the description of a geological medium offers an attractive alternative, due to the fact that randomness is able to approximate various complications associated with a naturally occurring medium. This paper presented a method of analysis based on boundary integral equation formulations for random groundwater flow in two dimensional aquifers under transient conditions. Acknowledgment We greatfully aknowledge support through grand PENED 1483/94 of the Greek General Secretariat for Research and Technology. References 1. Delhomme, J.P., Spatial variability and uncertainty in groundwater flow parameters : a geostatistical approach, Water Resources Res., 1979, 15 (2), Dagan, G. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 1. Conditional simulation of the direct problem, ^^^ewwrc^^&, 1982, 18 (4), Smith, L & Freeze, R.A. Stochastic analysis of steady - state groundwater flow in a bounded domain : One dimensional simulations, Water Resources #&?., 1979, 15(3) Tang, D.H. & Finder, G.F. Simulation of groundwater flow mass transport under uncertainty, Advan. Water Res., 1977, 1 (1), Gutjahr, A L & Gelhar, L.W. Stochastic models for subsurface flow : Infinite versus finite domain and stationarity, Water Resources Res., 1981, 17 (2), Dagan, G., Analysis of flow through heterogeneous random aquifers by the method of embedding matrix 1. Steady flow, Water Resources Res., 1981, 17(1), Tompson, A.F.B. & Gelhar, L.W. Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water /^owrc&s7?e&, 1990, 26 (10), Cawlfield, J.D. & Sitar, N., First order reliability analysis of groundwater flow, Probabilistic Methods in Civil Eng., ed. P.D. Spanos, pp , ASCE Publication, New York, Lafe, O.E. & Cheng, A.H.D. A perturbation boundary element code for steady-state groundwater flow in heterogeneous aquifers, Water Resour. 7&%., 1987,23(6), Lafe, O.E. & Cheng, A.H.D. A stochastic boundary element method for groundwater flow with random boundary conditions and recharge, Betech

9 Boundary Elements 523 '89 Conference, Windsor, Canada, Computational Mech. Publications, Southampton, Liggett, J.A. & Liu, P.L.F. The Boundary Integral Equation Method for Porous Media Flow, Allen & Unwin, London, Durbin, F, Numerical inversion of Laplace transforms : an efficient improvement to Dubner and Abate method, Computer J., 1974, 17, Manolis, G.D. & Karak6stas, C.Z. Diffusion of pollutants in randomly structured soil through groundwaterflow, (in Greek), Final report to Greek General Secretariat for Research and Technology, Thessaloniki, y = h. V b q = 0 v c h = h A D /v%/yyy/c/x/%^/yy%x/yyyy/v%/c/yx/yy/'////// q = 0 Figure 1 : Confined aquifer : configuration Time (sec) (a) Time (sec) (b) Figure 2 : Mean (a) long - term solution for T= sec and (b) short term solution for T= 0.25 sec.

10 524 Boundary Elements Time (sec) (a) (b) Figure 3 : Variance response for rectangular aquifer, f(t)= H(t-O) and T=0.05 sec for (a) piezometric head and (b) flux. «4.00E Time (sec) (a) Time (sec) (b) Figure 4 : Variance response for rectangular aquifer, f(t)= (a) piezometric head and (b) flux. and T=5.0 sec for

Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media

Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media WATER RESOURCES RESEARCH, VOL. 4,, doi:0.029/2005wr00443, 2005 Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media Chuen-Fa Ni and Shu-Guang

More information

STOCHASTIC FINITE ELEMENT ANALYSIS OF GROUNDWATER FLOW USING THE FIRST- ORDER RELIABILITY METHOD

STOCHASTIC FINITE ELEMENT ANALYSIS OF GROUNDWATER FLOW USING THE FIRST- ORDER RELIABILITY METHOD Abstract STOCHASTIC FINITE ELEMENT ANALYSIS OF GROUNDWATER FLOW USING THE FIRST- ORDER RELIABILITY METHOD Jeffrey D. Cawlfield Dept. of Geological Engineering University of Missouri-Rolla Rolla, MO 65401

More information

Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^

Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^ Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^ Milano, Italy; ^Department of. Hydrology & Water Resources, The University ofarizona,

More information

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT Second International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Mérida, México, March 3-April 2 Numerical Solution of the Two-Dimensional Time-Dependent

More information

Upscaling of Richards equation for soil moisture dynamics to be utilized in mesoscale atmospheric models

Upscaling of Richards equation for soil moisture dynamics to be utilized in mesoscale atmospheric models Exchange Processes at the imnd Surface for a Range of Space and Time Scales (Proceedings of the Yokohama Symposium, July 1993). [AHS Publ. no. 212, 1993. 125 Upscaling of Richards equation for soil moisture

More information

Hydraulic tomography: Development of a new aquifer test method

Hydraulic tomography: Development of a new aquifer test method WATER RESOURCES RESEARCH, VOL. 36, NO. 8, PAGES 2095 2105, AUGUST 2000 Hydraulic tomography: Development of a new aquifer test method T.-C. Jim Yeh and Shuyun Liu Department of Hydrology and Water Resources,

More information

IMPROVING LATERAL STIFFNESS ESTIMATION IN THE DIAGONAL STRUT MODEL OF INFILLED FRAMES

IMPROVING LATERAL STIFFNESS ESTIMATION IN THE DIAGONAL STRUT MODEL OF INFILLED FRAMES IMPROVING LATERAL STIFFNESS ESTIMATION IN THE DIAGONAL STRUT MODEL OF INFILLED FRAMES I.N. Doudoumis 1 1 Professor, Dept. of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

More information

(C) Global Journal Of Engineering Science And Researches

(C) Global Journal Of Engineering Science And Researches GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES MATHEMATICAL MODELING OF GROUNDWATER FLOW Luma Naji Mohammed Tawfiq *1 and Alaa K. Jabber 2 *1 College of Education for Pure Science I bn Al-Haitham,

More information

6. GRID DESIGN AND ACCURACY IN NUMERICAL SIMULATIONS OF VARIABLY SATURATED FLOW IN RANDOM MEDIA: REVIEW AND NUMERICAL ANALYSIS

6. GRID DESIGN AND ACCURACY IN NUMERICAL SIMULATIONS OF VARIABLY SATURATED FLOW IN RANDOM MEDIA: REVIEW AND NUMERICAL ANALYSIS Harter Dissertation - 1994-132 6. GRID DESIGN AND ACCURACY IN NUMERICAL SIMULATIONS OF VARIABLY SATURATED FLOW IN RANDOM MEDIA: REVIEW AND NUMERICAL ANALYSIS 6.1 Introduction Most numerical stochastic

More information

Assessment of Hydraulic Conductivity Upscaling Techniques and. Associated Uncertainty

Assessment of Hydraulic Conductivity Upscaling Techniques and. Associated Uncertainty CMWRXVI Assessment of Hydraulic Conductivity Upscaling Techniques and Associated Uncertainty FARAG BOTROS,, 4, AHMED HASSAN 3, 4, AND GREG POHLL Division of Hydrologic Sciences, University of Nevada, Reno

More information

A MODIFIED DECOUPLED SCALED BOUNDARY-FINITE ELEMENT METHOD FOR MODELING 2D IN-PLANE-MOTION TRANSIENT ELASTODYNAMIC PROBLEMS IN SEMI-INFINITE MEDIA

A MODIFIED DECOUPLED SCALED BOUNDARY-FINITE ELEMENT METHOD FOR MODELING 2D IN-PLANE-MOTION TRANSIENT ELASTODYNAMIC PROBLEMS IN SEMI-INFINITE MEDIA 8 th GRACM International Congress on Computational Mechanics Volos, 2 July 5 July 205 A MODIFIED DECOUPLED SCALED BOUNDARY-FINITE ELEMENT METHOD FOR MODELING 2D IN-PLANE-MOTION TRANSIENT ELASTODYNAMIC

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem

A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem Calibration and Reliability in Groundwater Modelling (Proceedings of the ModelCARE 99 Conference held at Zurich, Switzerland, September 1999). IAHS Publ. no. 265, 2000. 157 A hybrid Marquardt-Simulated

More information

Inverse Modelling for Flow and Transport in Porous Media

Inverse Modelling for Flow and Transport in Porous Media Inverse Modelling for Flow and Transport in Porous Media Mauro Giudici 1 Dipartimento di Scienze della Terra, Sezione di Geofisica, Università degli Studi di Milano, Milano, Italy Lecture given at the

More information

Efficient geostatistical simulation for spatial uncertainty propagation

Efficient geostatistical simulation for spatial uncertainty propagation Efficient geostatistical simulation for spatial uncertainty propagation Stelios Liodakis University of the Aegean University Hill Mytilene, Greece stelioslio@geo.aegean.gr Phaedon Kyriakidis Cyprus University

More information

Geostatistics in Hydrology: Kriging interpolation

Geostatistics in Hydrology: Kriging interpolation Chapter Geostatistics in Hydrology: Kriging interpolation Hydrologic properties, such as rainfall, aquifer characteristics (porosity, hydraulic conductivity, transmissivity, storage coefficient, etc.),

More information

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW 7 VIII. BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW A wide variety of natural processes are described using physical laws. A physical law may be expressed by means of an

More information

Inverse Heat Flux Evaluation using Conjugate Gradient Methods from Infrared Imaging

Inverse Heat Flux Evaluation using Conjugate Gradient Methods from Infrared Imaging 11 th International Conference on Quantitative InfraRed Thermography Inverse Heat Flux Evaluation using Conjugate Gradient Methods from Infrared Imaging by J. Sousa*, L. Villafane*, S. Lavagnoli*, and

More information

Homogenization Theory

Homogenization Theory Homogenization Theory Sabine Attinger Lecture: Homogenization Tuesday Wednesday Thursday August 15 August 16 August 17 Lecture Block 1 Motivation Basic Ideas Elliptic Equations Calculation of Effective

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 26, No. 2, pp. 558 577 c 2004 Society for Industrial and Applied Mathematics A COMPARATIVE STUDY ON UNCERTAINTY QUANTIFICATION FOR FLOW IN RANDOMLY HETEROGENEOUS MEDIA USING MONTE

More information

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Ruowen Liu, Bruno Welfert and Sandra Houston School of Mathematical & Statistical Sciences,

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Jiachuan He University of Texas at Austin April 15, 2016 Jiachuan

More information

Uncertainty quantification for flow in highly heterogeneous porous media

Uncertainty quantification for flow in highly heterogeneous porous media 695 Uncertainty quantification for flow in highly heterogeneous porous media D. Xiu and D.M. Tartakovsky a a Theoretical Division, Los Alamos National Laboratory, Mathematical Modeling and Analysis Group

More information

REDUCING ORDER METHODS APPLIED TO RESERVOIR SIMULATION

REDUCING ORDER METHODS APPLIED TO RESERVOIR SIMULATION REDUCING ORDER METHODS APPLIED TO RESERVOIR SIMULATION Lindaura Maria Steffens Dara Liandra Lanznaster lindaura.steffens@udesc.br daraliandra@gmail.com Santa Catarina State University CESFI, Av. Central,

More information

= _(2,r)af OG(x, a) 0p(a, y da (2) Aj(r) = (2*r)a (Oh(x)y,(y)) A (r) = -(2,r) a Ox Oxj G(x, a)p(a, y) da

= _(2,r)af OG(x, a) 0p(a, y da (2) Aj(r) = (2*r)a (Oh(x)y,(y)) A (r) = -(2,r) a Ox Oxj G(x, a)p(a, y) da WATER RESOURCES RESEARCH, VOL. 35, NO. 7, PAGES 2273-2277, JULY 999 A general method for obtaining analytical expressions for the first-order velocity covariance in heterogeneous porous media Kuo-Chin

More information

Second-Order Linear ODEs (Textbook, Chap 2)

Second-Order Linear ODEs (Textbook, Chap 2) Second-Order Linear ODEs (Textbook, Chap ) Motivation Recall from notes, pp. 58-59, the second example of a DE that we introduced there. d φ 1 1 φ = φ 0 dx λ λ Q w ' (a1) This equation represents conservation

More information

Groundwater Resources Management under. Uncertainty Harald Kunstmann*, Wolfgang Kinzelbach* & Gerrit van Tender**

Groundwater Resources Management under. Uncertainty Harald Kunstmann*, Wolfgang Kinzelbach* & Gerrit van Tender** Groundwater Resources Management under Uncertainty Harald Kunstmann*, Wolfgang Kinzelbach* & Gerrit van Tender**, C/f &OP3 Zwnc/?, Email: kunstmann@ihw. baum. ethz. ch Abstract Groundwater resources and

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

The Finite Difference Method

The Finite Difference Method Chapter 5. The Finite Difference Method This chapter derives the finite difference equations that are used in the conduction analyses in the next chapter and the techniques that are used to overcome computational

More information

Type-curve estimation of statistical heterogeneity

Type-curve estimation of statistical heterogeneity WATER RESOURCES RESEARCH, VOL. 40,, doi:10.1029/2003wr002405, 2004 Type-curve estimation of statistical heterogeneity Shlomo P. Neuman Department of Hydrology and Water Resources, University of Arizona,

More information

Dynamic Loads CE 543. Examples. Harmonic Loads

Dynamic Loads CE 543. Examples. Harmonic Loads CE 543 Structural Dynamics Introduction Dynamic Loads Dynamic loads are time-varying loads. (But time-varying loads may not require dynamic analysis.) Dynamics loads can be grouped in one of the following

More information

Solution of Differential Equation by Finite Difference Method

Solution of Differential Equation by Finite Difference Method NUMERICAL ANALYSIS University of Babylon/ College of Engineering/ Mechanical Engineering Dep. Lecturer : Dr. Rafel Hekmat Class : 3 rd B.Sc Solution of Differential Equation by Finite Difference Method

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Course Contents Introduction to Random Variables (RVs) Probability Distributions

More information

Lattice Boltzmann model for the Elder problem

Lattice Boltzmann model for the Elder problem 1549 Lattice Boltzmann model for the Elder problem D.T. Thorne a and M.C. Sukop a a Department of Earth Sciences, Florida International University, PC 344, University Park, 11200 SW 8th Street, Miami,

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

Flow to a Well in a Two-Aquifer System

Flow to a Well in a Two-Aquifer System Flow to a Well in a Two-Aquifer System Bruce Hunt 1 and David Scott Abstract: An approximate solution for flow to a well in an aquifer overlain by both an aquitard and a second aquifer containing a free

More information

Flow toward Pumping Well, next to river = line source = constant head boundary

Flow toward Pumping Well, next to river = line source = constant head boundary Flow toward Pumping Well, next to river = line source = constant head boundary Plan view River Channel after Domenico & Schwartz (1990) Line Source Leonhard Euler 1707-1783 e i" +1 = 0 wikimedia.org Charles

More information

Pressure-Transient Behavior of DoublePorosity Reservoirs with Transient Interporosity Transfer with Fractal Matrix Blocks

Pressure-Transient Behavior of DoublePorosity Reservoirs with Transient Interporosity Transfer with Fractal Matrix Blocks SPE-190841-MS Pressure-Transient Behavior of DoublePorosity Reservoirs with Transient Interporosity Transfer with Fractal Matrix Blocks Alex R. Valdes-Perez and Thomas A. Blasingame, Texas A&M University

More information

Solute transport in a heterogeneous aquifer: a search for nonlinear deterministic dynamics

Solute transport in a heterogeneous aquifer: a search for nonlinear deterministic dynamics Nonlinear Processes in Geophysics (2005) 12: 211 218 SRef-ID: 1607-7946/npg/2005-12-211 European Geosciences Union 2005 Author(s). This work is licensed under a Creative Commons License. Nonlinear Processes

More information

Application of the random walk method to simulate the transport of kinetically adsorbing solutes

Application of the random walk method to simulate the transport of kinetically adsorbing solutes Groundwater Contamination (Proceedings of the Symposium held during the Third IAHS Scientific Assembly, Baltimore, MD, May 1989), IAHS Publ. no. 185, 1989 Application of the random walk method to simulate

More information

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi GG655/CEE63 Groundwater Modeling Model Theory Water Flow Aly I. El-Kadi Hydrogeology 1 Saline water in oceans = 97.% Ice caps and glaciers =.14% Groundwater = 0.61% Surface water = 0.009% Soil moisture

More information

A LOCAL AVERAGE METHOD FOR STOCHASTIC THERMAL ANALYSIS UNDER HEAT CONDUCTION CONDITIONS

A LOCAL AVERAGE METHOD FOR STOCHASTIC THERMAL ANALYSIS UNDER HEAT CONDUCTION CONDITIONS A LOCAL AVERAGE METHOD FOR STOCHASTIC THERMAL ANALYSIS UNDER HEAT CONDUCTION CONDITIONS Tao WANG a,b *, Guoqing ZHOU a, Jianzhou WANG a, and Leiian YIN b a State Key Laboratory for Geomechanics and Deep

More information

A simple Galerkin boundary element method for three-dimensional crack problems in functionally graded materials

A simple Galerkin boundary element method for three-dimensional crack problems in functionally graded materials Materials Science Forum Vols. 492-493 (2005) pp 367-372 Online available since 2005/Aug/15 at www.scientific.net (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.492-493.367

More information

Reservoir Oscillations with Through Flow

Reservoir Oscillations with Through Flow American Journal of Environmental Sciences 3 (): 37-42, 27 ISSN 553-345X 27 Science Publications Reservoir Oscillations with Through Flow A. A. Khan 28 Lowry Hall, epartment of Civil Engineering, Clemson

More information

The Stochastic Inverse Problem in Groundwater Hydrology: A Kalman Filter Approach

The Stochastic Inverse Problem in Groundwater Hydrology: A Kalman Filter Approach The Stochastic Inverse Problem in Groundwater Hydrology: A Kalman Filter Approach Franz Konecny Institute of Mathematics and Applied Statistics C/muerszZ?/ o/ Agrzcw/Zwm/ ^czences, Fzermo /W J#0 Ore^or

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

Modelling of pumping from heterogeneous unsaturated-saturated porous media M. Mavroulidou & R.I. Woods

Modelling of pumping from heterogeneous unsaturated-saturated porous media M. Mavroulidou & R.I. Woods Modelling of pumping from heterogeneous unsaturated-saturated porous media M. Mavroulidou & R.I. Woods Email: M.Mavroulidou@surrey.ac.uk; R. Woods@surrey.ac.uk Abstract Practising civil engineers often

More information

Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach

Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach WATER RESOURCES RESEARCH, VOL. 43,, doi:10.1029/2006wr005193, 2007 Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach

More information

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure 21 st ICDERS July 23-27, 27 Poitiers, France Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure Ahmad S. El Sayed, Cécile B. Devaud Department of Mechanical

More information

Technical note: Analytical drawdown solution for steady-state pumping tests in two-dimensional isotropic heterogeneous aquifers

Technical note: Analytical drawdown solution for steady-state pumping tests in two-dimensional isotropic heterogeneous aquifers Hydrol. Earth Syst. Sci., 0, 655 667, 06 www.hydrol-earth-syst-sci.net/0/655/06/ doi:0.594/hess-0-655-06 Authors 06. CC Attribution 3.0 License. Technical note: Analytical drawdown solution for steady-state

More information

Transactions on Ecology and the Environment vol 7, 1995 WIT Press, ISSN

Transactions on Ecology and the Environment vol 7, 1995 WIT Press,   ISSN Non-Fickian tracer dispersion in a karst conduit embedded in a porous medium A.P. Belov*, T.C. Atkinson* "Department of Mathematics and Computing, University of Glamorgan, Pontypridd, Mid Glamorgan, CF3

More information

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Lecture - 20 Response Spectrum Method of Analysis In the last few lecture, we discussed

More information

Simultaneous use of hydrogeological and geophysical data for groundwater protection zone delineation by co-conditional stochastic simulations

Simultaneous use of hydrogeological and geophysical data for groundwater protection zone delineation by co-conditional stochastic simulations Simultaneous use of hydrogeological and geophysical data for groundwater protection zone delineation by co-conditional stochastic simulations C. Rentier,, A. Dassargues Hydrogeology Group, Departement

More information

Supporting Information for Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

Supporting Information for Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test GEOPHYSICAL RESEARCH LETTERS Supporting Information for Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test Jonathan Schuite 1, Laurent Longuevergne

More information

Supplemental Materials. Modeling Flow into Horizontal Wells in a Dupuit-Forchheimer Model

Supplemental Materials. Modeling Flow into Horizontal Wells in a Dupuit-Forchheimer Model Supplemental Materials Modeling Flow into Horizontal Wells in a Dupuit-Forchheimer Model Henk Haitjema, Sergey Kuzin, Vic Kelson, and Daniel Abrams August 8, 2011 1 Original publication Modeling Flow into

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Stochastic methods for aquifer protection and management

Stochastic methods for aquifer protection and management Stochastic methods for aquifer protection and management Dr Adrian Butler Department of Civil & Environmental Engineering G-WADI 07 International Workshop on Groundwater Modeling for Arid and Semi-arid

More information

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Y. Huang 1,2, and X.S. Qin 1,2* 1 School of Civil & Environmental Engineering, Nanyang Technological University,

More information

Baseflow Analysis. Objectives. Baseflow definition and significance

Baseflow Analysis. Objectives. Baseflow definition and significance Objectives Baseflow Analysis. Understand the conceptual basis of baseflow analysis.. Estimate watershed-average hydraulic parameters and groundwater recharge rates. Baseflow definition and significance

More information

RESPONSE SURFACE METHODS FOR STOCHASTIC STRUCTURAL OPTIMIZATION

RESPONSE SURFACE METHODS FOR STOCHASTIC STRUCTURAL OPTIMIZATION Meccanica dei Materiali e delle Strutture Vol. VI (2016), no.1, pp. 99-106 ISSN: 2035-679X Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, Dei Materiali DICAM RESPONSE SURFACE METHODS FOR

More information

Introduction to Well Hydraulics Fritz R. Fiedler

Introduction to Well Hydraulics Fritz R. Fiedler Introduction to Well Hydraulics Fritz R. Fiedler A well is a pipe placed in a drilled hole that has slots (screen) cut into it that allow water to enter the well, but keep the aquifer material out. A well

More information

Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain

Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain - 11191 Robert A. Hiergesell and Glenn A. Taylor Savannah River National Laboratory SRNS Bldg.

More information

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length Australian Journal of Basic and Applied Sciences, 4(6): 173-181, 1 ISSN 1991-8178 Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in

More information

ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS

ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS 8th International Congress on Computational Mechanics, Volos, 1-15 July 015 ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS E.G. Kakouris, V.K. Koumousis Institute of Structural

More information

Using groundwater-flow model results to evaluate a useful 3-D GFM mapping scale

Using groundwater-flow model results to evaluate a useful 3-D GFM mapping scale Topography Geology Hydrology Using groundwater-flow model results to evaluate a useful 3-D GFM mapping scale Sally L. Letsinger, Ph.D., LPG, GISP IU Center for Geospatial Data Analysis, Indiana Geological

More information

Dipartimento di Scienze Matematiche

Dipartimento di Scienze Matematiche Exploiting parallel computing in Discrete Fracture Network simulations: an inherently parallel optimization approach Stefano Berrone stefano.berrone@polito.it Team: Matìas Benedetto, Andrea Borio, Claudio

More information

ADVANCED SOIL MECHANICS

ADVANCED SOIL MECHANICS BERNOULLI S EQUATION h Where: u w g Z h = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weight of Water h 14.531 ADVANCED SOIL MECHANICS BERNOULLI S EQUATION IN SOIL u w g

More information

J. Harish* and R.P. Rokade + *Graduate scholar Valliammai Engineering College, Kattankulathur, India + Principal Scientist

J. Harish* and R.P. Rokade + *Graduate scholar Valliammai Engineering College, Kattankulathur, India + Principal Scientist International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 109 Stochastic finite element analysis of simple hip truss Abstract- In this paper, nodal displacements and member

More information

Piecewise Constant Aquifer Parameter Identification Recovery

Piecewise Constant Aquifer Parameter Identification Recovery 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Piecewise Constant Aquifer Parameter Identification Recovery R. S. Anderssen

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

HEAT CONDUCTION USING GREEN S FUNCTIONS

HEAT CONDUCTION USING GREEN S FUNCTIONS HEAT CONDUCTION USING GREEN S FUNCTIONS Preface to the first edition Preface to the second edition Author Biographies Nomenclature TABLE OF CONTENTS FOR SECOND EDITION December 2009 Page viii x xii xiii

More information

Darcy s law in 3-D. K * xx K * yy K * zz

Darcy s law in 3-D. K * xx K * yy K * zz PART 7 Equations of flow Darcy s law in 3-D Specific discarge (vector) is calculated by multiplying te ydraulic conductivity (second-order tensor) by te ydraulic gradient (vector). We obtain a general

More information

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS JASON ALBRIGHT, YEKATERINA EPSHTEYN, AND QING XIA Abstract. Highly-accurate numerical methods that can efficiently

More information

A generalized method for advective-diffusive computations in engineering

A generalized method for advective-diffusive computations in engineering Fluid Structure Interaction and Moving Boundary Problems 563 A generalized method for advective-diffusive computations in engineering H. Gómez, I. Colominas, F. Navarrina & M. Casteleiro Department of

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

A note on benchmarking of numerical models for density dependent flow in porous media

A note on benchmarking of numerical models for density dependent flow in porous media Advances in Water Resources 29 (2006) 1918 1923 www.elsevier.com/locate/advwatres A note on benchmarking of numerical models for density dependent flow in porous media B. Ataie-Ashtiani *, M.M. Aghayi

More information

O.R. Jimoh, M.Tech. Department of Mathematics/Statistics, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria.

O.R. Jimoh, M.Tech. Department of Mathematics/Statistics, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria. Comparative Analysis of a Non-Reactive Contaminant Flow Problem for Constant Initial Concentration in Two Dimensions by Homotopy-Perturbation and Variational Iteration Methods OR Jimoh, MTech Department

More information

ANNEX A: ANALYSIS METHODOLOGIES

ANNEX A: ANALYSIS METHODOLOGIES ANNEX A: ANALYSIS METHODOLOGIES A.1 Introduction Before discussing supplemental damping devices, this annex provides a brief review of the seismic analysis methods used in the optimization algorithms considered

More information

Simulation of Unsaturated Flow Using Richards Equation

Simulation of Unsaturated Flow Using Richards Equation Simulation of Unsaturated Flow Using Richards Equation Rowan Cockett Department of Earth and Ocean Science University of British Columbia rcockett@eos.ubc.ca Abstract Groundwater flow in the unsaturated

More information

A full-bayesian approach to the groundwater inverse problem for steady state flow

A full-bayesian approach to the groundwater inverse problem for steady state flow WATER RESOURCES RESEARCH, VOL. 36, NO. 8, PAGES 2081 2093, AUGUST 2000 A full-bayesian approach to the groundwater inverse problem for steady state flow Allan D. Woodbury Department of Civil Engineering,

More information

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate Daffodil International University Institutional Repository DIU Journal of Science and Technology Volume 1, Issue 1, January 17 17-1 Finite Difference Solution of Unsteady Free Convection Heat and Mass

More information

Reliability of Traditional Retaining Wall Design

Reliability of Traditional Retaining Wall Design Reliability of Traditional Retaining Wall Design by Gordon A. Fenton 1, D. V. Griffiths 2, and M. B. Williams 3 in Géotechique, Vol. 55, No. 1, pp. 55-62, 2005 Keywords: retaining walls, earth pressure,

More information

Groundwater Simulation

Groundwater Simulation Review Last time Measuring Water Levels Water Level Fluctuations Examples Fluctuations due to well tests, ET, recharge, atms. pressure, earth tides, river stage, ocean tides, surface loading, etc. Todd,

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Thermal Analysis Contents - 1

Thermal Analysis Contents - 1 Thermal Analysis Contents - 1 TABLE OF CONTENTS 1 THERMAL ANALYSIS 1.1 Introduction... 1-1 1.2 Mathematical Model Description... 1-3 1.2.1 Conventions and Definitions... 1-3 1.2.2 Conduction... 1-4 1.2.2.1

More information

Monte Carlo analysis of macro dispersion in 3D heterogeneous porous media

Monte Carlo analysis of macro dispersion in 3D heterogeneous porous media Monte Carlo analysis of macro dispersion in 3D heterogeneous porous media Arthur Dartois and Anthony Beaudoin Institute P, University of Poitiers, France NM2PourousMedia, Dubrovnik, Croatia 29 Sep - 3

More information

B005 A NEW FAST FOURIER TRANSFORM ALGORITHM FOR FLUID FLOW SIMULATION

B005 A NEW FAST FOURIER TRANSFORM ALGORITHM FOR FLUID FLOW SIMULATION 1 B5 A NEW FAST FOURIER TRANSFORM ALGORITHM FOR FLUID FLOW SIMULATION LUDOVIC RICARD, MICAËLE LE RAVALEC-DUPIN, BENOÎT NOETINGER AND YVES GUÉGUEN Institut Français du Pétrole, 1& 4 avenue Bois Préau, 92852

More information

THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER

THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER E.mail: rchaube@cat.ernet.in R. CHAUBE, B. SINGH Abstract The thermal properties of the laser head such as temperature distribution, thermal gradient

More information

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Lecture No. # 33 Probabilistic methods in earthquake engineering-2 So, we have

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Mechanical Energy. Kinetic Energy. Gravitational Potential Energy

Mechanical Energy. Kinetic Energy. Gravitational Potential Energy Mechanical Energy Kinetic Energy E k = 1 2 mv2 where E k is energy (kg-m 2 /s 2 ) v is velocity (m/s) Gravitational Potential Energy E g = W = mgz where w is work (kg-m 2 /s 2 ) m is mass (kg) z is elevation

More information

Pseudo-natural SSI frequency of coupled soil-pilestructure

Pseudo-natural SSI frequency of coupled soil-pilestructure Pseudo-natural SSI frequency of coupled soil-pilestructure systems E.N. Rovithis Institute of Engineering Seismology and Earthquake Engineering (ITSAK), Thessaloniki, Greece K.D. Pitilakis Department of

More information

Transactions on Modelling and Simulation vol 8, 1994 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 8, 1994 WIT Press,   ISSN X Boundary element method for an improperly posed problem in unsteady heat conduction D. Lesnic, L. Elliott & D.B. Ingham Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, UK

More information

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS THERMAL SCIENCE: Year 27, Vol. 2, No. 3, pp. 73-82 73 LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS by Edouard WALTHER *, Rachid BENNACER, and Caroline DE SA LMT, ENS

More information

Analytical solutions for water flow and solute transport in the unsaturated zone

Analytical solutions for water flow and solute transport in the unsaturated zone Models for Assessing and Monitoring Groundwater Quality (Procsedines of a Boulder Symposium July 1995). IAHS Publ. no. 227, 1995. 125 Analytical solutions for water flow and solute transport in the unsaturated

More information

MFS with RBF for Thin Plate Bending Problems on Elastic Foundation

MFS with RBF for Thin Plate Bending Problems on Elastic Foundation MFS with RBF for Thin Plate Bending Problems on Elastic Foundation Qing-Hua Qin, Hui Wang and V. Kompis Abstract In this chapter a meshless method, based on the method of fundamental solutions (MFS and

More information