Introduction to Machine Learning

Size: px
Start display at page:

Download "Introduction to Machine Learning"

Transcription

1 1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer and Jyrki Kivinen) November 2nd December 15th 2017

2 Support Vector Machines 2,

3 3, Outline A refresher on linear models Feature transformations Linear classifiers (case: Perceptron) Maximum margin classifiers Surrogate loss functions (max margin vs log. reg.) SVM and the kernel trick

4 4, Linear models A refresher about linear models (see linear regression, Lecture 3): We consider features x = (x 1,..., x p ) R p throughout this chapter Function f : R p R is linear if for some β R p it can be written as p f (x) = β x = β j x j By including a constant feature x 1 1, we can express models with an intercept term using the same formula j=1 β is often called coefficient or weight vector

5 5, Multivariate linear regression We assume matrix X R n p has n instances x i as its rows and y R n contains the corresponding labels y i In the standard linear regression case, we write y = Xβ + ɛ where the residual ɛ i = y i β x i indicates the error of f (x) on data point (x i, y i ) Least squares: Find β which minimises the sum of squared residuals n ɛ 2 i = ɛ 2 2 i=1 Closed-form solution (assuming n p): ˆβ = (X T X) 1 X T y

6 6, Further topics in linear regression: Feature transformations Earlier (Lecture 3), we already discussed non-linear transformations: e.g., a degree 5 polynomial of x R f (x i ) = β 0 + β 1 x i + β 2 x 2 i + β 3 x 3 i + β 4 x 4 i + β 5 x 5 i Likewise, we mentioned the possibility to include interactions via cross-terms f (x i ) = β 0 + β 1 x i1 + β 2 x i2 + β 12 x i1 x i2

7 7, Further topics in linear regression: Dummy variables What if we have qualitative/categorical (instead of continuous) features, like gender, job title, pixel color, etc.? Binary features with two levels can be included as they are: x i { 0, 1 } Coefficient can be interpreted as the difference between instances with x i = 0 and x i = 1: e.g., average increase in salary When there are more than two levels, it doesn t usually make sense to assume linearity f ((x 1, x 2, 1)) f ((x 1, x 2, 0)) = f ((x 1, x 2, 2)) f ((x 1, x 2, 1)) especially when the encoding is arbitrary: red = 0, green = 1, blue = 2

8 Further topics in linear regression: Dummy variables (2) For more than two levels, introduce dummy (or indicator) variables: { 1 if ith person is a student x i1 = 0 otherwise { 1 if ith person is an actor/actress x i2 = 0 otherwise { 1 if ith person is a data scientist x i3 = 0 otherwise One level is usually left without a dummy variable since otherwise the model is over-parametrized Adding a constant α to all coefficients of variable Xi and subtracting α from the intercept has net effect zero Read Sec (Qualitative Predictors) of the textbook 8,

9 9, Linear classification via regression As we have seen, minimising squared error in linear regression has a nice closed form solution (if inverting a p p matrix is feasible) How about using the linear predictor f (x) = β x for classification with a binary class label y { 1, 1 } through { +1, if β x 0 ŷ = sign(f (x)) = 1, if β x < 0 Given a training set (x 1, y 1 ),..., (x n, y n ), it is computationally intractable to find the coefficient vector β that minimises the 0 1 loss n i=1 I [yi (β x i )<0]

10 10, Linear classification via regression (2) One approach is to replace 0-1 loss I [yi (β x i )<0] with a surrogate loss function something similar but easier to optimise In particular, we could replace I [yi (β x i )<0] by the squared error (y i β x i ) 2 learn β using least squares regression on the binary classification data set (with y i { 1, +1 }) use β in linear classifier ĉ(x) = sign(β x) advantage: computationally efficient disadvantage: sensitive to outliers (in particular, too good predictions y i (β x i ) 1 get heavily punished, which is counterintuitive) We ll return to this a while

11 11, The Perceptron algorithm (briefly) NB: The perceptron is just mentioned in passing not required for the exam. However, the concepts introduced here (linear separability and margin) will be useful in what follows. The perceptron algorithm is a simple iterative method which can be used to train a linear classifier If the training data (x i, y i ) n i=1 is linearly separable, i.e. there is some β R p such that y i (β x i ) > 0 for all i, the algorithm is guaranteed to find such a β The algorithm (or its variations) can be run also for non-separable data but there is no guarantee about the result

12 12, Perceptron algorithm: Main ideas The algorithm keeps track of and updates a weight vector β Each input item is shown once in a sweep over the training data. If a full sweep is completed without any misclassifications then we are done, and return β that classifies all training data correctly. Whenever ŷ i y i we update β by adding y i x i. This turns β towards x i if y i = +1, and away from x i if y i = 1

13 13, Perceptron algorithm: Illustration wβ training example of class +1 training example of class 1 Current state of β

14 13, Perceptron algorithm: Illustration wβ training example of class +1 training example of class 1 Red point classified correctly, no change to β

15 13, Perceptron algorithm: Illustration wβ training example of class +1 training example of class 1 Green point classified correctly, no change to β

16 13, Perceptron algorithm: Illustration wβ training example of class +1 training example of class 1 Green point misclassified, will change β as follows...

17 13, Perceptron algorithm: Illustration wβ training example of class +1 training example of class 1 Adding y i x i to current weight vector β to obtain new weight vector

18 13, Perceptron algorithm: Illustration wβ training example of class +1 training example of class 1 Adding y i x i to current weight vector β to obtain new weight vector Note that the length of β is irrelevant for classification

19 Margin Given a data set (x i, y i ) n i=1 and M > 0, we say that a coefficient vector β separates the data with margin M if for all i we have y i (β x i ) M β 2 Explanation β xi / β 2 is the scalar projection of x i onto vector β y i (β x i ) 0 means we predict the correct class β x i / β 2 is Euclidean distance between point x i and the decision boundary, i.e., hyperplane β x = 0 βw M 14,

20 15, Max margin classifier and SVM: Terminology Maximal margin classifier (Sec ): Find β that classifies all instances correctly and maximizes the margin M Its special cases: Support vector classifier (Sec. 9.2): Maximize the soft margin M allowing some points to violate the margin (and even be misclassified), controlled by a tuning parameter C: y i (β x i ) M(1 ɛ i ) n ɛ i 0, ɛ i C i=1 subject to β 2 = 1 Support vector machine (SVM; Sec. 9.3): Non-linear version of the support vector classifier

21 Support Vector Machines X X 1 X X X2 X X 1 X 1 Fig. 9.7 in (James et al., 2013) FIGURE 9.7. A support vector classifier was fit using four different values of the 16,

22 17, Observations on max margin classifiers Consider the linearly separable case ɛ i 0. The maximal margin touches a set of training data points x i, which are called support vectors

23 18, Observations on max margin classifiers (2) Given a set of support vectors, the coefficients defining the hyperplane can be defined as ˆβ = n c i y i x i, i=1 with some c i 0, where c i > 0 only if the ith data point touches the margin In other words, the classifier is defined by a few data points A similar property holds for the soft margin: the more the ith point violates the margin, the larger c i, and for points that do not violate the margin, c i = 0

24 19, Observations on max margin classifiers (3) The optimization problem for both hard and soft margin can be solved efficiently using the Lagrange method The details are beyond our scope (but interesting!) A key property is that the solution only depends on the data through the inner products x i, x j = x i x j (and the values y i ) This follows from the expression of the coefficient vector ˆβ as a linear combination of the support vectors. Given a new (test) data point x, we can classify it based on the sign of ( n ) n ˆf (x) = ˆβ x = c i y i x i x = c i y i x i, x i=1 i=1

25 20, Relation to other linear classifiers The soft margin minimization problem of the support vector classifier can be rewritten as an unconstrained problem { n } min β i=1 max[0, 1 y i (β x i )] + λ β 2 2 Compare this to penalized logistic regression { n min β i=1 ln(1 + exp( y i (β x i ))) + λ β 2 2 or ridge regression { n } min (y i β x i ) 2 + λ β 2 2 β i=1 These are all examples of common surrogate loss functions }

26 Relation to other linear classifiers (2) Compare the hinge loss ( SVM Loss ) max[0, 1 y i (β x)] (black) and the logistic loss exp( y i (β x)) (green) Fig in the (James et al., 2013) 21,

27 22, Kernel trick Since the data only appear through x i, x j, we can use the following kernel trick Imagine that we want to introduce non-linearity by mapping the original data into a higher-dimensional representation remember the polynomial example xi 1, x i, xi 2, x i 3,... interaction terms are an another example: (x i, x j ) (x i, x j, x i x j ) Denote this mapping by Φ : R p R q, q > p Define the kernel function as K(x i, x) = Φ(x i ), Φ(x) The trick is to evaluate K(x i, x) without actually computing the mappings Φ(x i ) and Φ(x)

28 Kernels Popular kernels: linear kernel: K(xi, x) = x i, x polynomial kernel: K(x i, x) = ( x i, x + 1) d (Gaussian) radial basis function: K(xi, x) = exp( γ x i x 2 2 ) For example, the radial basis function (RBF) kernel corresponds to a feature mapping of infinite dimension! The same kernel trick can be applied to any learning algorithm that can be expressed in terms of inner products between the data points x perceptron linear (ridge) regression Gaussian process regression principal component analysis (PCA)... 23,

29 24, SVM: Example From (James et al., 2013) Three SVM results on the same data, from left to right: Linear kernel, polynomial kernel d = 3, RBF library(e1071) fit = svm(y., data=d, kernel="radial", gamma=1, cost=1) plot(fit, D)

30 25, SVMs: Properties The use of the hinge loss (soft margin) as a surrogate for the 0 1 loss leads to the support vector classifier With a suitable choice of kernel, the SVM can be applied in various different situations string kernels for text, structured outputs,... The computation of pairwise kernel values K(x i, x j ) may become intractable for large samples but fast techniques are available SVM is one of the overall best out-of-the-box classifiers Since the kernel trick allows complex, non-linear decision boundaries, regularization is absolutely crucial: the tuning parameter C is typically chosen by cross-validation

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Antti Ukkonen TAs: Saska Dönges and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer,

More information

Review: Support vector machines. Machine learning techniques and image analysis

Review: Support vector machines. Machine learning techniques and image analysis Review: Support vector machines Review: Support vector machines Margin optimization min (w,w 0 ) 1 2 w 2 subject to y i (w 0 + w T x i ) 1 0, i = 1,..., n. Review: Support vector machines Margin optimization

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Hypothesis Space variable size deterministic continuous parameters Learning Algorithm linear and quadratic programming eager batch SVMs combine three important ideas Apply optimization

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Lecture 10: Support Vector Machine and Large Margin Classifier

Lecture 10: Support Vector Machine and Large Margin Classifier Lecture 10: Support Vector Machine and Large Margin Classifier Applied Multivariate Analysis Math 570, Fall 2014 Xingye Qiao Department of Mathematical Sciences Binghamton University E-mail: qiao@math.binghamton.edu

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Lecture 10: A brief introduction to Support Vector Machine

Lecture 10: A brief introduction to Support Vector Machine Lecture 10: A brief introduction to Support Vector Machine Advanced Applied Multivariate Analysis STAT 2221, Fall 2013 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels Karl Stratos June 21, 2018 1 / 33 Tangent: Some Loose Ends in Logistic Regression Polynomial feature expansion in logistic

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers Computational Methods for Data Analysis Massimo Poesio SUPPORT VECTOR MACHINES Support Vector Machines Linear classifiers 1 Linear Classifiers denotes +1 denotes -1 w x + b>0 f(x,w,b) = sign(w x + b) How

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines www.cs.wisc.edu/~dpage 1 Goals for the lecture you should understand the following concepts the margin slack variables the linear support vector machine nonlinear SVMs the kernel

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Support Vector Machines Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

(Kernels +) Support Vector Machines

(Kernels +) Support Vector Machines (Kernels +) Support Vector Machines Machine Learning Torsten Möller Reading Chapter 5 of Machine Learning An Algorithmic Perspective by Marsland Chapter 6+7 of Pattern Recognition and Machine Learning

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

Pattern Recognition 2018 Support Vector Machines

Pattern Recognition 2018 Support Vector Machines Pattern Recognition 2018 Support Vector Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recognition 1 / 48 Support Vector Machines Ad Feelders ( Universiteit Utrecht

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Perceptrons Definition Perceptron learning rule Convergence Margin & max margin classifiers (Linear) support vector machines Formulation

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

Introduction to SVM and RVM

Introduction to SVM and RVM Introduction to SVM and RVM Machine Learning Seminar HUS HVL UIB Yushu Li, UIB Overview Support vector machine SVM First introduced by Vapnik, et al. 1992 Several literature and wide applications Relevance

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find

More information

L5 Support Vector Classification

L5 Support Vector Classification L5 Support Vector Classification Support Vector Machine Problem definition Geometrical picture Optimization problem Optimization Problem Hard margin Convexity Dual problem Soft margin problem Alexander

More information

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina Indirect Rule Learning: Support Vector Machines Indirect learning: loss optimization It doesn t estimate the prediction rule f (x) directly, since most loss functions do not have explicit optimizers. Indirection

More information

9 Classification. 9.1 Linear Classifiers

9 Classification. 9.1 Linear Classifiers 9 Classification This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this case we are predicting a class: winner or loser, yes or no, rich or poor, positive

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Lecture 7: Kernels for Classification and Regression

Lecture 7: Kernels for Classification and Regression Lecture 7: Kernels for Classification and Regression CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 15, 2011 Outline Outline A linear regression problem Linear auto-regressive

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES. Supervised Learning

LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES. Supervised Learning LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES Supervised Learning Linear vs non linear classifiers In K-NN we saw an example of a non-linear classifier: the decision boundary

More information

SVM optimization and Kernel methods

SVM optimization and Kernel methods Announcements SVM optimization and Kernel methods w 4 is up. Due in a week. Kaggle is up 4/13/17 1 4/13/17 2 Outline Review SVM optimization Non-linear transformations in SVM Soft-margin SVM Goal: Find

More information

Support Vector Machines

Support Vector Machines EE 17/7AT: Optimization Models in Engineering Section 11/1 - April 014 Support Vector Machines Lecturer: Arturo Fernandez Scribe: Arturo Fernandez 1 Support Vector Machines Revisited 1.1 Strictly) Separable

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot, we get creative in two

More information

HOMEWORK 4: SVMS AND KERNELS

HOMEWORK 4: SVMS AND KERNELS HOMEWORK 4: SVMS AND KERNELS CMU 060: MACHINE LEARNING (FALL 206) OUT: Sep. 26, 206 DUE: 5:30 pm, Oct. 05, 206 TAs: Simon Shaolei Du, Tianshu Ren, Hsiao-Yu Fish Tung Instructions Homework Submission: Submit

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Linear Support Vector Machine Kernelized SVM Kernels 2 From ERM to RLM Empirical Risk Minimization in the binary

More information

Support Vector Machines

Support Vector Machines Wien, June, 2010 Paul Hofmarcher, Stefan Theussl, WU Wien Hofmarcher/Theussl SVM 1/21 Linear Separable Separating Hyperplanes Non-Linear Separable Soft-Margin Hyperplanes Hofmarcher/Theussl SVM 2/21 (SVM)

More information

CSE 546 Final Exam, Autumn 2013

CSE 546 Final Exam, Autumn 2013 CSE 546 Final Exam, Autumn 0. Personal info: Name: Student ID: E-mail address:. There should be 5 numbered pages in this exam (including this cover sheet).. You can use any material you brought: any book,

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Kernel Methods. Foundations of Data Analysis. Torsten Möller. Möller/Mori 1

Kernel Methods. Foundations of Data Analysis. Torsten Möller. Möller/Mori 1 Kernel Methods Foundations of Data Analysis Torsten Möller Möller/Mori 1 Reading Chapter 6 of Pattern Recognition and Machine Learning by Bishop Chapter 12 of The Elements of Statistical Learning by Hastie,

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Binary Classification / Perceptron

Binary Classification / Perceptron Binary Classification / Perceptron Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Supervised Learning Input: x 1, y 1,, (x n, y n ) x i is the i th data

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Lecture 4. 1 Learning Non-Linear Classifiers. 2 The Kernel Trick. CS-621 Theory Gems September 27, 2012

Lecture 4. 1 Learning Non-Linear Classifiers. 2 The Kernel Trick. CS-621 Theory Gems September 27, 2012 CS-62 Theory Gems September 27, 22 Lecture 4 Lecturer: Aleksander Mądry Scribes: Alhussein Fawzi Learning Non-Linear Classifiers In the previous lectures, we have focused on finding linear classifiers,

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Support Vector and Kernel Methods

Support Vector and Kernel Methods SIGIR 2003 Tutorial Support Vector and Kernel Methods Thorsten Joachims Cornell University Computer Science Department tj@cs.cornell.edu http://www.joachims.org 0 Linear Classifiers Rules of the Form:

More information

Support Vector Machines

Support Vector Machines Support Vector Machines INFO-4604, Applied Machine Learning University of Colorado Boulder September 28, 2017 Prof. Michael Paul Today Two important concepts: Margins Kernels Large Margin Classification

More information

Multi-class SVMs. Lecture 17: Aykut Erdem April 2016 Hacettepe University

Multi-class SVMs. Lecture 17: Aykut Erdem April 2016 Hacettepe University Multi-class SVMs Lecture 17: Aykut Erdem April 2016 Hacettepe University Administrative We will have a make-up lecture on Saturday April 23, 2016. Project progress reports are due April 21, 2016 2 days

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x))

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by

More information

Support Vector Machines Explained

Support Vector Machines Explained December 23, 2008 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

Kernel Logistic Regression and the Import Vector Machine

Kernel Logistic Regression and the Import Vector Machine Kernel Logistic Regression and the Import Vector Machine Ji Zhu and Trevor Hastie Journal of Computational and Graphical Statistics, 2005 Presented by Mingtao Ding Duke University December 8, 2011 Mingtao

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

Support Vector Machine. Industrial AI Lab.

Support Vector Machine. Industrial AI Lab. Support Vector Machine Industrial AI Lab. Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories / classes Binary: 2 different

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods 2018 CS420 Machine Learning, Lecture 3 Hangout from Prof. Andrew Ng. http://cs229.stanford.edu/notes/cs229-notes3.pdf Support Vector Machines and Kernel Methods Weinan Zhang Shanghai Jiao Tong University

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Day 4: Classification, support vector machines

Day 4: Classification, support vector machines Day 4: Classification, support vector machines Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 21 June 2018 Topics so far

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

1 Machine Learning Concepts (16 points)

1 Machine Learning Concepts (16 points) CSCI 567 Fall 2018 Midterm Exam DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO PLEASE TURN OFF ALL CELL PHONES Problem 1 2 3 4 5 6 Total Max 16 10 16 42 24 12 120 Points Please read the following instructions

More information

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels SVM primal/dual problems Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels Basic concepts: SVM and kernels SVM primal/dual problems

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask Machine Learning and Data Mining Support Vector Machines Kalev Kask Linear classifiers Which decision boundary is better? Both have zero training error (perfect training accuracy) But, one of them seems

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Engineering Part IIB: Module 4F0 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 202 Engineering Part IIB:

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Linear Classifiers: predictions Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due Friday of next

More information

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 12 Announcements HW3 due date as posted. make sure

More information

18.9 SUPPORT VECTOR MACHINES

18.9 SUPPORT VECTOR MACHINES 744 Chapter 8. Learning from Examples is the fact that each regression problem will be easier to solve, because it involves only the examples with nonzero weight the examples whose kernels overlap the

More information

Modelli Lineari (Generalizzati) e SVM

Modelli Lineari (Generalizzati) e SVM Modelli Lineari (Generalizzati) e SVM Corso di AA, anno 2018/19, Padova Fabio Aiolli 19/26 Novembre 2018 Fabio Aiolli Modelli Lineari (Generalizzati) e SVM 19/26 Novembre 2018 1 / 36 Outline Linear methods

More information

Foundation of Intelligent Systems, Part I. SVM s & Kernel Methods

Foundation of Intelligent Systems, Part I. SVM s & Kernel Methods Foundation of Intelligent Systems, Part I SVM s & Kernel Methods mcuturi@i.kyoto-u.ac.jp FIS - 2013 1 Support Vector Machines The linearly-separable case FIS - 2013 2 A criterion to select a linear classifier:

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Classification and Support Vector Machine

Classification and Support Vector Machine Classification and Support Vector Machine Yiyong Feng and Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) ELEC 5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

10-701/ Machine Learning - Midterm Exam, Fall 2010

10-701/ Machine Learning - Midterm Exam, Fall 2010 10-701/15-781 Machine Learning - Midterm Exam, Fall 2010 Aarti Singh Carnegie Mellon University 1. Personal info: Name: Andrew account: E-mail address: 2. There should be 15 numbered pages in this exam

More information

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable.

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable. Linear SVM (separable case) First consider the scenario where the two classes of points are separable. It s desirable to have the width (called margin) between the two dashed lines to be large, i.e., have

More information

Lecture 11. Kernel Methods

Lecture 11. Kernel Methods Lecture 11. Kernel Methods COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture The kernel trick Efficient computation of a dot product

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning Mark Schmidt University of British Columbia, May 2016 www.cs.ubc.ca/~schmidtm/svan16 Some images from this lecture are

More information

Training the linear classifier

Training the linear classifier 215, Training the linear classifier A natural way to train the classifier is to minimize the number of classification errors on the training data, i.e. choosing w so that the training error is minimized.

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 29 April, SoSe 2015 Support Vector Machines (SVMs) 1. One of

More information

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han Math for Machine Learning Open Doors to Data Science and Artificial Intelligence Richard Han Copyright 05 Richard Han All rights reserved. CONTENTS PREFACE... - INTRODUCTION... LINEAR REGRESSION... 4 LINEAR

More information

COMP 875 Announcements

COMP 875 Announcements Announcements Tentative presentation order is out Announcements Tentative presentation order is out Remember: Monday before the week of the presentation you must send me the final paper list (for posting

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Linear Classification and SVM. Dr. Xin Zhang

Linear Classification and SVM. Dr. Xin Zhang Linear Classification and SVM Dr. Xin Zhang Email: eexinzhang@scut.edu.cn What is linear classification? Classification is intrinsically non-linear It puts non-identical things in the same class, so a

More information

CSC 411 Lecture 17: Support Vector Machine

CSC 411 Lecture 17: Support Vector Machine CSC 411 Lecture 17: Support Vector Machine Ethan Fetaya, James Lucas and Emad Andrews University of Toronto CSC411 Lec17 1 / 1 Today Max-margin classification SVM Hard SVM Duality Soft SVM CSC411 Lec17

More information

Nonlinear Support Vector Machines through Iterative Majorization and I-Splines

Nonlinear Support Vector Machines through Iterative Majorization and I-Splines Nonlinear Support Vector Machines through Iterative Majorization and I-Splines P.J.F. Groenen G. Nalbantov J.C. Bioch July 9, 26 Econometric Institute Report EI 26-25 Abstract To minimize the primal support

More information

Support Vector Machines II. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Support Vector Machines II. CAP 5610: Machine Learning Instructor: Guo-Jun QI Support Vector Machines II CAP 5610: Machine Learning Instructor: Guo-Jun QI 1 Outline Linear SVM hard margin Linear SVM soft margin Non-linear SVM Application Linear Support Vector Machine An optimization

More information