Compositions and the Chain Rule using Arrow Diagrams

Size: px
Start display at page:

Download "Compositions and the Chain Rule using Arrow Diagrams"

Transcription

1 Compositions and the Chain Rule using Arrow Diagrams J. B. Thoo Department of Mathematics Universit of California Davis, CA USA November 14, 1994 (To appear in PRIMUS) Abstract Arrow (or tree, or branch) diagrams are sometimes introduced to freshman calculus students as a mnemonic device for appling the chain rule to functions of several variables. We suggest a particular format for an arrow diagram that can be introduced to students earl on as a wa to internalie the notion of a composition of functions, and that later can be used as a mnemonic device for appling the chain rule to functions both of one and of several variables. 1 Introduction The use of arrow (or tree, or branch) diagrams as a mnemonic device for computing partial and total derivatives of functions of several variables b the chain rule is not new. For eample, Barcellos and Stein [1] use such a diagram in the following manner: to compute the partial derivative / s of a function 1

2 = (, ) where = (s, t) and = (s, t), simpl add up the contributions from all the possible paths that connect to s in Figure 1. This ields the desired result, / s = / / s + / / s. s t Figure 1: A tree diagram for computing the partial derivatives of. Such a mnemonic device can, indeed, be ver useful in helping a novice student master the chain rule for functions of several variables. However, arrow diagrams can be introduced much earlier in a student s mathematical eperience as earl as the first encounter with the notion of a composition of functions. Further, we suggest that to be useful in this contet, an arrow diagram should begin with an independent variable and end with a dependent variable (unlike Figure 1, which begins with the dependent variable and ends with the independent variables). 2 Composition of functions We like to tell our students in a precalculus course, for eample, to think of a composition of functions as what one does naturall when punching a calculator to evaluate, sa, (7) where () = 2 +3: 7 (7) 2 [(7) 2 ]+3 {[(7) 2 ]+3)}, that is, ( ) ( ) 2 [ ]+3 { }. A tpical qui problem is, Rewrite the function () = as a composition of simpler functions. 2

3 An acceptable answer would be (): r() = 2 s(r) =r +3 (s) = s. Such an arrow diagram not onl helps the students internalie the concept of a composition of functions b emphasiing how the independent variable depends on the dependent variable, but is also well suited as a mnemonic device for carring out the chain rule for functions of one variable. 3 The chain rule: functions of one variable When we introduce the chain rule for the first time in a freshman calculus course, we begin b pointing out that built into the Leibni notation d/d is the understanding that the numerator is the dependent variable and the denominator is the independent variable; that we seek a chain starting with the independent variable and ending with the dependent variable ; and that our final result should be entirel in terms of the independent variable. Once this point is made, then remembering how to evaluate the chain rule for functions of one variable is eas: draw an arrow diagram for d/d (beginning with the independent variable and ending with the dependent variable ) that describes the composition of functions; evaluate the derivative at each step of the chain (arrow diagram); and multipl together all the derivatives along the chain. For eample, let = Toevaluated/d we use the diagram d d : dr/d=2 r = 2 ds/dr=1 s = r +3 d/ds=1/(2 s) = s. Multipling together all the derivatives along the chain then gives the desired result, d d = dr d ds dr d ds = s = A tpical qui problem is, Suppose that s = s(t), r = r(s), u = u(r), v = v(u), w = w(v), = (w), = (), and = (). Write out d/dt, d/d, and d/dr. 3

4 s : s / s / s / / Figure 2: Arrow diagram for the chain rule for a function of several variables. Hopefull, the students would first write out the arrow diagram t ds/dt s dr/ds r du/dr u dv/du v dw/dv w d/dw d/d d/d, after which obtaining d/dt, d/d, andd/dr should be relativel eas. For instance, to obtain d/dr simpl multipl together all the derivatives along the segment of the chain that starts with r and ends with. 4 The chain rule: functions of several variables If a student has alread been introduced to using an arrow diagram in the composition of functions and also in differentiating a function of one variable b the chain rule, then using such a diagram to appl the chain rule to a function of several variables will seem quite natural. We return to the first eample, Compute the partial derivative / s of a function = (, ) where = (s, t) and = (s, t). The notation / s indicates that we seek a chain that begins with the independent variable s and ends with the dependent variable. Thus, we sketch an arrow diagram that shows all the possible paths that begin with s and end with (see Figure 2). Then, as before, the desired result is obtained b adding together the contributions from all the paths, where each contribution is simpl the product of the partial derivatives along that path. A tpical qui problem is, Compute the partial derivatives / q and / r of a function = (, ) where = (p, q), = (p), and p = p(q, r). 4

5 / q / q : q / p p/ q p d/dp / (a) Computing d/dq. / p / r : r p/ r p d/dp / (b) Computing d/dr. Figure 3: Arrow diagrams for computing d/dq and d/dr. If the students have been following along, then we should see arrow diagrams resembling Figures 3(a) and 3(b), giving the desired results q r = q + p q p + p q d dp = p r p + p r d dp. References [1] Barcellos, A., andstein, S. K., 1992, Calculus and Analtic Geometr, fifth edition (New York: McGraw-Hill). 5

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

2.2 SEPARABLE VARIABLES

2.2 SEPARABLE VARIABLES 44 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 6 Consider the autonomous DE 6 Use our ideas from Problem 5 to find intervals on the -ais for which solution curves are concave up and intervals for which

More information

Higher. Integration 89

Higher. Integration 89 hsn.uk.net Higher Mathematics UNIT UTCME Integration Contents Integration 89 Indefinite Integrals 89 Preparing to Integrate 9 Differential Equations 9 Definite Integrals 9 Geometric Interpretation of Integration

More information

Higher. Integration 1

Higher. Integration 1 Higher Mathematics Contents Indefinite Integrals RC Preparing to Integrate RC Differential Equations A Definite Integrals RC 7 Geometric Interpretation of A 8 Areas between Curves A 7 Integrating along

More information

Divergent Series wear White Hats, too

Divergent Series wear White Hats, too Divergent Series wear White Hats, too J. B. Thoo 1 Department of Mathematics University of California Davis, CA 95616-8633 USA jb2@math.ucdavis.edu October 6, 1993 1 Student. Abstract Using divergent series,

More information

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits . Infinite Limits and Vertical Asmptotes. Infinite Limits and Vertical Asmptotes In this section we etend the concept of it to infinite its, which are not its as before, but rather an entirel new use of

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

Speed (km/h) How can you determine the inverse of a function?

Speed (km/h) How can you determine the inverse of a function? .7 Inverse of a Function Engineers have been able to determine the relationship between the speed of a car and its stopping distance. A tpical function describing this relationship is D.v, where D is the

More information

Overview. Properties of the exponential. The natural exponential e x. Lesson 1 MA Nick Egbert

Overview. Properties of the exponential. The natural exponential e x. Lesson 1 MA Nick Egbert Overview This lesson should alread be familiar to ou from precalculus. But for the sake of completeness and because of their crucial importance, we review some basic properties of the eponential and logarithm

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Section 1.2: Relations, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons

Section 1.2: Relations, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Section.: Relations, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license. 0, Carl Stitz.

More information

Properties of Limits

Properties of Limits 33460_003qd //04 :3 PM Page 59 SECTION 3 Evaluating Limits Analticall 59 Section 3 Evaluating Limits Analticall Evaluate a it using properties of its Develop and use a strateg for finding its Evaluate

More information

1.2 Relations. 20 Relations and Functions

1.2 Relations. 20 Relations and Functions 0 Relations and Functions. Relations From one point of view, all of Precalculus can be thought of as studing sets of points in the plane. With the Cartesian Plane now fresh in our memor we can discuss

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs .1 Eponential Functions and Their Graphs Sllabus Objective: 9.1 The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential or logarithmic

More information

f x, y x 2 y 2 2x 6y 14. Then

f x, y x 2 y 2 2x 6y 14. Then SECTION 11.7 MAXIMUM AND MINIMUM VALUES 645 absolute minimum FIGURE 1 local maimum local minimum absolute maimum Look at the hills and valles in the graph of f shown in Figure 1. There are two points a,

More information

The standard form of the equation of a circle is based on the distance formula. The distance formula, in turn, is based on the Pythagorean Theorem.

The standard form of the equation of a circle is based on the distance formula. The distance formula, in turn, is based on the Pythagorean Theorem. Unit, Lesson. Deriving the Equation of a Circle The graph of an equation in and is the set of all points (, ) in a coordinate plane that satisf the equation. Some equations have graphs with precise geometric

More information

14.5 The Chain Rule. dx dt

14.5 The Chain Rule. dx dt SECTION 14.5 THE CHAIN RULE 931 27. w lns 2 2 z 2 28. w e z 37. If R is the total resistance of three resistors, connected in parallel, with resistances,,, then R 1 R 2 R 3 29. If z 5 2 2 and, changes

More information

CONTINUOUS SPATIAL DATA ANALYSIS

CONTINUOUS SPATIAL DATA ANALYSIS CONTINUOUS SPATIAL DATA ANALSIS 1. Overview of Spatial Stochastic Processes The ke difference between continuous spatial data and point patterns is that there is now assumed to be a meaningful value, s

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

Limits. Calculus Module C06. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Limits. Calculus Module C06. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. e Calculus Module C Limits Copright This publication The Northern Alberta Institute of Technolog. All Rights Reserved. LAST REVISED March, Introduction to Limits Statement of Prerequisite Skills Complete

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph.

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph. . Zeros Eample 1. At the right we have drawn the graph of the polnomial = ( 1) ( 2) ( 4). Argue that the form of the algebraic formula allows ou to see right awa where the graph is above the -ais, where

More information

UNIT 6 MODELING GEOMETRY Lesson 1: Deriving Equations Instruction

UNIT 6 MODELING GEOMETRY Lesson 1: Deriving Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: appling the Pthagorean Theorem representing horizontal and vertical distances in a coordinate plane simplifing square roots writing

More information

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 is a fast-paced and thorough tour of precalculus mathematics, where the choice of topics is primarily motivated by the conceptual and technical knowledge

More information

Experimental Uncertainty Review. Abstract. References. Measurement Uncertainties and Uncertainty Propagation

Experimental Uncertainty Review. Abstract. References. Measurement Uncertainties and Uncertainty Propagation Experimental Uncertaint Review Abstract This is intended as a brief summar of the basic elements of uncertaint analsis, and a hand reference for laborator use. It provides some elementar "rules-of-thumb"

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

University of Toronto Mississauga

University of Toronto Mississauga Surname: First Name: Student Number: Tutorial: Universit of Toronto Mississauga Mathematical and Computational Sciences MATY5Y Term Test Duration - 0 minutes No Aids Permitted This eam contains pages (including

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

2.2. Calculating Limits Using the Limit Laws. 84 Chapter 2: Limits and Continuity. The Limit Laws. THEOREM 1 Limit Laws

2.2. Calculating Limits Using the Limit Laws. 84 Chapter 2: Limits and Continuity. The Limit Laws. THEOREM 1 Limit Laws 84 Chapter : Limits and Continuit. HISTORICAL ESSAY* Limits Calculating Limits Using the Limit Laws In Section. we used graphs and calculators to guess the values of its. This section presents theorems

More information

Noncommuting Rotation and Angular Momentum Operators

Noncommuting Rotation and Angular Momentum Operators Noncommuting Rotation and Angular Momentum Operators Originall appeared at: http://behindtheguesses.blogspot.com/2009/08/noncommuting-rotation-and-angular.html Eli Lanse elanse@gmail.com August 31, 2009

More information

Derivatives of Multivariable Functions

Derivatives of Multivariable Functions Chapter 0 Derivatives of Multivariable Functions 0. Limits Motivating Questions In this section, we strive to understand the ideas generated b the following important questions: What do we mean b the limit

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

Are You Ready? Find Area in the Coordinate Plane

Are You Ready? Find Area in the Coordinate Plane SKILL 38 Are You Read? Find Area in the Coordinate Plane Teaching Skill 38 Objective Find the areas of figures in the coordinate plane. Review with students the definition of area. Ask: Is the definition

More information

Analytic Trigonometry

Analytic Trigonometry CHAPTER 5 Analtic Trigonometr 5. Fundamental Identities 5. Proving Trigonometric Identities 5.3 Sum and Difference Identities 5.4 Multiple-Angle Identities 5.5 The Law of Sines 5.6 The Law of Cosines It

More information

Review Topics for MATH 1400 Elements of Calculus Table of Contents

Review Topics for MATH 1400 Elements of Calculus Table of Contents Math 1400 - Mano Table of Contents - Review - page 1 of 2 Review Topics for MATH 1400 Elements of Calculus Table of Contents MATH 1400 Elements of Calculus is one of the Marquette Core Courses for Mathematical

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Cubic and quartic functions

Cubic and quartic functions 3 Cubic and quartic functions 3A Epanding 3B Long division of polnomials 3C Polnomial values 3D The remainder and factor theorems 3E Factorising polnomials 3F Sum and difference of two cubes 3G Solving

More information

2.1 Rates of Change and Limits AP Calculus

2.1 Rates of Change and Limits AP Calculus .1 Rates of Change and Limits AP Calculus.1 RATES OF CHANGE AND LIMITS Limits Limits are what separate Calculus from pre calculus. Using a it is also the foundational principle behind the two most important

More information

206 Calculus and Structures

206 Calculus and Structures 06 Calculus and Structures CHAPTER 4 CURVE SKETCHING AND MAX-MIN II Calculus and Structures 07 Copright Chapter 4 CURVE SKETCHING AND MAX-MIN II 4. INTRODUCTION In Chapter, we developed a procedure for

More information

f 0 ab a b: base f

f 0 ab a b: base f Precalculus Notes: Unit Eponential and Logarithmic Functions Sllabus Objective: 9. The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential

More information

ES.182A Topic 36 Notes Jeremy Orloff

ES.182A Topic 36 Notes Jeremy Orloff ES.82A Topic 36 Notes Jerem Orloff 36 Vector fields and line integrals in the plane 36. Vector analsis We now will begin our stud of the part of 8.2 called vector analsis. This is the stud of vector fields

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Chapter 3: Three faces of the derivative. Overview

Chapter 3: Three faces of the derivative. Overview Overview We alread saw an algebraic wa of thinking about a derivative. Geometric: zooming into a line Analtic: continuit and rational functions Computational: approimations with computers 3. The geometric

More information

f(x) = 2x 2 + 2x - 4

f(x) = 2x 2 + 2x - 4 4-1 Graphing Quadratic Functions What You ll Learn Scan the tet under the Now heading. List two things ou will learn about in the lesson. 1. Active Vocabular 2. New Vocabular Label each bo with the terms

More information

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs AQA Level Further mathematics Number & algebra Section : Functions and their graphs Notes and Eamples These notes contain subsections on: The language of functions Gradients The equation of a straight

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Cartesian coordinates in space (Sect. 12.1).

Cartesian coordinates in space (Sect. 12.1). Cartesian coordinates in space (Sect..). Overview of Multivariable Calculus. Cartesian coordinates in space. Right-handed, left-handed Cartesian coordinates. Distance formula between two points in space.

More information

SOLVING SYSTEMS OF EQUATIONS

SOLVING SYSTEMS OF EQUATIONS SOLVING SYSTEMS OF EQUATIONS 4.. 4..4 Students have been solving equations even before Algebra. Now the focus on what a solution means, both algebraicall and graphicall. B understanding the nature of solutions,

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Worksheet #1. A little review.

Worksheet #1. A little review. Worksheet #1. A little review. I. Set up BUT DO NOT EVALUATE definite integrals for each of the following. 1. The area between the curves = 1 and = 3. Solution. The first thing we should ask ourselves

More information

1.7 Inverse Functions

1.7 Inverse Functions 71_0107.qd 1/7/0 10: AM Page 17 Section 1.7 Inverse Functions 17 1.7 Inverse Functions Inverse Functions Recall from Section 1. that a function can be represented b a set of ordered pairs. For instance,

More information

Tangent Lines. Limits 1

Tangent Lines. Limits 1 Limits Tangent Lines The concept of the tangent line to a circle dates back at least to the earl das of Greek geometr, that is, at least 5 ears. The tangent line to a circle with centre O at a point A

More information

Spotlight on the Extended Method of Frobenius

Spotlight on the Extended Method of Frobenius 113 Spotlight on the Extended Method of Frobenius See Sections 11.1 and 11.2 for the model of an aging spring. Reference: Section 11.4 and SPOTLIGHT ON BESSEL FUNCTIONS. Bessel functions of the first kind

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still Notes. For

More information

Introduction to Vector Spaces Linear Algebra, Spring 2011

Introduction to Vector Spaces Linear Algebra, Spring 2011 Introduction to Vector Spaces Linear Algebra, Spring 2011 You probabl have heard the word vector before, perhaps in the contet of Calculus III or phsics. You probabl think of a vector like this: 5 3 or

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Northwest High School s Algebra 2/Honors Algebra 2

Northwest High School s Algebra 2/Honors Algebra 2 Northwest High School s Algebra /Honors Algebra Summer Review Packet 0 DUE Frida, September, 0 Student Name This packet has been designed to help ou review various mathematical topics that will be necessar

More information

Multiple Integration

Multiple Integration Contents 7 Multiple Integration 7. Introduction to Surface Integrals 7. Multiple Integrals over Non-rectangular Regions 7. Volume Integrals 4 7.4 Changing Coordinates 66 Learning outcomes In this Workbook

More information

INTRODUCTION TO DIFFERENTIAL EQUATIONS

INTRODUCTION TO DIFFERENTIAL EQUATIONS INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminolog. Initial-Value Problems.3 Differential Equations as Mathematical Models CHAPTER IN REVIEW The words differential and equations certainl

More information

CONQUERING CALCULUS POST-SECONDARY PREPARATION SOLUTIONS TO ALL EXERCISES. Andrijana Burazin and Miroslav Lovrić

CONQUERING CALCULUS POST-SECONDARY PREPARATION SOLUTIONS TO ALL EXERCISES. Andrijana Burazin and Miroslav Lovrić CONQUERING CALCULUS POST-SECONDARY PREPARATION SOLUTIONS TO ALL EXERCISES Andrijana Burazin and Miroslav Lovrić c 7 Miroslav Lovrić. This is an open-access document. You are allowed to download, print

More information

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1 VECTORS Section 6.3 Precalculus PreAP/Dual, Revised 2017 Viet.dang@humbleisd.net 10/11/2018 11:41 PM 6.3: Vectors in the Plane 1 DEFINITIONS A. Vector is used to indicate a quantity that has both magnitude

More information

Relations, Functions, and Their Graphs

Relations, Functions, and Their Graphs Chapter Relations, Functions, and Their Graphs. Relations and Functions. Linear and Quadratic Functions. Other Common Functions. Variation and Multivariable Functions.5 Transformations of Functions. Combining

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

Lecture 13 Date:

Lecture 13 Date: ecture 3 Date: 6.09.204 The Signal Flow Graph (Contd.) Impedance Matching and Tuning Tpe Matching Network Example Signal Flow Graph (contd.) Splitting Rule Now consider the three equations SFG a a b 2

More information

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes Parametric Curves 7.3 Introduction In this Section we eamine et another wa of defining curves - the parametric description. We shall see that this is, in some was, far more useful than either the Cartesian

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

Linear Relationships

Linear Relationships Linear Relationships Curriculum Read www.mathletics.com Basics Page questions. Draw the following lines on the provided aes: a Line with -intercept and -intercept -. The -intercept is ( 0and, ) the -intercept

More information

Higher. Differentiation 28

Higher. Differentiation 28 Higher Mathematics UNIT OUTCOME Differentiation Contents Differentiation 8 Introduction to Differentiation 8 Finding the Derivative 9 Differentiating with Respect to Other Variables 4 Rates of Change 4

More information

10.5. Polar Coordinates. 714 Chapter 10: Conic Sections and Polar Coordinates. Definition of Polar Coordinates

10.5. Polar Coordinates. 714 Chapter 10: Conic Sections and Polar Coordinates. Definition of Polar Coordinates 71 Chapter 1: Conic Sections and Polar Coordinates 1.5 Polar Coordinates rigin (pole) r P(r, ) Initial ra FIGURE 1.5 To define polar coordinates for the plane, we start with an origin, called the pole,

More information

3.6 Implicit Differentiation. explicit representation of a function rule. y = f(x) y = f (x) e.g. y = (x 2 + 1) 3 y = 3(x 2 + 1) 2 (2x)

3.6 Implicit Differentiation. explicit representation of a function rule. y = f(x) y = f (x) e.g. y = (x 2 + 1) 3 y = 3(x 2 + 1) 2 (2x) Mathematics 0110a Summar Notes page 43 3.6 Implicit Differentiation eplicit representation of a function rule = f() = f () e.g. = ( + 1) 3 = 3( + 1) () implicit representation of a function rule f(, )

More information

UNIT 6 DESCRIBING DATA Lesson 2: Working with Two Variables. Instruction. Guided Practice Example 1

UNIT 6 DESCRIBING DATA Lesson 2: Working with Two Variables. Instruction. Guided Practice Example 1 Guided Practice Eample 1 Andrew wants to estimate his gas mileage, or miles traveled per gallon of gas used. He records the number of gallons of gas he purchased and the total miles he traveled with that

More information

Methods for Advanced Mathematics (C3) Coursework Numerical Methods

Methods for Advanced Mathematics (C3) Coursework Numerical Methods Woodhouse College 0 Page Introduction... 3 Terminolog... 3 Activit... 4 Wh use numerical methods?... Change of sign... Activit... 6 Interval Bisection... 7 Decimal Search... 8 Coursework Requirements on

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS SECTION 7.5 STRATEGY FOR INTEGRATION 483 6. 2 sin 2 2 cos CAS 67. (a) Use a computer algebra sstem to find the partial fraction decomposition of the function 62 63 Find the area of the region under the

More information

Derivatives of Multivariable Functions

Derivatives of Multivariable Functions Chapter 10 Derivatives of Multivariable Functions 10.1 Limits Motivating Questions What do we mean b the limit of a function f of two variables at a point (a, b)? What techniques can we use to show that

More information

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D.

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D. 1.2 Functions and Their Properties PreCalculus 1.2 FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1.2 1. Determine whether a set of numbers or a graph is a function 2. Find the domain of a function

More information

Ordinary Differential Equations

Ordinary Differential Equations 58229_CH0_00_03.indd Page 6/6/6 2:48 PM F-007 /202/JB0027/work/indd & Bartlett Learning LLC, an Ascend Learning Compan.. PART Ordinar Differential Equations. Introduction to Differential Equations 2. First-Order

More information

Trigonometric Functions

Trigonometric Functions TrigonometricReview.nb Trigonometric Functions The trigonometric (or trig) functions are ver important in our stud of calculus because the are periodic (meaning these functions repeat their values in a

More information

This document is stored in Documents/4C/nablaoperator.tex. Compile it with LaTex. VECTOR CALCULUS

This document is stored in Documents/4C/nablaoperator.tex. Compile it with LaTex. VECTOR CALCULUS This document is stored in Documents/4C/nablaoperator.tex. Compile it with LaTex. November 12, 2014 Hans P. Paar VECTOR CALCULUS 1 Introduction Vector calculus is a branch of mathematics that allows differentiation

More information

Name Class Date. Finding Real Roots of Polynomial Equations Extension: Graphing Factorable Polynomial Functions

Name Class Date. Finding Real Roots of Polynomial Equations Extension: Graphing Factorable Polynomial Functions Name Class Date -1 Finding Real Roots of Polnomial Equations Etension: Graphing Factorable Polnomial Functions Essential question: How do ou use zeros to graph polnomial functions? Video Tutor prep for

More information

Solutions to Two Interesting Problems

Solutions to Two Interesting Problems Solutions to Two Interesting Problems Save the Lemming On each square of an n n chessboard is an arrow pointing to one of its eight neighbors (or off the board, if it s an edge square). However, arrows

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSE 557 Fall 2009 Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan

More information

7.7. Inverse Trigonometric Functions. Defining the Inverses

7.7. Inverse Trigonometric Functions. Defining the Inverses 7.7 Inverse Trigonometric Functions 57 7.7 Inverse Trigonometric Functions Inverse trigonometric functions arise when we want to calculate angles from side measurements in triangles. The also provide useful

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information

Fragment Orbitals for Transition Metal Complexes

Fragment Orbitals for Transition Metal Complexes Fragment Orbitals for Transition Metal Complees Introduction so far we have concentrated on the MO diagrams for main group elements, and the first 4 lectures will link into our Main Group chemistr course

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Chapter 12 Vectors and the Geometr of Space Comments. What does multivariable mean in the name Multivariable Calculus? It means we stud functions that involve more than one variable in either the input

More information

Affine transformations. Brian Curless CSE 557 Fall 2014

Affine transformations. Brian Curless CSE 557 Fall 2014 Affine transformations Brian Curless CSE 557 Fall 2014 1 Reading Required: Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.1-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.1-5.5. David F. Rogers and J.

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Section J Venn diagrams

Section J Venn diagrams Section J Venn diagrams A Venn diagram is a wa of using regions to represent sets. If the overlap it means that there are some items in both sets. Worked eample J. Draw a Venn diagram representing the

More information

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II LESSON #8 - INTEGER EXPONENTS COMMON CORE ALGEBRA II We just finished our review of linear functions. Linear functions are those that grow b equal differences for equal intervals. In this unit we will

More information

Linear and Nonlinear Systems of Equations. The Method of Substitution. Equation 1 Equation 2. Check (2, 1) in Equation 1 and Equation 2: 2x y 5?

Linear and Nonlinear Systems of Equations. The Method of Substitution. Equation 1 Equation 2. Check (2, 1) in Equation 1 and Equation 2: 2x y 5? 3330_070.qd 96 /5/05 Chapter 7 7. 9:39 AM Page 96 Sstems of Equations and Inequalities Linear and Nonlinear Sstems of Equations What ou should learn Use the method of substitution to solve sstems of linear

More information

Logarithmic differentiation

Logarithmic differentiation Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Logarithmic differentiation What you need to know already: All basic differentiation rules, implicit

More information

Linear Equations and Arithmetic Sequences

Linear Equations and Arithmetic Sequences CONDENSED LESSON.1 Linear Equations and Arithmetic Sequences In this lesson, ou Write eplicit formulas for arithmetic sequences Write linear equations in intercept form You learned about recursive formulas

More information