THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER

Size: px
Start display at page:

Download "THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER"

Transcription

1 THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER E.mail: rchaube@cat.ernet.in R. CHAUBE, B. SINGH Abstract The thermal properties of the laser head such as temperature distribution, thermal gradient and heat flux in thermal insulation are of considerable importance in analyzing and improving the performance of the laser system. In this paper we present thermal analysis of a high temperature Copper Vapor Laser. The laser with input power of 4 k. Watt is capable of generating 30 Watt optical power with efficiency of about 0.75%. It is shown that alumina bulk fiber is most suitable insulation for the requirements of the laser discussed here. It is also shown through the analysis that packing density of alumina bulk fiber as insulation does not play significant role in deciding input requirements. The finite element method is employed for steady state and transient analysis using a commercial thermal code Ansys Introduction Copper vapor lasers are gas discharge visible lasers operating at 510 nm and 578 nm wave length. These lasers require high electrical input power of 4 5 kw for maintaining the discharge tube temperature of about C. High quality thermal insulation is provided around the discharge tube to maintain the tube temperature. The electrical input power required to keep the Cooper Vapor Laser (C.V.L.) discharge tube within the operating temperature range depends in the thermal insulation used. The lay out of a C.V.L. is shown in fig. (1). Typically a temperature of C C is required to maintain the desired plasma conditions. Two mutually contradictory conditions are encountered while designing suitable insulation for high power CVL. Using low thermal conductivity material reduces heat flux thereby requiring less electrical input power to reach desired steady state temperature and results in less optical output. On other hand using higher thermal conductivity material demands higher input power which overheats the active medium that leads to disruption of lasing due to the thermal population of the lower working metastable level. Smaller the insulation thickness used, smaller will be the discharge circuit inductance to achieve faster rise time current pulse through cooper vapors. Also the other objective of insulation over discharge tube is to establish a temperature gradient acceptable to the efficient convective cooling in the cooling jacket. Different thermal insulation material are attempted for C.V.L. discharge tube earlier [1,2]. The conductivity of the insulation increases with the temperature and the mean conductivity may be approximated as follows: K m = 1 ΔT T1 T2 f ( T )dt The other factors responsible to increase thermal conductivity are Moisture, pressure and density. The bulk density of the insulating material varies inversely with porosity. The fibrous and powder insulation show minimum conductivity at some particular bulk density. However there is no mathematical relationship established between bulk conductivity and density of insulating material. This is understandably because of the reason that although the conductivity of the insulation reduces with increase in porosity, but beyond certain porosity at high temperature, the radiation heat transfer across the pores becomes predominant. Moreover with high porosity the cross stream convection currents are set up due to the density differences of the operating fluids subjected to different temperatures. The apparent thermal conductivity of an alumina fiber insulation was measured at nominal densities of 24, 48 and 96 kg/m 3 by Daryabeigi [3] with pressure varying from 10-4 torr to 760 torr and temperature up to 0 C. In their numerical and experimental studies it was seen that the thermal conductivity increased with temperatures and also with pressure above 10-1 torr. The same author[4] carried forward their studies on the effective thermal conductivity of an alumina fibrous insulations at densities of 24, 48, and 72 kg/m 3 and at thick nesses of 13.3, 26.6 and 39.9 mm measured over a pressure range of 1.33 x 10-5 to kpa, and subject to temperature differences of K 1

2 maintained across the sample thickness and concluded that for fibrous insulation samples at densities equal to or larger than 24kg/m 3 the natural convection was not present as a mode of heat transfer. The flow characteristics in thermally insulating porous media under vacuum using two different CFD codes is presented elsewhere [5]. In this paper we present thermal characteristics of insulating porous media used in Kinetically enhanced Copper Vapor Laser with the emphasis on conductive heat transfer calculations. Two different bulk densities of alumia fiber are studied separately for C.V.L. discharge tube insulation. 2.0 Governing Equations On assuming constant density and specific heat with no mass transport of heat the equation takes the following form [6]: ρ CP = K x + K t x x y Where, ρ is the density, C P is Specific heat, T is Temperature, t is time, y + K y z z z K, K, K are conductivity in the element in x, y, z directions respectively. x y z The heat flux vector may be obtained by using Fourier s law utilizing thermal gradient as follows [7,8]: {} q = [ D]{}T L Where, [ D ] = Conductivity matrix, {} L = Vector operator, and temperature T is allowed to vary in space and time. The integration outputs will be as follows: T Thermal gradient vector, { a} = {} L T = x y z From thermal gradients the heat flux vector is calculated as follows: {} q = [ D]{} a 3.0 Analysis and Discussions The measurement of the temperature and heat flux at the intermediate layers is quite difficult. However the temperatures at the alumia tube (about C), intermediate layer of the insulation blanket (about C) and outer most layer (about C) are taken with the help of an optical pyrometer for a bulk density of 500 Kg./m 3 and 150 Kg./m 3. Due to complexity of the system computational approach is taken to do the analysis. The finite element method is employed for finding the temperature gradient, temperature distribution, heat flux and transient time required to reach steady state conditions using commercial thermal code Ansys 9.0. The meshing is performed with SOLID70 element, which is having 8 nodes. SOLID70 was used to save the time of calculation and memory. SOLID70 has a 3-D thermal conduction capability. The element has eight nodes with a single degree of freedom, temperature, at each node. The element is applicable to a 3-D, steady state or transient thermal analysis. The element is defined by eight nodes and the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. 2

3 The mesh for the system is produced using free meshing using SOLID70 element. Element sizing is used to mesh the system using Sizing Scale Factor of The entire model is meshed at once rather than Sizing area-by-area or volume-by-volume to utilize the opportunity to reduce element sizes near small features in adjacent regions. The meshed model which gave grid independent results is presented in fig. 2. Thermal transient analysis is performed on the model as the temperature of the system is changing with time. In regions of severe thermal gradients during a transient process there is a relationship between the largest element size in the direction of the heat flow and the smallest time step size that will yield good results. Using more elements for the same time step size will normally give better results, but using more sub steps for the same mesh will often give worse results. Controlling of the maximum time step size by the description of the loading input and defines the minimum time step size (or maximum element size) based on the following relationship: ITS = Δ 2 / 4 α The Δ value is the conducting length of an element (along the direction of heat flow) in the expected highest temperature gradient. The α value is the thermal diffusivity, given by k/ρc. Where, k is the thermal conductivity, ρ is the mass density, and C is the specific heat. The initial condition for model is, the temperature of whole system is 25 O C at t = 0 Dirichlet boundary conditions are specified at the cylindrical walls of the insulation. The temperature of the inner cylindrical wall is kept constant and equal to the 1500 O C and that on outer wall equal to C. For two independent bulk densities the radial heat flux distribution (Fig. 3) and the temperature distribution (Fig. 4) closely follow the same pattern and the bulk fiber density may not significantly affect these two parameters. The radial thermal gradient is steeper with high density packing when compared with low bulk density (Fig. 5) and the attempts may be made to reduce the radial thickness further. With reduced insulation thickness the requirement of the heat transfer coefficient increases which may be taken care by increasing the coolant flow rate (10 lpm for present case). From transient analysis it is clear that the time required to reach the steady state is also more with high bulk densities when compared with low bulk density (Fig. 6 and Fig. 7). 4.0 Conclusion In conclusion we have studied the thermo- mechanical properties with two extreme filling densities of alumina fiber on copper vapor laser discharge tube. It is seen that the packing density does not significantly affect the thermal parameters of the system. It is also seen that the radial thickness of insulation may be further reduced to make the system more compact. Fig. (1) Lay Out of C.V.L. 3

4 5000 High density Low density 4500 Heat Flux in W/m Fig. (2) Meshed volume 2000 Radial distance in m Fig. (3) Radial Heat Flux Temperature in 0 K 1 X Axis Title Low Density C High Density D Fig. (4) Radial Temperature Distribution Thermal Gradient in 0 K/m Radial distance in m High Density C Low Density D Fig. (5) Radial Thermal Gradiant Low density fibre High density fibre Temperatures in 0 K Inner most layer Outermost layer Transient time in sec. Temperature in 0 K Innermost layer Outermost layer Transient time in sec. Fig. (6) Temperature V/S time Fig. (7) Temperature V/S time 4

5 References 1. J.J. Kim and J.F. Convey, Review of Scientific Instruments, 53, 1623, B. Singh et. al., Review of Scientific Instruments, 55, 1542, Kamran Daryabeigi, Analysis and testing of high temperature fiborous insulation for reusable launch vehicles, 37 th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA , January 11-14, Kamran Daryabeigi, Heat Transfer in High-Temperature Fibrous Insulation, AIAA , 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, June 2002 / St. Louis, MO. 5. Rajeev Chaube, Numerical Analysis of Porous Media under Vacuum for Gas Discharge Laser, Indian Vacuum Society National Symposium IVSN 2005, Inst. Plasma Research Gandhi Nagar, IVSNS 05 - Nov Sadik Kakac, Heat Conduction 3 rd edition (1993), Taylor & Francis 7. Baker, A. J. and Pepper, D. W., Finite Elements 1-2-3, McGraw-Hill Publ., New York, 1992, 200 pp. 8. Ansys 9.0, Theory reference manual 5

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN ISSN 2229-5518 916 Laser Damage Effect Studies with Hollow Metallic Targets Satyender Kumar, S Jain, K C Sati, S Goyal, R Malhotra, R Rajan, N R Das & A K Srivastava Laser Science & Technology Centre Metcalfe

More information

HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS

HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS Mihai MIHAILA-ANDRES 1 Paul Virgil ROSU 2 Ion FUIOREA 3 1 PhD., Structure Analysis and Simulation Division,

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Heat transport in substances: conduction transfer of kinetic energy on the bases of disorded movement of molecules. Own heat transfer

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Experimental Studies of Active Temperature Control in Solid Breeder Blankets

Experimental Studies of Active Temperature Control in Solid Breeder Blankets Experimental Studies of Active Temperature Control in Solid Breeder Blankets M. S. Tillack, A. R. Raffray, A. Y. Ying, M. A. Abdou, and P. Huemer Mechanical, Aerospace and Nuclear Engineering Department

More information

Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers

Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers Journal of Electromagnetic Analysis and Applications, 2012, 4, 167-176 http://dx.doi.org/10.4236/jemaa.2012.44022 Published Online April 2012 (http://www.scirp.org/journal/jemaa) 167 Extensions to the

More information

Unit B-4: List of Subjects

Unit B-4: List of Subjects ES312 Energy Transfer Fundamentals Unit B: First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-2: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

NUMERICAL ANALYSIS ON THERMAL ENERGY STORAGE TANK FILLED WITH PHASE CHANGE MATERIAL

NUMERICAL ANALYSIS ON THERMAL ENERGY STORAGE TANK FILLED WITH PHASE CHANGE MATERIAL NUMERICAL ANALYSIS ON THERMAL ENERGY STORAGE TANK FILLED WITH PHASE CHANGE MATERIAL Uday Maruti Jad PG Student, Department of Mechanical Engineering Rajarambapu Institute of Technology Rajaramnagar, India.

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #1. February 20, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #1. February 20, 2014 Circle one: Div. 1 (Prof. Choi) Div. 2 (Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #1 February 20, 2014 Instructions: Write your name on each page Write

More information

Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module 2018 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China and the UK Plasma Science and Technology (11pp) https://doi.org/10.1088/2058-6272/aab54a Design

More information

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C)

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C) PROBLEM 1.2 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from -15 to 38

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

This chapter focuses on the study of the numerical approximation of threedimensional

This chapter focuses on the study of the numerical approximation of threedimensional 6 CHAPTER 6: NUMERICAL OPTIMISATION OF CONJUGATE HEAT TRANSFER IN COOLING CHANNELS WITH DIFFERENT CROSS-SECTIONAL SHAPES 3, 4 6.1. INTRODUCTION This chapter focuses on the study of the numerical approximation

More information

Introduction to Heat and Mass Transfer. Week 7

Introduction to Heat and Mass Transfer. Week 7 Introduction to Heat and Mass Transfer Week 7 Example Solution Technique Using either finite difference method or finite volume method, we end up with a set of simultaneous algebraic equations in terms

More information

SUPER-INSULATED LONG-TERM HOT WATER STORAGE

SUPER-INSULATED LONG-TERM HOT WATER STORAGE SUPER-INSULATED LONG-TERM HOT WATER STORAGE Dr. rer. nat. T. Beikircher, Dr.-Ing. F. Buttinger, M. Demharter ZAE Bayern, Dept. 1 Walther Meißner Str. 6, 85748 Garching Phone: +49/89/329442-49 beikircher@muc.zae-bayern.de

More information

Design and Optimization of Multi-Material Material Objects for Enhanced Thermal Behavior Application: Brake Disk Design

Design and Optimization of Multi-Material Material Objects for Enhanced Thermal Behavior Application: Brake Disk Design Design and Optimization of Multi-Material Material Objects for Enhanced Thermal Behavior Application: Brake Disk Design Vincent Y. Blouin Martin Oschwald Yuna Hu Georges M. Fadel Clemson University 10

More information

CFD Analysis of High Temperature and High Velocity System: Plasma Torch

CFD Analysis of High Temperature and High Velocity System: Plasma Torch CFD Analysis of High Temperature and High Velocity System: Plasma Torch Abhishek Pratap Singh Bhadauria 1 1 Department of Mechanical Engineering, K. J. Somaiya College of Engineering, Mumbai, Maharashtra,

More information

Copyright 2007 Society of Photo-Optical Instrumentation Engineers

Copyright 2007 Society of Photo-Optical Instrumentation Engineers Copyright 2007 Society of Photo-Optical Instrumentation Engineers This paper was published in SPIE Proceedings Volume 6666, Optical Materials and Structures Technologies III, and is made available as an

More information

Thermo-Structural Analysis of Thermal Protection System for Re-Entry Module of Human Space Flight

Thermo-Structural Analysis of Thermal Protection System for Re-Entry Module of Human Space Flight Thermo-Structural Analysis of Thermal Protection System for Re-Entry Module of Human Space Flight Manu. Jˡ, G. Vinod 2, Dr. Roy N Mathews 3 Abstract Advanced Space Transportation systems involve the reusable

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System Numerical Study of PCM Melting in Evacuated Collector Storage System MOHD KHAIRUL ANUAR SHARIF, SOHIF MAT, MOHD AFZANIZAM MOHD ROSLI, KAMARUZZAMAN SOPIAN, MOHD YUSOF SULAIMAN, A. A. Al-abidi. Energy Research

More information

Comparison of heat transfer characteristics of liquid coolants in forced convection cooling in a micro heat sink

Comparison of heat transfer characteristics of liquid coolants in forced convection cooling in a micro heat sink Nivesh Agrawal et al. / IJAIR ISSN: 78-7844 Comparison of heat transfer characteristics of liquid coolants in forced convection cooling in a micro heat sink Mr.Nivesh Agrawal #1 Mr.Mahesh Dewangan * #1

More information

CFX SIMULATION OF A HORIZONTAL HEATER RODS TEST

CFX SIMULATION OF A HORIZONTAL HEATER RODS TEST CFX SIMULATION OF A HORIZONTAL HEATER RODS TEST Hyoung Tae Kim, Bo Wook Rhee, Joo Hwan Park Korea Atomic Energy Research Institute 150 Dukjin-Dong, Yusong-Gu, Daejon 305-353, Korea kht@kaeri.re.kr Abstract

More information

3.0 FINITE ELEMENT MODEL

3.0 FINITE ELEMENT MODEL 3.0 FINITE ELEMENT MODEL In Chapter 2, the development of the analytical model established the need to quantify the effect of the thermal exchange with the dome in terms of a single parameter, T d. In

More information

A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers

A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers Advanced Computational Methods and Experiments in Heat Transfer XIII 133 A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers F. Yang, K. Mohrlok, U.

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

FINITE ELEMENT ANALYSIS OF THERMAL CHARACTERISTICS OF ANNULAR FINS WITH DIFFERENT PROFILES

FINITE ELEMENT ANALYSIS OF THERMAL CHARACTERISTICS OF ANNULAR FINS WITH DIFFERENT PROFILES FINITE ELEMENT ANALYSIS OF THERMAL CHARACTERISTICS OF ANNULAR FINS WITH DIFFERENT PROFILES M. Sudheer 1, G. Vignesh Shanbhag 1, Prashanth Kumar 1 and Shashiraj Somayaji 2 1 Department of Mechanical Engineering,

More information

Thermo-mechanical Analysis of Divertor test mock-up using Comsol Multiphysics

Thermo-mechanical Analysis of Divertor test mock-up using Comsol Multiphysics Thermo-mechanical Analysis of Divertor test mock-up using Comsol Multiphysics Presented by Yashashri Patil D. Krishanan, S. S. Khirwadkar Institute For Plasma Research, Bhat Gandhinagar-Gujarat-382428

More information

Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation Kamran Daryabeigi * NASA Langley Research Center, Hampton, Virginia, 23681 George R. Cunnington Cunnington and Associates, Palo Alto,

More information

Study of Effect of Fin Geometry on Rate of Heat transfer for a 150cc, 4-stroke IC Engine

Study of Effect of Fin Geometry on Rate of Heat transfer for a 150cc, 4-stroke IC Engine Study of Effect of Fin Geometry on Rate of Heat transfer for a 150cc, 4-stroke IC Engine # 1 Shivanand Karve, #2 Dr. S.S.Kore #1 Student of M. E. Heat Power, S.P.Pune university, Balewadi,Pune, India #2

More information

THE APPLICATION OF CFD TO VENTILATION CALCULATIONS AT YUCCA MOUNTAIN

THE APPLICATION OF CFD TO VENTILATION CALCULATIONS AT YUCCA MOUNTAIN THE APPLICATION OF CFD TO VENTILATION CALCULATIONS AT YUCCA MOUNTAIN G Danko, and D Bahrami, Mackay School of Mines University of Nevada, Reno Reno, NV 89557, (775) 784 4284 ABSTRACT This paper presents

More information

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography Research Paper Applied Science and Convergence Technology Vol.24 No.5, September 2015, pp.125 131 http://dx.doi.org/10.5757/asct.2015.24.5.125 Thermal Characteristics of Rotating Anode X-ray Tube with

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

Finite Element Modeling for Transient Thermal- Structural Coupled Field Analysis of a Pipe Joint

Finite Element Modeling for Transient Thermal- Structural Coupled Field Analysis of a Pipe Joint International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 88 Finite Element Modeling for Transient Thermal- Structural Coupled Field

More information

Thermal Analysis Contents - 1

Thermal Analysis Contents - 1 Thermal Analysis Contents - 1 TABLE OF CONTENTS 1 THERMAL ANALYSIS 1.1 Introduction... 1-1 1.2 Mathematical Model Description... 1-3 1.2.1 Conventions and Definitions... 1-3 1.2.2 Conduction... 1-4 1.2.2.1

More information

CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS

CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS Keiichi Murakami*, Yukimitsu Yamamoto*, Olivier Rouzand**

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Numerical Simulation for Freeze Drying of Skimmed Milk with Moving Sublimation Front using Tri- Diagonal Matrix Algorithm

Numerical Simulation for Freeze Drying of Skimmed Milk with Moving Sublimation Front using Tri- Diagonal Matrix Algorithm Journal of Applied Fluid Mechanics, Vol. 10, No. 3, pp. 813-818, 2017. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.73.240.27054 Numerical Simulation

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

Combined Heat Transfer in High-Porosity High- Temperature Fibrous Insulations: Theory and Experimental Validation

Combined Heat Transfer in High-Porosity High- Temperature Fibrous Insulations: Theory and Experimental Validation Combined Heat Transfer in High-Porosity High- Temperature Fibrous Insulations: Theory and Experimental Validation Kamran Daryabeigi * NASA Langley Research Center, Hampton, Virginia, 2368 George R. Cunnington

More information

Measurement of Conductivity of Liquids

Measurement of Conductivity of Liquids Name: Lab Section: Date: ME4751, Energy Systems Laboratory Measurement of Conductivity of Liquids Objective: The objective of this experiment is to measure the conductivity of fluid (liquid or gas) and

More information

MATLAB Solution of Flow and Heat Transfer through a Porous Cooling Channel and the Conjugate Heat Transfer in the Surrounding Wall

MATLAB Solution of Flow and Heat Transfer through a Porous Cooling Channel and the Conjugate Heat Transfer in the Surrounding Wall MATLAB Solution of Flow and Heat Transfer through a Porous Cooling Channel and the Conjugate Heat Transfer in the Surrounding Wall James Cherry, Mehmet Sözen Grand Valley State University, cherryj1@gmail.com,

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 3- Examples on problems having different heat transfer modes Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Examples Multimode heat transfer Heat exchanger

More information

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Prepared by a Task Group of the SFPE Standards Making Committee on Predicting the Thermal Performance of Fire Resistive Assemblies

More information

Calculating equation coefficients

Calculating equation coefficients Fluid flow Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

THERMO-MECHANICAL ANALYSIS IN PERFORATED ANNULAR FIN USING ANSYS

THERMO-MECHANICAL ANALYSIS IN PERFORATED ANNULAR FIN USING ANSYS THERMO-MECHANICAL ANALYSIS IN PERFORATED ANNULAR FIN USING ANSYS Kunal Adhikary 1, Dr. Ashis Mallick 2 1,2 Department of Mechanical Engineering, IIT(ISM), Dhanbad-826004, Jharkhand, India Abstract Thermal

More information

Law of Heat Transfer

Law of Heat Transfer Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep Copyright

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 524 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

Analysis of Catalyst Support Ring in a pressure vessel based on ASME Section VIII Division 2 using ANSYS software

Analysis of Catalyst Support Ring in a pressure vessel based on ASME Section VIII Division 2 using ANSYS software IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 3, 2013 ISSN (online): 2321-0613 Analysis of Catalyst Support Ring in a pressure vessel based on ASME Section VIII Division

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE *

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M2, pp 325-335 Printed in The Islamic Republic of Iran, 2015 Shiraz University USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE

More information

Thermo-Hydrodynamic Analysis of Journal Bearing To Find Out Equivalent Temperature

Thermo-Hydrodynamic Analysis of Journal Bearing To Find Out Equivalent Temperature IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 12 June 215 ISSN (online): 2349-784X Thermo-Hydrodynamic Analysis of Journal Bearing To Find Out Equivalent Temperature

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe

Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 10, Issue 3 (Nov. - Dec. 2013), PP 30-35 Cfd Simulation and Experimentalverification of Air Flow

More information

Computational Modeling of Hypersonic Nonequilibrium Gas and Surface Interactions

Computational Modeling of Hypersonic Nonequilibrium Gas and Surface Interactions Computational Modeling of Hypersonic Nonequilibrium Gas and Surface Interactions Iain D. Boyd, Jae Gang Kim, Abhilasha Anna Nonequilibrium Gas & Plasma Dynamics Laboratory Department of Aerospace Engineering

More information

Unit II Thermal Physics Introduction- Modes of Heat Transfer Normally there are three modes of transfer of heat from one place to another viz., conduction, convection and radiation. Conduction : Conduction

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CFD SIMULATION AND EXPERIMENTAL VERIFICATION OF AIR FLOW THROUGH HEATED PIPE Jamuna A B*, Somashekar V *Asst. Professor, Department

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

ENSC 388. Assignment #8

ENSC 388. Assignment #8 ENSC 388 Assignment #8 Assignment date: Wednesday Nov. 11, 2009 Due date: Wednesday Nov. 18, 2009 Problem 1 A 3-mm-thick panel of aluminum alloy (k = 177 W/m K, c = 875 J/kg K, and ρ = 2770 kg/m³) is finished

More information

Thermo-Elastic Stress Analysis of the GHARR-1 Vessel during Reactor Operation Using ANSYS 13.0

Thermo-Elastic Stress Analysis of the GHARR-1 Vessel during Reactor Operation Using ANSYS 13.0 Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 6(5): 309-314 Scholarlink Research Institute Journals, 2015 (ISSN: 2141-7016) jeteas.scholarlinkresearch.com Journal of Emerging

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices. Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Lab 5: Post Processing and Solving Conduction Problems. Objective:

Lab 5: Post Processing and Solving Conduction Problems. Objective: Lab 5: Post Processing and Solving Conduction Problems Objective: The objective of this lab is to use the tools we have developed in MATLAB and SolidWorks to solve conduction heat transfer problems that

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 2 - Conduction Heat Transfer 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Agenda Introduction Energy equation in solids Equation solved

More information

Introduction to Blackbody Sources

Introduction to Blackbody Sources Introduction to s This section contains dedicated blackbody sources for low uncertainty calibration of infrared thermometers. A range of portable primary blackbody sources combine high emissivity with

More information

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder 326 Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder Qiusheng LIU, Katsuya FUKUDA and Zheng ZHANG Forced convection transient

More information

In-Plane Effective Thermal Conductivity of Plain-Weave Screen Laminates

In-Plane Effective Thermal Conductivity of Plain-Weave Screen Laminates In-Plane Effective Thermal Conductivity of Plain-Weave Screen Laminates Jun Xu & R.A. Wirtz Mechanical Engineering Department/MS 3 University of Nevada Reno, Reno Nevada 89557 Keywords: thermal conductivity,

More information

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger International Journal of Engineering Studies. ISSN 0975-6469 Volume 8, Number 2 (2016), pp. 211-224 Research India Publications http://www.ripublication.com Numerical Analysis of Fe 3 O 4 Nanofluid Flow

More information

Introduction to Heat Transfer

Introduction to Heat Transfer Question Bank CH302 Heat Transfer Operations Introduction to Heat Transfer Question No. 1. The essential condition for the transfer of heat from one body to another (a) Both bodies must be in physical

More information

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR)

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) Aqeel A. KAREERI, Habib H. ZUGHBI, *, and Habib H. AL-ALI * Ras Tanura Refinery, SAUDI ARAMCO, Saudi Arabia * Department of Chemical Engineering,

More information

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces Chapter 4 Roller-Web Interface Finite Difference Model The end goal of this project is to allow the correct specification of a roller-heater system given a general set of customer requirements. Often the

More information

CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers

CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers CFD Modeling of Reciprocating Flow around a Bend in Pulse Tube Cryocoolers I.Nachman 1, N. Pundak 1, and G. Grossman 2 1 Ricor Cryogenic and Vacuum Systems En Harod Ihud 18960, Israel 2 Faculty of Mechanical

More information

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 62 CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 5.1 INTRODUCTION The primary objective of this work is to investigate the convective heat transfer characteristics of silver/water nanofluid. In order

More information

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T.

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Vinitha 2 1 Research Scholar, Department of Mechanical Engineering,

More information

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet EuCARD-CON-2011-057 European Coordination for Accelerator Research and Development PUBLICATION Thermal Design of an Nb3Sn High Field Accelerator Magnet Pietrowicz, S (CEA-irfu, on leave from Wroclaw University

More information

THERMAL ANALYSIS OF AN INDUCTION MOTOR BY HYBRID MODELING OF A THERMAL EQUIVALENT CIRCUIT AND CFD

THERMAL ANALYSIS OF AN INDUCTION MOTOR BY HYBRID MODELING OF A THERMAL EQUIVALENT CIRCUIT AND CFD THERMAL ANALYSIS OF AN INDUCTION MOTOR BY HYBRID MODELING OF A THERMAL EQUIVALENT CIRCUIT AND CFD Thiago Voigdlener, voigdlener@gmail.com Daniel Jochelavicius, danieljoche@gmail.com Federal University

More information

ﺶﻧﺎﺳر ﺮﺑ يا ﻪﻣﺪﻘﻣ تراﺮﺣ لﺎﻘﺘﻧا رادﺮﺑ يﺎﺘﺳار

ﺶﻧﺎﺳر ﺮﺑ يا ﻪﻣﺪﻘﻣ تراﺮﺣ لﺎﻘﺘﻧا رادﺮﺑ يﺎﺘﺳار * ﻣﻘﺪﻣﻪ اي ﺑﺮ رﺳﺎﻧﺶ Conduction: transfer of thermal energy from the more energetic particles of a medium to the adjacent less energetic ones Unlike temperature, heat transfer has direction as well as magnitude,

More information

PYROLYSIS MODELLING AND EXPERIMENTATION FOR THERMO-PHYSICAL PROPERTIES OF CHAR FORMED FROM ABLATIVE MATERIAL

PYROLYSIS MODELLING AND EXPERIMENTATION FOR THERMO-PHYSICAL PROPERTIES OF CHAR FORMED FROM ABLATIVE MATERIAL PYROLYSIS MODELLING AND EXPERIMENTATION FOR THERMO-PHYSICAL PROPERTIES OF CHAR FORMED FROM ABLATIVE 1 S.V. Aravind Pulickel, 2 Mangesh. B. Chaudhari 1,2 Vishwakarma Institute of Technology Pune, India

More information

A Magnetohydrodynamic study af a inductive MHD generator

A Magnetohydrodynamic study af a inductive MHD generator Excerpt from the Proceedings of the COMSOL Conference 2009 Milan A Magnetohydrodynamic study af a inductive MHD generator Augusto Montisci, Roberto Pintus University of Cagliari, Department of Electrical

More information

Experimental and Numerical Investigation on Thermal Behavior of PCM in Storage Tank

Experimental and Numerical Investigation on Thermal Behavior of PCM in Storage Tank Experimental and Numerical Investigation on Thermal Behavior of PCM in Storage Tank Ei Ei Phyu Abstract These The present work investigates the thermal performance of storage unit using phase change material

More information

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco Thermal Field in a NMR Cryostat Annunziata D Orazio Agostini Chiara Simone Fiacco Overall Objective of Research Program The main objective of the present work was to study the thermal field inside the

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Increase Productivity Using CFD Analysis

Increase Productivity Using CFD Analysis Increase Productivity Using CFD Analysis CFD of Process Engineering Plants for Performance Estimation and Redesign Vinod Taneja Vidhitech Solutions Abhishek Jain abhishek@zeusnumerix.com +91 9819009836

More information

A combined CFD and network approach for a simulated turbine blade cooling system

A combined CFD and network approach for a simulated turbine blade cooling system Indian Journal of Engineering & Materials Sciences Vol. 13, June 2006, pp. 195-201 A combined CFD and network approach for a simulated turbine blade cooling system B V N Rama Kumar & B V S S S Prasad Department

More information

QUESTION ANSWER. . e. Fourier number:

QUESTION ANSWER. . e. Fourier number: QUESTION 1. (0 pts) The Lumped Capacitance Method (a) List and describe the implications of the two major assumptions of the lumped capacitance method. (6 pts) (b) Define the Biot number by equations and

More information

Fluid flow consideration in fin-tube heat exchanger optimization

Fluid flow consideration in fin-tube heat exchanger optimization archives of thermodynamics Vol. 31(2010), No. 3, 87 104 DOI: 10.2478/v10173-010-0016-7 Fluid flow consideration in fin-tube heat exchanger optimization PIOTR WAIS Cracow University of Technology, Department

More information

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used? 1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?. During unsteady state heat transfer, can the temperature

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information