USPAS Accelerator Physics 2017 University of California, Davis

Size: px
Start display at page:

Download "USPAS Accelerator Physics 2017 University of California, Davis"

Transcription

1 USPAS Accelerator Physics 2017 University of California, Davis Chapter 9: RF Cavities and RF Linear Accelerators Todd Satogata (Jefferson Lab) / satogata@jlab.org Randika Gamage (ODU) / bgama002@odu.edu Happy Birthday to Hideki Yukawa, Paul Langevin, Rutger Hauer, and Gertrude Elion! Happy Rhubarb Pie Day, National Handwriting Day, and Measure Your Feet Day! 1

2 Vertical Dispersion Correction The end of section 6.10 in CM notes how sextupoles at locations of horizontal dispersion compensate both horizontal and vertical chromaticity k(s) B0 (B ) x 0 =[k(s)ds] x =(kl) x = x [k 0 (s)ds] x(1 ) f I 1 x,n = x(s)k 0 (s) ds CM Q H Normal sextupoles: b 2 (s) B00 (B ) Horizontal dispersion: x! x + x (s) First order in x, δ: x 0 [b 2 (s)ds](x 2 y 2 )(1 ) x 0 b 2 ds[x 2 +2 x (s) x + 2 ](1 ) 2[b 2 ds x (s) ]x 2

3 k(s) x,n = B0 (B ) Vertical Dispersion Correction x 0 =[k(s)ds] x =(kl) x = x f Vertically for quads, sign flips and x goes to y y,n = +1 I y(s)k 0 (s) ds 4 Q V [k 0 (s)ds] x(1 ) x 0 b 2 ds[x 2 +2 x (s) x + 2 ](1 ) 2[b 2 ds x (s) ]x Sext I 1 x(s)k 0 (s) ds x (sext) = +1 I x(s)b 2 (s) x (s) ds 4 Q H 4 Q H Sextupole effect is coupled in vertical plane, with horz dispersion: Quad CM 6.127b y 0 [b 2 (s)ds](2xy)(1 )=[b 2 (s)ds][2(x + x (s) )y](1 ) I 1 y (sext) = y(s)[2b 2 (s) x (s)] ds 4 Q V 3

4 RHIC FODO Cell V sext Horizontal H sext Vertical half quadrupole dipole dipole half quadrupole quadrupole Horizontal dispersion 4

5 5

6 RF Concepts and Design Much of RF is really a review of graduate-level E&M See, e.g., J.D. Jackson, Classical Electrodynamics The beginning of this lecture is hopefully review But it s still important so we ll go through it Includes some comments about electromagnetic polarization We ll get to interesting applications later in the lecture (or tomorrow) Particularly important are cylindrical waveguides and cylindrical RF cavities Will find transverse boundary conditions are typically roots of Bessel functions TM (transverse magnetic) and TE (transverse electric) modes RF concepts (shunt impedance, quality factor, resistive losses) 6

7 9.1: Maxwell s Equations Electric charge density Electric current density 7

8 Constitutive Relations and Ohm s Law D = E = r 0 E 0 = C N m 2 ~D : Electric flux density ~E : Electric field density " : Permittivity 0µ 0 = 1 c 2 B = µ H = µ r µ 0 H µ 0 = N s2 C cm G A ~H : Magnetic field density ~B : Magnetic flux density µ : Permeability J = E : conductivity 8

9 Boundary Conditions Boundary conditions on fields at the surface between two media depend on the surface charge and current densities: E k B? and are continuous D? changes by the surface charge density s (scalar) H k changes by the surface current density J s ˆn (H 1 H 2 )=J s C&M Chapter 9: no dielectric or magnetic materials µ = µ 0 = 0 9

10 Wave Equations and Symmetry Taking the curl of each curl equation and using the identity ( E) = ( E) 2 E = 2 E then gives us two identical wave equations r 2 E E = µ t + µ 2 E t 2 r 2 H H = µ t + µ 2 H t 2 These linear wave equations reflect the deep symmetry between electric and magnetic fields. Harmonic solutions: (r, t) = ˆ (r)e i t for = E,H ) r 2 ˆ = 2 ˆ where 2 =( µ 2 + iµ ) 10

11 Conductivity and Skin Depth For high conductivity,, charges move freely enough to keep electric field lines perpendicular to surface (RF oscillations are adiabatic vs movement of charges) Copper: m 1 Conductivity condition holds for very high frequencies (10 15 Hz) For this condition r µ 2! (1 + i) Inside the conductor, the fields drop off exponentially ˆ (z) = (0) e z/ e.g. for Copper skin depth r 2 µ 11

12 Surface Resistance and Power Losses There is still non-zero power loss for finite resistivity Surface resistance: resistance to current flow per unit area r µ surface resistance R s 2 = 1 surface power loss P loss = R Z s H k 2 ds 2 This isn t just applicable to RF cavities, but to transmission lines, power lines, waveguides, etc anywhere that electromagnetic fields are interacting with a resistive media Deriving the power loss is part of your homework! We ll talk more about transmission lines and waveguides after one brief clarification S 12

13 Anomalous Skin Effect Conductivity really depends on the frequency and mean time between electron interactions (or inverse temperature) ( ) =!! 0 Classical limit is, adiabatic field wrt electron interactions For non-classical limit, J = E no longer applies since electrons see changing fields between single interactions 0 (1 + i )! Anomalous skin effect Mean free path Asymptotic value Normal skin effect Skin depth Reuter and Sondheimer, Proc. Roy. Soc. A195 (1948), from Calatroni SRF 11 Electrodynamics Tutorial 13

14 E( x, t) = E 0 e i k x i t Plane Wave Properties k = 2 (wave number) rf B( x, t) = B 0 e i k x i t v ph = k (phase velocity) Generally F (z,t) = Z 1 1 A( )e i( t k( )z) d v g = d dk (group velocity) The source-free divergence Maxwell equations imply k E 0 = k B 0 =0 so the fields are both transverse to the direction (This will be the ẑ direction in a lot of what s to come) Faraday s law also implies that both fields are spatially transverse to each other k B 0 = k E 0 = nˆn E 0 c ˆn k k index of refraction 14

15 Standing Waves E( x, t) = E 0 e i k x i t B( x, t) = B 0 e i k x i t Note that Maxwell s equations are linear, so any linear combination of magnetic/electric fields is also a solution. Thus a standing wave solution is also acceptable, where there are two plane waves moving in opposite directions: E(x, t) =E 0 e i k x i t +e i k x i t B(x, t) =B 0 e i k x i t +e i k x i t 15

16 Polarization E( x, t) = E 0 e i k x i t B( x, t) = B 0 e i k x i t As long as the E and B fields are transverse, they can still have different transverse components. So our description of these fields is also incomplete until we specify the transverse components at all locations in space This is equivalent to an uncertainty in phase of rotation of E and B around the wave vector k. The identification of this transverse field coordinate basis defines the polarization of the field. 16

17 Linear Polarization E( x, t) = E 0 e i k x i t B( x, t) = B 0 e i k x i t So, for example, if E and B transverse directions are constant and do not change through the plane wave, the wave is said to be linearly polarized. E/B field oscillations are IN phase Fields each stay in one plane 17

18 Circular Polarization E(x, t) =E 0 e i k x i t +e i k x i t+ /2 B(x, t) =B 0 e i k x i t +e i k x i t+ /2 If E and B transverse directions vary with time, they can appear as two plane waves traveling out of phase. This phase difference is 90 degrees for circular polarization. Two equal-amplitude linearly polarized plane waves 90 degrees out of phase 18

19 9.2: Cylindrical Waveguides Consider a cylindrical waveguide, radius a, in z direction E = E(r, )e i( t k gz) k g can be imaginary for attenuation down the guide We ll find constraints on this cutoff wave number Maxwell in cylindrical coordinates (math happens) gives k (and the same for H z ) (free space wave number) c k 2 c k 2 k 2 g 19

20 Transverse Electromagnetic (TEM) Modes Various subsets of solutions are interesting For example, the E z,h z =0nontrivial solutions require k 2 c = k 2 k 2 g =0 The wave number of the guide matches that of free space Wave propagation is similar to that of free space This is a TEM (transverse electromagnetic) mode Requires multiple separate conductors for separate potentials or free space Sometimes similar to polarization pictures we had before Coaxial cable 20

21 Transverse Magnetic (TM) Modes Maxwell s equations are linear so superposition applies We can break all fields down to TE and TM modes TM: Transverse magnetic (H z =0, E z 0) TE: Transverse electric (E z =0, H z 0) TM provides particle energy gain or loss in z direction! Separate variables E z (r, )=R(r) ( ) Boundary conditions E z (r = a) =E (r = a) =0 Maxwell s equations in cylindrical coordinates give d 2 R dr dr r dr + kc 2 n 2 r 2 R =0 d 2 d 2 + n2 =0 Bessel equation SHO equation => n integer, real 21

22 TM Mode Solutions The radial equation has solutions of Bessel functions of first J n (k c r) and second N n (k c r) kind Toss N n since they diverge at r=0 Boundary conditions at r=a require J n (k c a)=0 This gives a constraint on k c k c = X nj /a where X nj is the j th nonzero root of J n Xnj ) E z (r,,t)=(c 1 cos n + C 2 sin n )J n a r e i( t k gz) This mode of this field is commonly known as the TM nj mode The first index corresponds to theta periodicity, while the second corresponds to number of radial Bessel nodes TM 01 is the usual fundamental accelerating mode 22

23 TM Mode Visualizations Xnj E z (r,,t)=(c 1 cos n + C 2 sin n )J n a r e i( t k gz) Java app visualizations are also linked to the class website For example, (TM visualization) Scroll down to Circular Modes 1 or 2 in first pulldown 23

24 Cavity Modes Dave McGinnis, FNAL 24

25 E z J 0 u 02 r R TM020 Mode B r J 1 u 02 R Beam R L Peggs/Satogata 25

26 (a) E z interacting with head TM110 Mode (b) ~B(r, ) excited by head ~F on tail Beam Tail, Q= Ne/2 Head, Q= Ne/2 ~B R L Peggs/Satogata 26

27 Cutoff Frequency It s easy to see that there is a minimum frequency for our waveguide that obeys the boundary conditions Modes at lower frequencies will suffer resistance Dispersion relation in terms of radial boundary condition zero 2 2 k 2 kg 2 = kg 2 = k 2 Xnj c = c a A propagating wave must have real group velocity kg 2 > 0 This gives the expected lower bound on the frequency c X nj a ) cuto frequency c = cx nj a Wavelength of lowest cutoff frequency for j=1 is c = 2 k c 2.61a 27

28 Dispersion or Brillouin Diagram Propagating frequencies > c ph > 45, v ph >c Circular waveguides above cutoff have phase velocity >c Cannot easily be used for particle acceleration over long distances 28

29 Iris-Loaded Waveguides Solution: Add impedance by varying cylinder radius This changes the dispersion condition by loading the waveguide 29

30 Cylindrical RF Cavities What happens if we close two ends of a waveguide? With the correct length corresponding to the longitudinal wavelength, we can produce longitudinal standing waves Can produce long-standing waves over a full linac Modes have another index for longitudinal periodicity TM010 mode Simplified tuna fish can RF cavity model 30

31 Boundary Conditions Additional boundary conditions at end-cap conductors at z=0 and z=l 31

32 TE nmj Modes E z =0everywhere Longitudinal periodicity X 0 nj is j th root of J 0 n f nmj = c 2 s X 0 nj a 2 + m l 2 32

33 TM nmj Modes H z =0everywhere E z (r,,z) J n (k c r)(c 1 cos n + C 2 sin n ) cos m z l Longitudinal periodicity J n (k c a)=0 X nj is the j th root of J n f nmj = c 2 s Xnj a 2 + m l 2 TM 010 is (again) the preferred acceleration mode 33

34 Equivalent Circuit A TM 010 cavity looks much like a lumped LRC circuit Ends are capacitive Stored magnetic energy is inductive Currents move over resistive walls E, H fields 90 degrees out of phase Stored energy C&M

35 TM 010 Average Power Loss ends sides Compare to stored energy Both vary like square of field, square of Bessel root Dimensional area vs dimensional volume in stored energy U = 0 2 E2 0 a 2 l[j 1 (X 01 )] 2 35

36 Quality Factor Ratio of average stored energy to average power lost (or energy dissipated) during one RF cycle How many cycles does it take to dissipate its energy? High Q: nondissipative resonator Copper RF: Q~10 3 to 10 6 SRF: Q up to Q = U hp loss i U(t) =U 0 e 0t/Q Pillbox cavity Q = al (a + l) 36

37 Niobium Cavity SRF Q Slope Problem 37

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Electromagnetic waves in free space

Electromagnetic waves in free space Waveguide notes 018 Electromagnetic waves in free space We start with Maxwell s equations for an LIH medum in the case that the source terms are both zero. = =0 =0 = = Take the curl of Faraday s law, then

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

RF cavities (Lecture 25)

RF cavities (Lecture 25) RF cavities (Lecture 25 February 2, 2016 319/441 Lecture outline A good conductor has a property to guide and trap electromagnetic field in a confined region. In this lecture we will consider an example

More information

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF CERN Accelerator School RF Cavities Erk Jensen CERN BE-RF CERN Accelerator School, Varna 010 - "Introduction to Accelerator Physics" What is a cavity? 3-Sept-010 CAS Varna/Bulgaria 010- RF Cavities Lorentz

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

A Review of Basic Electromagnetic Theories

A Review of Basic Electromagnetic Theories A Review of Basic Electromagnetic Theories Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820)

More information

Guided waves - Lecture 11

Guided waves - Lecture 11 Guided waves - Lecture 11 1 Wave equations in a rectangular wave guide Suppose EM waves are contained within the cavity of a long conducting pipe. To simplify the geometry, consider a pipe of rectangular

More information

Chapter 9. Electromagnetic waves

Chapter 9. Electromagnetic waves Chapter 9. lectromagnetic waves 9.1.1 The (classical or Mechanical) waves equation Given the initial shape of the string, what is the subsequent form, The displacement at point z, at the later time t,

More information

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Lecture 5: Photoinjector Technology J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Technologies Magnetostatic devices Computational modeling Map generation RF cavities 2 cell devices Multicell

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Short Introduction to (Classical) Electromagnetic Theory

Short Introduction to (Classical) Electromagnetic Theory Short Introduction to (Classical) Electromagnetic Theory (.. and applications to accelerators) Werner Herr, CERN (http://cern.ch/werner.herr/cas/cas2013 Chavannes/lectures/em.pdf) Why electrodynamics?

More information

Joel A. Shapiro January 21, 2010

Joel A. Shapiro January 21, 2010 Joel A. shapiro@physics.rutgers.edu January 21, 20 rmation Instructor: Joel Serin 325 5-5500 X 3886, shapiro@physics Book: Jackson: Classical Electrodynamics (3rd Ed.) Web home page: www.physics.rutgers.edu/grad/504

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

1 Chapter 8 Maxwell s Equations

1 Chapter 8 Maxwell s Equations Electromagnetic Waves ECEN 3410 Prof. Wagner Final Review Questions 1 Chapter 8 Maxwell s Equations 1. Describe the integral form of charge conservation within a volume V through a surface S, and give

More information

Chapter 5 Cylindrical Cavities and Waveguides

Chapter 5 Cylindrical Cavities and Waveguides Chapter 5 Cylindrical Cavities and Waveguides We shall consider an electromagnetic field propagating inside a hollow (in the present case cylindrical) conductor. There are no sources inside the conductor,

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da How much power is dissipated (per unit area?). 2 ways: 1) Flow of energy into conductor: Energy flow given by S = E H, for real fields E H. so 1 S ( ) = 1 2 Re E H, dp loss /da = ˆn S, so dp loss = 1 µc

More information

USPAS Accelerator Physics 2017 University of California, Davis

USPAS Accelerator Physics 2017 University of California, Davis USPAS Accelerator Physics 207 University of California, Davis Lattice Extras: Linear Errors, Doglegs, Chicanes, Achromatic Conditions, Emittance Exchange Todd Satogata (Jefferson Lab) / satogata@jlab.org

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Waveguides Continued - In the previous lecture we made the assumption that

More information

Dielectric wave guides, resonance, and cavities

Dielectric wave guides, resonance, and cavities Dielectric wave guides, resonance, and cavities 1 Dielectric wave guides Instead of a cavity constructed of conducting walls, a guide can be constructed of dielectric material. In analogy to a conducting

More information

Waveguides and Cavities

Waveguides and Cavities Waveguides and Cavities John William Strutt also known as Lord Rayleigh (1842-1919) September 17, 2001 Contents 1 Reflection and Transmission at a Conducting Wall 2 1.1 Boundary Conditions...........................

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

Linac JUAS lecture summary

Linac JUAS lecture summary Linac JUAS lecture summary Part1: Introduction to Linacs Linac is the acronym for Linear accelerator, a device where charged particles acquire energy moving on a linear path. There are more than 20 000

More information

Chapter Three: Propagation of light waves

Chapter Three: Propagation of light waves Chapter Three Propagation of Light Waves CHAPTER OUTLINE 3.1 Maxwell s Equations 3.2 Physical Significance of Maxwell s Equations 3.3 Properties of Electromagnetic Waves 3.4 Constitutive Relations 3.5

More information

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator TC412 Microwave Communications Lecture 8 Rectangular waveguides and cavity resonator 1 TM waves in rectangular waveguides Finding E and H components in terms of, WG geometry, and modes. From 2 2 2 xye

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves Guided Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Guided Waves Outline Outline The Circuit Model of Transmission Lines R + jωl I(z + z) I(z)

More information

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics Introduction to Accelerator Physics Old Dominion University Nonlinear Dynamics Examples in Accelerator Physics Todd Satogata (Jefferson Lab) email satogata@jlab.org http://www.toddsatogata.net/2011-odu

More information

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances)

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) A 1 General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) 1. Waves Propagating on a Transmission Line General A transmission line is a 1-dimensional medium which can

More information

Exam in TFY4240 Electromagnetic Theory Wednesday Dec 9, :00 13:00

Exam in TFY4240 Electromagnetic Theory Wednesday Dec 9, :00 13:00 NTNU Page 1 of 5 Institutt for fysikk Contact during the exam: Paul Anton Letnes Telephone: Office: 735 93 648, Mobile: 98 62 08 26 Exam in TFY4240 Electromagnetic Theory Wednesday Dec 9, 2009 09:00 13:00

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

1 Lectures 10 and 11: resonance cavities

1 Lectures 10 and 11: resonance cavities 1 1 Lectures 10 and 11: resonance cavities We now analyze cavities that consist of a waveguide of length h, terminated by perfectly conducting plates at both ends. The coordinate system is oriented such

More information

Electromagnetic Waves & Polarization

Electromagnetic Waves & Polarization Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3a Electromagnetic Waves & Polarization Electromagnetic These

More information

GUIDED MICROWAVES AND OPTICAL WAVES

GUIDED MICROWAVES AND OPTICAL WAVES Chapter 1 GUIDED MICROWAVES AND OPTICAL WAVES 1.1 Introduction In communication engineering, the carrier frequency has been steadily increasing for the obvious reason that a carrier wave with a higher

More information

Cavity basics. 1 Introduction. 2 From plane waves to cavities. E. Jensen CERN, Geneva, Switzerland

Cavity basics. 1 Introduction. 2 From plane waves to cavities. E. Jensen CERN, Geneva, Switzerland Cavity basics E. Jensen CERN, Geneva, Switerland Abstract The fields in rectangular and circular waveguides are derived from Maxwell s equations by superposition of plane waves. Subsequently the results

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Basics of electromagnetic response of materials

Basics of electromagnetic response of materials Basics of electromagnetic response of materials Microscopic electric and magnetic field Let s point charge q moving with velocity v in fields e and b Force on q: F e F qeqvb F m Lorenz force Microscopic

More information

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock CERN Accelerator School Wakefields Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock Contents The Term Wakefield and Some First Examples Basic Concept of Wakefields Basic Definitions

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Chapter 5 Cylindrical Cavities and Waveguides

Chapter 5 Cylindrical Cavities and Waveguides Chapter 5 Cylindrical Cavities and Waveguides We shall consider an electromagnetic field propagating inside a hollow (in the present case cylindrical) conductor. There are no sources inside the conductor,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

USPAS Accelerator Physics 2017 University of California, Davis. Chapter 11: Space Charge Effects Space Charge, Beam-Beam

USPAS Accelerator Physics 2017 University of California, Davis. Chapter 11: Space Charge Effects Space Charge, Beam-Beam USPAS Accelerator Physics 017 University of California, Davis Chapter 11: Space Charge Effects Space Charge, Beam-Beam Todd Satogata (Jefferson Lab) / satogata@jlab.org Randika Gamage (ODU) / bgama00@odu.edu

More information

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 http://www.empowermentresources.com/stop_cointelpro/electromagnetic_warfare.htm RF Design In RF circuits RF energy has to be transported

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

MUDRA PHYSICAL SCIENCES

MUDRA PHYSICAL SCIENCES MUDRA PHYSICAL SCIENCES VOLUME- PART B & C MODEL QUESTION BANK FOR THE TOPICS:. Electromagnetic Theory UNIT-I UNIT-II 7 4. Quantum Physics & Application UNIT-I 8 UNIT-II 97 (MCQs) Part B & C Vol- . Electromagnetic

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Theory of Electromagnetic Fields

Theory of Electromagnetic Fields Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK Abstract We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to

More information

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Accelerator Physics NMI and Synchrotron Radiation G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Graduate Accelerator Physics Fall 17 Oscillation Frequency nq I n i Z c E Re Z 1 mode has

More information

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Dispersion Introduction - An electromagnetic wave with an arbitrary wave-shape

More information

Throughout their installation at the Advanced

Throughout their installation at the Advanced Perturbational Simulation and Experimentation for Calibrated RF Cavity Measurements Alex Pizzuto Loyola University Chicago Argonne National Laboratory apizzuto@luc.edu August 12, 2016 Abstract Field strength

More information

From the Wideröe gap to the linac cell

From the Wideröe gap to the linac cell Module 3 Coupled resonator chains Stability and stabilization Acceleration in periodic structures Special accelerating structures Superconducting linac structures From the Wideröe gap to the linac cell

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff CHARLES R. BOYD, JR. Microwave Applications Group, Santa Maria, California, U. S. A. ABSTRACT Unlike conventional waveguides, lossless

More information

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva Part 1. Introduction Basic Physics and Mathematics for Electromagnetics. Lecture

More information

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 2 21 March 2016, 18:00

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

Class 15 : Electromagnetic Waves

Class 15 : Electromagnetic Waves Class 15 : Electromagnetic Waves Wave equations Why do electromagnetic waves arise? What are their properties? How do they transport energy from place to place? Recap (1) In a region of space containing

More information

Understanding EMC Basics

Understanding EMC Basics 1of 7 series Webinar #1 of 3, February 27, 2013 EM field theory, and 3 types of EM analysis Webinar Sponsored by: EurIng CEng, FIET, Senior MIEEE, ACGI AR provides EMC solutions with our high power RF/Microwave

More information

Department of Physics Preliminary Exam January 2 5, 2013

Department of Physics Preliminary Exam January 2 5, 2013 Department of Physics Preliminary Exam January 2 5, 2013 Day 2: Electricity, Magnetism and Optics Thursday, January 3, 2013 9:00 a.m. 12:00 p.m. Instructions: 1. Write the answer to each question on a

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Maxwell s Equations:

Maxwell s Equations: Course Instructor Dr. Raymond C. Rumpf Office: A-337 Phone: (915) 747-6958 E-Mail: rcrumpf@utep.edu Maxwell s Equations: Terms & Definitions EE-3321 Electromagnetic Field Theory Outline Maxwell s Equations

More information

Overview in Images. 5 nm

Overview in Images. 5 nm Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) S. Lin et al, Nature, vol. 394, p. 51-3,

More information

University Physics 227N/232N Old Dominion University. Flux and Gauss s Law Example Problems and Solutions

University Physics 227N/232N Old Dominion University. Flux and Gauss s Law Example Problems and Solutions University Physics 227N/232N Old Dominion University Flux and Gauss s Law Example Problems and Solutions Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu Wednesday,

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

ELECTROMAGNETIC THEORY

ELECTROMAGNETIC THEORY ELECTROMAGNETIC THEORY A. B. Lahanas University of Athens, Physics Department, Nuclear and Particle Physics Section, Athens 157 71, Greece Abstract An introduction to Electromagnetic Theory is given with

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Basic reflection physics 2 Radar cross section definition

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron Electric Field Electric field Space surrounding an electric charge (an energetic aura) Describes electric force Around a charged particle obeys inverse-square law Force per unit charge Electric Field Electric

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Massachusetts Institute of Technology Department of Physics Physics 87 Fall 25 Problem Set 1 Solutions Problem 1: EM Waves in a Plasma a Transverse electromagnetic waves have, by definition, E = Taking

More information

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE A. Sukhanov, A. Vostrikov, V. Yakovlev, Fermilab, Batavia, IL 60510, USA Abstract Design of a Light Source (LS) based on

More information

ANTENNA AND WAVE PROPAGATION

ANTENNA AND WAVE PROPAGATION ANTENNA AND WAVE PROPAGATION Electromagnetic Waves and Their Propagation Through the Atmosphere ELECTRIC FIELD An Electric field exists in the presence of a charged body ELECTRIC FIELD INTENSITY (E) A

More information