Multi-label Active Learning with Auxiliary Learner

Size: px
Start display at page:

Download "Multi-label Active Learning with Auxiliary Learner"

Transcription

1 Multi-label Active Learning with Auxiliary Learner Chen-Wei Hung and Hsuan-Tien Lin National Taiwan University November 15, 2011 C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 1 / 14

2 Multi-label Active Learning Multi-label Active Learning multi-label data set: labeled pool D l = {(x n, y n)} Dataset Dataset l Labeled pool D l Labeled pool u Unlabeled pool D u Unlabeled pool Train a classifier Train a classifier unlabeled pool D u = {x n } Predict Predict learning: 2 Query oracle 2 and Query add new oracle labeled and instance add new to Labeled labeled instance pool to Labeled pool active: 1 Select some Select some data from unlabeled data from pool unlabeled pool train with data set to get decision functions f k (x) query 1 labels of size-s set Ds D u move D s & labels from D u to D l expensiveness of labeling, especially for multi-label active learning: allow asking questions (query labels) hope: reduce labeling cost while maintaining good performance by asking key questions C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 2 / 14

3 Multi-label Active Learning Problem Setup Given K -class problem with labeled pool D l that contains (input x n, label-set y n); y n expressed by { 1, +1} K an unlabeled pool D u = {x n } Goal a multi-label active learning algorithm that iteratively learn a decent classifier f k (x) R K from D l, with sign(f k (x)) used to predict k-th label choose a key subset D s from D u to be queried and improve performance of f k efficiently w.r.t. # queries multi-label active learning: newer and less-studied (than binary active learning) C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 3 / 14

4 Multi-label Active Learning Max. Loss Reduction with Max. Confidence (MMC) State-of-the-art in Multi-label Active Learning MMC: proposed by Yang et al., Effective Multi-label Active Learning for Text Classification, KDD, 2009 first-level learning: get g k (x) by binary relevance SVM (BRSVM) from D l second-level learning: get f k (x) by stacked logistic reg. (SLR) from D l & g k (x) query: by maximum margin reduction using f k and g k binary relevance SVM (BRSVM): one binary SVM per label promising practical performance with some theoretical rationale Motivation: How to improve MMC? C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 4 / 14

5 Multi-label Active Learning Multi-label Active Learning with Auxiliary Learner Idea digest the essence of MMC, and then extend for improvement auxiliary learning: get g k (x) by some G from D l major learning: get f k (x) by some F from D l query by disagreement of g k & f k proposed framework: query with two learners major & auxiliary major (original f k ): for accurate predictions of multi-label learning auxiliary: a different one to help query decisions MMC = (major: SLR) + (auxiliary: BRSVM) + (criterion: MMR) C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 5 / 14

6 Query Criteria Maximum Margin Reduction (MMR), Used by MMC Intuition: Query by Version Space Reduction query set Ds { ( ) ( )} = argmax V G, Dl V G, Dl labeled D s D s =S,D s D u V : size of version space (set of classifiers consistent to data) rationale: smaller V less ambiguity in learning better MMR: with some other assumptions D s top S instances D u, ordered by K k=1 1 sign(f k (x)) g k (x) 2 equivalent MMR criterion: K k=1 sign(f k(x)) g k (x) Yang et al.,effective Multi-label Active Learning for Text Classification, KDD09 C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 6 / 14

7 Query Criteria Maximum Hamming Loss Reduction (HLR) Intuition: Query by Hamming Loss Reduction query set Ds { ( ) ( )} = argmax HL G, Dl HL G, Dl labeled D s D s =S,D s D u HL: Hamming loss made by learner G rationale: smaller HL better performance in learning HLR (our proposed criterion): with some assumptions Ds top S instances D u, K ordered by sign(f k (x)) sign(g k (x)) k=1 equivalent HLR criterion: K k=1 sign(f k(x)) sign(g k (x)) C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 7 / 14

8 Query Criteria Quick Comparison between MMR and HLR MMR HLR K sign(f k (x)) g k (x) k=1 rationale: reduce V rapidly magnitude-sensitive : few large g k that disagree with f k = must query (not robust to outliers) K sign(f k (x)) sign(g k (x)) k=1 rationale: reduce HL rapidly magnitude-insensitive : useful ambiguity information in g k lost (not aware of details) better criterion by combining the two? Yes! C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 8 / 14

9 Query Criteria Soft Hamming Loss Reduction HLR MMR SHLR sign(f k (x)) g k (x) rationale: g k (x) large HLR to be robust to magnitude g k (x) small MMR to keep ambiguity information Soft HLR: Ds = top S instances D u, K ( ) ordered by clip sign(f k (x)) g k (x), 1, 1 k=1 which is better? SHLR, HLR or MMR? C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 9 / 14

10 Experiment Experiment Query Criteria Random: use neither auxiliary nor major BinMin: use only auxiliary but not major SHLR, HLR, MMR: use both auxiliary & major Setting (same as used by Yang et al. to evaluate MMC) D l size: initial 500 to final 1500, step by S = 20 Major/Auxiliary Combination major = SLR[BRSVM]; auxiliary = BR(SVM): used by MMC major = CC(SVM); auxiliary = BR(SVM) major = SLR[BRSVM]; auxiliary = CC(SVM) improve MMC by SHLR or HLR? best criterion across major/auxiliary combinations? C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 10 / 14

11 Experiment Experiment on SLR as major BR as auxiliary SLR+BR, rcv1, Evaluated with F1-score F1 score on SLR major and BR auxiliary MMR HLR SHLR BinMin Random 0.82 F1 score Number of add instance (*20) SHLR > MMR HLR > BinMin > Random C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 11 / 14

12 Experiment Experiment on SLR as major BR as auxiliary SLR+BR across Data Sets, Evaluated with F1-score 1 F1-score relative to the best SHLR best: 5/8 (one tie) MMR best: 2/8 (one tie) HLR best: 2/8 0.9 rcv1 Y!Ar Y!Bu Y!Co Y!Ed Y!En yeast scene relative performance to the best across data sets: SHLR > MMR HLR better than MMC? YES! C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 12 / 14

13 Experiment Experiment on SLR as major BR as auxiliary CC+BR, rcv1, Evaluated with F1-score F1 score on CC major and BR auxiliary MMR HLR SHLR BinMin Random 0.75 F1 score Number of add instance (*20) SHLR similarly best when changing major to CC or changing auxiliary to CC or changing performance measure to Hamming loss C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 13 / 14

14 Conclusion Conclusion general framework for multi-label active learning: with auxiliary learner simple query criterion: via Hamming loss reduction, sometimes better even better query criterion: via soft Hamming loss reduction, usually best future work: major/auxiliary combination, especially choice of auxiliary Thank you. Questions? C.-W. Hung & H.-T. Lin (NTU) Multi-label AL w/ Auxiliary Learner 11/15/2011 (ACML) 14 / 14

Active Learning for Sparse Bayesian Multilabel Classification

Active Learning for Sparse Bayesian Multilabel Classification Active Learning for Sparse Bayesian Multilabel Classification Deepak Vasisht, MIT & IIT Delhi Andreas Domianou, University of Sheffield Manik Varma, MSR, India Ashish Kapoor, MSR, Redmond Multilabel Classification

More information

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression Large-Margin Thresholded Ensembles for Ordinal Regression Hsuan-Tien Lin and Ling Li Learning Systems Group, California Institute of Technology, U.S.A. Conf. on Algorithmic Learning Theory, October 9,

More information

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression Large-Margin Thresholded Ensembles for Ordinal Regression Hsuan-Tien Lin (accepted by ALT 06, joint work with Ling Li) Learning Systems Group, Caltech Workshop Talk in MLSS 2006, Taipei, Taiwan, 07/25/2006

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Supervised Learning / Support Vector Machines

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018 From Binary to Multiclass Classification CS 6961: Structured Prediction Spring 2018 1 So far: Binary Classification We have seen linear models Learning algorithms Perceptron SVM Logistic Regression Prediction

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 3 Bagging & Boosting + SVMs Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline 1 Ensemble-methods

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

A Deep Interpretation of Classifier Chains

A Deep Interpretation of Classifier Chains A Deep Interpretation of Classifier Chains Jesse Read and Jaakko Holmén http://users.ics.aalto.fi/{jesse,jhollmen}/ Aalto University School of Science, Department of Information and Computer Science and

More information

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Computer Science Department University of Pittsburgh Outline Introduction Learning with

More information

CS7267 MACHINE LEARNING

CS7267 MACHINE LEARNING CS7267 MACHINE LEARNING ENSEMBLE LEARNING Ref: Dr. Ricardo Gutierrez-Osuna at TAMU, and Aarti Singh at CMU Mingon Kang, Ph.D. Computer Science, Kennesaw State University Definition of Ensemble Learning

More information

An Ensemble Ranking Solution for the Yahoo! Learning to Rank Challenge

An Ensemble Ranking Solution for the Yahoo! Learning to Rank Challenge An Ensemble Ranking Solution for the Yahoo! Learning to Rank Challenge Ming-Feng Tsai Department of Computer Science University of Singapore 13 Computing Drive, Singapore Shang-Tse Chen Yao-Nan Chen Chun-Sung

More information

Support Vector and Kernel Methods

Support Vector and Kernel Methods SIGIR 2003 Tutorial Support Vector and Kernel Methods Thorsten Joachims Cornell University Computer Science Department tj@cs.cornell.edu http://www.joachims.org 0 Linear Classifiers Rules of the Form:

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Linear and Logistic Regression. Dr. Xiaowei Huang

Linear and Logistic Regression. Dr. Xiaowei Huang Linear and Logistic Regression Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Two Classical Machine Learning Algorithms Decision tree learning K-nearest neighbor Model Evaluation Metrics

More information

Foundations For Learning in the Age of Big Data. Maria-Florina Balcan

Foundations For Learning in the Age of Big Data. Maria-Florina Balcan Foundations For Learning in the Age of Big Data Maria-Florina Balcan Modern Machine Learning New applications Explosion of data Classic Paradigm Insufficient Nowadays Modern applications: massive amounts

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Lecture 18: Multiclass Support Vector Machines

Lecture 18: Multiclass Support Vector Machines Fall, 2017 Outlines Overview of Multiclass Learning Traditional Methods for Multiclass Problems One-vs-rest approaches Pairwise approaches Recent development for Multiclass Problems Simultaneous Classification

More information

SUPPORT VECTOR MACHINE

SUPPORT VECTOR MACHINE SUPPORT VECTOR MACHINE Mainly based on https://nlp.stanford.edu/ir-book/pdf/15svm.pdf 1 Overview SVM is a huge topic Integration of MMDS, IIR, and Andrew Moore s slides here Our foci: Geometric intuition

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Support Vector Machine. Industrial AI Lab.

Support Vector Machine. Industrial AI Lab. Support Vector Machine Industrial AI Lab. Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories / classes Binary: 2 different

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley Natural Language Processing Classification Classification I Dan Klein UC Berkeley Classification Automatically make a decision about inputs Example: document category Example: image of digit digit Example:

More information

What is semi-supervised learning?

What is semi-supervised learning? What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing,

More information

Multiclass Boosting with Repartitioning

Multiclass Boosting with Repartitioning Multiclass Boosting with Repartitioning Ling Li Learning Systems Group, Caltech ICML 2006 Binary and Multiclass Problems Binary classification problems Y = { 1, 1} Multiclass classification problems Y

More information

Web Search and Text Mining. Learning from Preference Data

Web Search and Text Mining. Learning from Preference Data Web Search and Text Mining Learning from Preference Data Outline Two-stage algorithm, learning preference functions, and finding a total order that best agrees with a preference function Learning ranking

More information

Active learning in sequence labeling

Active learning in sequence labeling Active learning in sequence labeling Tomáš Šabata 11. 5. 2017 Czech Technical University in Prague Faculty of Information technology Department of Theoretical Computer Science Table of contents 1. Introduction

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods 2018 CS420 Machine Learning, Lecture 3 Hangout from Prof. Andrew Ng. http://cs229.stanford.edu/notes/cs229-notes3.pdf Support Vector Machines and Kernel Methods Weinan Zhang Shanghai Jiao Tong University

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

1 Active Learning Foundations of Machine Learning and Data Science. Lecturer: Maria-Florina Balcan Lecture 20 & 21: November 16 & 18, 2015

1 Active Learning Foundations of Machine Learning and Data Science. Lecturer: Maria-Florina Balcan Lecture 20 & 21: November 16 & 18, 2015 10-806 Foundations of Machine Learning and Data Science Lecturer: Maria-Florina Balcan Lecture 20 & 21: November 16 & 18, 2015 1 Active Learning Most classic machine learning methods and the formal learning

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer

More information

Lecture 11. Linear Soft Margin Support Vector Machines

Lecture 11. Linear Soft Margin Support Vector Machines CS142: Machine Learning Spring 2017 Lecture 11 Instructor: Pedro Felzenszwalb Scribes: Dan Xiang, Tyler Dae Devlin Linear Soft Margin Support Vector Machines We continue our discussion of linear soft margin

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 5, 2015 Announcements Homework 2 will be out tomorrow No class next week Course project

More information

Regret Analysis for Performance Metrics in Multi-Label Classification The Case of Hamming and Subset Zero-One Loss

Regret Analysis for Performance Metrics in Multi-Label Classification The Case of Hamming and Subset Zero-One Loss Regret Analysis for Performance Metrics in Multi-Label Classification The Case of Hamming and Subset Zero-One Loss Krzysztof Dembczyński 1, Willem Waegeman 2, Weiwei Cheng 1, and Eyke Hüllermeier 1 1 Knowledge

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

Machine Learning Basics

Machine Learning Basics Security and Fairness of Deep Learning Machine Learning Basics Anupam Datta CMU Spring 2019 Image Classification Image Classification Image classification pipeline Input: A training set of N images, each

More information

NEAR-OPTIMALITY AND ROBUSTNESS OF GREEDY ALGORITHMS FOR BAYESIAN POOL-BASED ACTIVE LEARNING

NEAR-OPTIMALITY AND ROBUSTNESS OF GREEDY ALGORITHMS FOR BAYESIAN POOL-BASED ACTIVE LEARNING NEAR-OPTIMALITY AND ROBUSTNESS OF GREEDY ALGORITHMS FOR BAYESIAN POOL-BASED ACTIVE LEARNING NGUYEN VIET CUONG (B.Comp.(Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Machine Learning Techniques

Machine Learning Techniques Machine Learning Techniques ( 機器學習技法 ) Lecture 5: Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan University ( 國立台灣大學資訊工程系 ) Hsuan-Tien

More information

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee Support Vector Machine Industrial AI Lab. Prof. Seungchul Lee Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories /

More information

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers Computational Methods for Data Analysis Massimo Poesio SUPPORT VECTOR MACHINES Support Vector Machines Linear classifiers 1 Linear Classifiers denotes +1 denotes -1 w x + b>0 f(x,w,b) = sign(w x + b) How

More information

Cutting Plane Training of Structural SVM

Cutting Plane Training of Structural SVM Cutting Plane Training of Structural SVM Seth Neel University of Pennsylvania sethneel@wharton.upenn.edu September 28, 2017 Seth Neel (Penn) Short title September 28, 2017 1 / 33 Overview Structural SVMs

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Efficient Bandit Algorithms for Online Multiclass Prediction Sham Kakade, Shai Shalev-Shwartz and Ambuj Tewari Presented By: Nakul Verma Motivation In many learning applications, true class labels are

More information

Multi-label learning from batch and streaming data

Multi-label learning from batch and streaming data Multi-label learning from batch and streaming data Jesse Read Télécom ParisTech École Polytechnique Summer School on Mining Big and Complex Data 5 September 26 Ohrid, Macedonia Introduction x = Binary

More information

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie Computational Biology Program Memorial Sloan-Kettering Cancer Center http://cbio.mskcc.org/leslielab

More information

Machine Learning Techniques

Machine Learning Techniques Machine Learning Techniques ( 機器學習技巧 ) Lecture 5: SVM and Logistic Regression Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan University

More information

Practical Agnostic Active Learning

Practical Agnostic Active Learning Practical Agnostic Active Learning Alina Beygelzimer Yahoo Research based on joint work with Sanjoy Dasgupta, Daniel Hsu, John Langford, Francesco Orabona, Chicheng Zhang, and Tong Zhang * * introductory

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Constrained Optimization and Support Vector Machines

Constrained Optimization and Support Vector Machines Constrained Optimization and Support Vector Machines Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/

More information

LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition LINEAR CLASSIFIERS Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification, the input

More information

COMS 4771 Lecture Boosting 1 / 16

COMS 4771 Lecture Boosting 1 / 16 COMS 4771 Lecture 12 1. Boosting 1 / 16 Boosting What is boosting? Boosting: Using a learning algorithm that provides rough rules-of-thumb to construct a very accurate predictor. 3 / 16 What is boosting?

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Classifier Chains for Multi-label Classification

Classifier Chains for Multi-label Classification Classifier Chains for Multi-label Classification Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank University of Waikato New Zealand ECML PKDD 2009, September 9, 2009. Bled, Slovenia J. Read, B.

More information

Machine Learning Foundations

Machine Learning Foundations Machine Learning Foundations ( 機器學習基石 ) Lecture 11: Linear Models for Classification Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Reading: Ben-Hur & Weston, A User s Guide to Support Vector Machines (linked from class web page) Notation Assume a binary classification problem. Instances are represented by vector

More information

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University Lecture 18: Kernels Risk and Loss Support Vector Regression Aykut Erdem December 2016 Hacettepe University Administrative We will have a make-up lecture on next Saturday December 24, 2016 Presentations

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Surrogate regret bounds for generalized classification performance metrics

Surrogate regret bounds for generalized classification performance metrics Surrogate regret bounds for generalized classification performance metrics Wojciech Kotłowski Krzysztof Dembczyński Poznań University of Technology PL-SIGML, Częstochowa, 14.04.2016 1 / 36 Motivation 2

More information

ML4NLP Multiclass Classification

ML4NLP Multiclass Classification ML4NLP Multiclass Classification CS 590NLP Dan Goldwasser Purdue University dgoldwas@purdue.edu Social NLP Last week we discussed the speed-dates paper. Interesting perspective on NLP problems- Can we

More information

Machine Learning : Support Vector Machines

Machine Learning : Support Vector Machines Machine Learning Support Vector Machines 05/01/2014 Machine Learning : Support Vector Machines Linear Classifiers (recap) A building block for almost all a mapping, a partitioning of the input space into

More information

LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES. Supervised Learning

LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES. Supervised Learning LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES Supervised Learning Linear vs non linear classifiers In K-NN we saw an example of a non-linear classifier: the decision boundary

More information

ML (cont.): SUPPORT VECTOR MACHINES

ML (cont.): SUPPORT VECTOR MACHINES ML (cont.): SUPPORT VECTOR MACHINES CS540 Bryan R Gibson University of Wisconsin-Madison Slides adapted from those used by Prof. Jerry Zhu, CS540-1 1 / 40 Support Vector Machines (SVMs) The No-Math Version

More information

Binary Classification, Multi-label Classification and Ranking: A Decision-theoretic Approach

Binary Classification, Multi-label Classification and Ranking: A Decision-theoretic Approach Binary Classification, Multi-label Classification and Ranking: A Decision-theoretic Approach Krzysztof Dembczyński and Wojciech Kot lowski Intelligent Decision Support Systems Laboratory (IDSS) Poznań

More information

Progressive Random k-labelsets for Cost-Sensitive Multi-Label Classification

Progressive Random k-labelsets for Cost-Sensitive Multi-Label Classification 1 26 Progressive Random k-labelsets for Cost-Sensitive Multi-Label Classification Yu-Ping Wu Hsuan-Tien Lin Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

18.9 SUPPORT VECTOR MACHINES

18.9 SUPPORT VECTOR MACHINES 744 Chapter 8. Learning from Examples is the fact that each regression problem will be easier to solve, because it involves only the examples with nonzero weight the examples whose kernels overlap the

More information

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Perceptrons Definition Perceptron learning rule Convergence Margin & max margin classifiers (Linear) support vector machines Formulation

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 39 Recap Supervised learning Previously: KNN, naïve

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Large Scale Semi-supervised Linear SVMs. University of Chicago

Large Scale Semi-supervised Linear SVMs. University of Chicago Large Scale Semi-supervised Linear SVMs Vikas Sindhwani and Sathiya Keerthi University of Chicago SIGIR 2006 Semi-supervised Learning (SSL) Motivation Setting Categorize x-billion documents into commercial/non-commercial.

More information

Infinite Ensemble Learning with Support Vector Machinery

Infinite Ensemble Learning with Support Vector Machinery Infinite Ensemble Learning with Support Vector Machinery Hsuan-Tien Lin and Ling Li Learning Systems Group, California Institute of Technology ECML/PKDD, October 4, 2005 H.-T. Lin and L. Li (Learning Systems

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

c 4, < y 2, 1 0, otherwise,

c 4, < y 2, 1 0, otherwise, Fundamentals of Big Data Analytics Univ.-Prof. Dr. rer. nat. Rudolf Mathar Problem. Probability theory: The outcome of an experiment is described by three events A, B and C. The probabilities Pr(A) =,

More information

Foundations For Learning in the Age of Big Data. Maria-Florina Balcan

Foundations For Learning in the Age of Big Data. Maria-Florina Balcan Foundations For Learning in the Age of Big Data Maria-Florina Balcan Modern Machine Learning New applications Explosion of data Modern ML: New Learning Approaches Modern applications: massive amounts of

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 9 Learning Classifiers: Bagging & Boosting Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline

More information

Support Vector Machine for Classification and Regression

Support Vector Machine for Classification and Regression Support Vector Machine for Classification and Regression Ahlame Douzal AMA-LIG, Université Joseph Fourier Master 2R - MOSIG (2013) November 25, 2013 Loss function, Separating Hyperplanes, Canonical Hyperplan

More information

Active learning. Sanjoy Dasgupta. University of California, San Diego

Active learning. Sanjoy Dasgupta. University of California, San Diego Active learning Sanjoy Dasgupta University of California, San Diego Exploiting unlabeled data A lot of unlabeled data is plentiful and cheap, eg. documents off the web speech samples images and video But

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

Soft-margin SVM can address linearly separable problems with outliers

Soft-margin SVM can address linearly separable problems with outliers Non-linear Support Vector Machines Non-linearly separable problems Hard-margin SVM can address linearly separable problems Soft-margin SVM can address linearly separable problems with outliers Non-linearly

More information

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

FA Homework 2 Recitation 2

FA Homework 2 Recitation 2 FA17 10-701 Homework 2 Recitation 2 Logan Brooks,Matthew Oresky,Guoquan Zhao October 2, 2017 Logan Brooks,Matthew Oresky,Guoquan Zhao FA17 10-701 Homework 2 Recitation 2 October 2, 2017 1 / 15 Outline

More information

Adaptive Submodularity with Varying Query Sets: An Application to Active Multi-label Learning

Adaptive Submodularity with Varying Query Sets: An Application to Active Multi-label Learning Proceedings of Machine Learning Research 76:1 16, 2017 Algorithmic Learning Theory 2017 Adaptive Submodularity with Varying Query Sets: An Application to Active Multi-label Learning Alan Fern School of

More information

Training algorithms for fuzzy support vector machines with nois

Training algorithms for fuzzy support vector machines with nois Training algorithms for fuzzy support vector machines with noisy data Presented by Josh Hoak Chun-fu Lin 1 Sheng-de Wang 1 1 National Taiwan University 13 April 2010 Prelude Problem: SVMs are particularly

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

CSE 546 Final Exam, Autumn 2013

CSE 546 Final Exam, Autumn 2013 CSE 546 Final Exam, Autumn 0. Personal info: Name: Student ID: E-mail address:. There should be 5 numbered pages in this exam (including this cover sheet).. You can use any material you brought: any book,

More information

Decision Trees: Overfitting

Decision Trees: Overfitting Decision Trees: Overfitting Emily Fox University of Washington January 30, 2017 Decision tree recap Loan status: Root 22 18 poor 4 14 Credit? Income? excellent 9 0 3 years 0 4 Fair 9 4 Term? 5 years 9

More information

Solving the SVM Optimization Problem

Solving the SVM Optimization Problem Solving the SVM Optimization Problem Kernel-based Learning Methods Christian Igel Institut für Neuroinformatik Ruhr-Universität Bochum, Germany http://www.neuroinformatik.rub.de July 16, 2009 Christian

More information

The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m

The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m ) Set W () i The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m m =.5 1 n W (m 1) i y i h(x i ; 2 ˆθ

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Efficient and Principled Online Classification Algorithms for Lifelon

Efficient and Principled Online Classification Algorithms for Lifelon Efficient and Principled Online Classification Algorithms for Lifelong Learning Toyota Technological Institute at Chicago Chicago, IL USA Talk @ Lifelong Learning for Mobile Robotics Applications Workshop,

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information