VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1

Size: px
Start display at page:

Download "VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1"

Transcription

1 VECTORS Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1

2 DEFINITIONS A. Vector is used to indicate a quantity that has both magnitude (length/distance) and direction. 1. Magnitude Equation: PQ = x 2 x y 2 y Slope: m = y 2 y 1 x 2 x 1 3. Component Form Equation is v = x 2 x 1, y 2 y 1 B. Represented by an arrow or a directed line segment 10/11/ :41 PM 6.3: Vectors in the Plane 2

3 VECTOR EXAMPLE Vector: has magnitude (length) and direction PQ Q x, y 2 2 Terminial Magnitude PQ x x y y Magnitude P x, y Initial /11/ :41 PM 6.3: Vectors in the Plane 3

4 EXAMPLE 1 Find the magnitude of vector PQ where P 2, 3 and Q 5, 9 and its component form. PQ Q 5,9 Terminial P 2,3 Initial 10/11/ :41 PM 6.3: Vectors in the Plane 4

5 EXAMPLE 1 Find the magnitude of vector PQ where P 2, 3 and Q 5, 9 and its component form 2 2 PQ x 5 x 2 y9 y 3 Magnitude /11/ :41 PM 6.3: Vectors in the Plane 5

6 EXAMPLE 1 Find the magnitude of vector PQ where P 2, 3 and Q 5, 9 and its component form Vector/Component Form P Q 2,3 P, P 1 2 5,9 Q, Q 1 2 v Q 1 P v Q P v ,6 10/11/ :41 PM 6.3: Vectors in the Plane 6

7 EXAMPLE 2 Show that u and v are equivalent through magnitude, slope and vector form of v PQ & RS 13 m 2 ; CF : 3,2 3 10/11/ :41 PM 6.3: Vectors in the Plane 7

8 YOUR TURN Find the magnitude of vector PQ where P 3, 5 and Q 7, 11 and component form CF : 10, 16 10/11/ :41 PM 6.3: Vectors in the Plane 8

9 VECTOR OPERATIONS A. Geometrically, the product of a vector v and scalar k is the vector that is k times as long as v B. If k is positive, kv has the same direction as v, and if k is negative, kv has the opposite direction. C. Equivalent Vectors is where every vector is equal to another vector with the initial point at the origin. 10/11/ :41 PM 6.3: Vectors in the Plane 9

10 EXAMPLE 3 If u = 1, 6 and v = 4, 2, solve for u + v and 3v and find the magnitude of u + v u v 1,6 4, 2 3v 3 4,2 v 4,2 O u v 0,0 u 1,6 u v 3,8 3v 12,6 10/11/ :41 PM 6.3: Vectors in the Plane 10

11 EXAMPLE 3 If u = 1, 6 and v = 4, 2, solve for u + v and 3v and find the magnitude of u + v v 4,2 u x y 2 2 u v u 1,6 3 8 u 2 2 u 9 64 O 0, /11/ :41 PM 6.3: Vectors in the Plane 11

12 YOUR TURN If u = 3, 1 and v = 8, 4, solve for 2u 3v and find the magnitude of 2u 3v 2u 3v 30, 10 Magnitude /11/ :41 PM 6.3: Vectors in the Plane 12

13 A. Have a magnitude of 1 B. Solve for the magnitude FINDING THE UNIT VECTOR C. Unit Vector equation: u = v = v v x 2 +y 2 D. To find a unit vector u that has the same direction as vector v: u = v = x 1 v v, y 1 v 10/11/ :41 PM 6.3: Vectors in the Plane 13

14 Find the unit vector v = 2, 5 EXAMPLE 4 v v v x y 2 2 v v 2, , , u , /11/ :41 PM 6.3: Vectors in the Plane 14

15 EXAMPLE 4 Find the unit vector v = 2, v u v v , /11/ :41 PM 6.3: Vectors in the Plane 15

16 Find the unit vector of v = 7, 3 EXAMPLE 5 u , /11/ :41 PM 6.3: Vectors in the Plane 16

17 Find the unit vector of v = 6, 1 YOUR TURN u , /11/ :41 PM 6.3: Vectors in the Plane 17

18 LINEAR COMBINATION/ALTERNATE NOTATION A. Vectors v = v 1, v 2 is also represented as v = i + j B. i and j are considered component vectors whereas xi + yj is a linear combination of i and j 10/11/ :41 PM 6.3: Vectors in the Plane 18

19 EXAMPLE 6 The initial point of a vector is 0, 2 and the terminal point is 3, 6. Write a linear combination of the standard vector. u x x, y y ,6 2 3,8 u 3i 8j 10/11/ :41 PM 6.3: Vectors in the Plane 19

20 YOUR TURN The initial point of a vector is 2, 6 and the terminal point is 8, 3. Write a linear combination of the standard vector. u 6i 3j 10/11/ :41 PM 6.3: Vectors in the Plane 20

21 DIRECTIONAL ANGLES A. Direction Angle: measured counterclockwise from the x axis to terminal point of u B. u = x, y = cos θ, sin θ = cos θ i + sin θ j C. v = v = cos θ, sin θ = v cos θ i + v sin θ j D. Since v = ai + bj, tan θ = b and use reference angles and Unit a Circle when possible (with the exception of Quadrant III) E. When finding angles, remember the reference angle rules 10/11/ :41 PM 6.3: Vectors in the Plane 21

22 EXAMPLE 7 Find the direction angle and magnitude of u = 3i + 3j Tan a 1 b Tan /11/ :41 PM 6.3: Vectors in the Plane 22

23 EXAMPLE 8 Find the direction angle of u = 3i 4j 1 4 Tan 3 Tan 4 4 Tan /11/ :41 PM 6.3: Vectors in the Plane 23

24 YOUR TURN Find the direction angle of v = 4i 5j /11/ :41 PM 6.3: Vectors in the Plane 24

25 EXAMPLE 9 Find the component form of a vector that represents the velocity of an airplane descending at a speed of 150 miles per hour at an angle of 20 below the horizontal. v v cosi v sin j v 150 cos 200 i 150 sin 200 j v i j , /11/ :41 PM 6.3: Vectors in the Plane 25

26 YOUR TURN Find the component form of the velocity vector that represents an airplane descending West at a speed of 100 mph at an angle of 30 below horizontal , 50 10/11/ :41 PM 6.3: Vectors in the Plane 26

27 MORE RESULTANT FORCE STEPS A. The wind pushes it in another direction. That is another vector. B. The resultant vector is the ground speed. C. Identify the two forces and then add them D. u = ai + bj represents the vector where v cos θ i + v sin θ j E. Identify the magnitude and direction using the appropriate equations 10/11/ :41 PM 6.3: Vectors in the Plane 27

28 EXAMPLE 10 A Boeing 727 airplane, flying due east at 500 mph in still air, encounters a 70 mph tail wind acting in the direction of 60 north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? N v 60 o u E 10/11/ :41 PM 6.3: Vectors in the Plane 28

29 EXAMPLE 10 A Boeing 727 airplane, flying due east at 500 mph in still air, encounters a 70 mph tail wind acting in the direction of 60 north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? Need to find the magnitude and direction of the resultant vector u + v. 10/11/ :41 PM 6.3: Vectors in the Plane 29 N v u + v u E

30 EXAMPLE 10 A Boeing 727 airplane, flying due east at 500 mph in still air, encounters a 70 mph tail wind acting in the direction of 60 north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? u v 500,0 70cos60,70sin 60 v 35,35 3 uv 535,35 3 u v u v ; /11/ :41 PM 6.3: Vectors in the Plane 30 tan

31 EXAMPLE 10 A Boeing 727 airplane, flying due east at 500 mph in still air, encounters a 70 mph tail wind acting in the direction of 60 north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? N v o 6.5 o u E 10/11/ :41 PM 6.3: Vectors in the Plane 31

32 ASSIGNMENT Page odd, odd (DO NOT SKETCH), odd, odd, odd 10/11/ :41 PM 6.3: Vectors in the Plane 32

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Math 150 Chapter 9 Fall 2014 1 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional plane.

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5 Precalculus B Name Please do NOT write on this packet. Put all work and answers on a separate piece of paper. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

More information

SB Ch 6 May 15, 2014

SB Ch 6 May 15, 2014 Warm Up 1 Chapter 6: Applications of Trig: Vectors Section 6.1 Vectors in a Plane Vector: directed line segment Magnitude is the length of the vector Direction is the angle in which the vector is pointing

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Chapter 6 Additional Topics in Trigonometry

Chapter 6 Additional Topics in Trigonometry Chapter 6 Additional Topics in Trigonometry Overview: 6.1 Law of Sines 6.2 Law of Cosines 6.3 Vectors in the Plan 6.4 Vectors and Dot Products 6.1 Law of Sines What You ll Learn: #115 - Use the Law of

More information

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

OpenStax-CNX module: m Vectors. OpenStax College. Abstract OpenStax-CNX module: m49412 1 Vectors OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section you will: Abstract View vectors

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

Chapter 1E - Complex Numbers

Chapter 1E - Complex Numbers Fry Texas A&M University Math 150 Spring 2015 Unit 4 20 Chapter 1E - Complex Numbers 16 exists So far the largest (most inclusive) number set we have discussed and the one we have the most experience with

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

A unit vector in the same direction as a vector a would be a and a unit vector in the

A unit vector in the same direction as a vector a would be a and a unit vector in the In the previous lesson we discussed unit vectors on the positive x-axis (i) and on the positive y- axis (j). What is we wanted to find other unit vectors? There are an infinite number of unit vectors in

More information

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is 1.1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length,

More information

Chapter 7.4: Vectors

Chapter 7.4: Vectors Chapter 7.4: Vectors In many mathematical applications, quantities are determined entirely by their magnitude. When calculating the perimeter of a rectangular field, determining the weight of a box, or

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Section 10.4 Vectors

Section 10.4 Vectors 220 Section 10.4 Vectors In this section, we will define and explore the properties of vectors. Vectors can be used to represent the speed and the direction of an object, the force and direction acting

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

Bonus Section II: Solving Trigonometric Equations

Bonus Section II: Solving Trigonometric Equations Fry Texas A&M University Math 150 Spring 2017 Bonus Section II 260 Bonus Section II: Solving Trigonometric Equations (In your text this section is found hiding at the end of 9.6) For what values of x does

More information

Congruence Axioms. Data Required for Solving Oblique Triangles

Congruence Axioms. Data Required for Solving Oblique Triangles Math 335 Trigonometry Sec 7.1: Oblique Triangles and the Law of Sines In section 2.4, we solved right triangles. We now extend the concept to all triangles. Congruence Axioms Side-Angle-Side SAS Angle-Side-Angle

More information

Vectors in the Plane

Vectors in the Plane Vectors in the Plane MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Vectors vs. Scalars scalar quantity having only a magnitude (e.g. temperature, volume, length, area) and

More information

Chapter 6. Additional Topics in Trigonometry. 6.6 Vectors. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 6. Additional Topics in Trigonometry. 6.6 Vectors. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 6 Additional Topics in Trigonometry 6.6 Vectors Copyright 2014, 2010, 2007 Pearson Education, Inc. 1 Obectives: Use magnitude and direction to show vectors are equal. Visualize scalar multiplication,

More information

Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors

Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors Name: Period: Pre-Cal AB: Unit 6: Vectors Monday Tuesday Block Friday 13 14 15/16 PSAT/ASVAB 17 Pep Rally No School Solving Trig Equations TEST Vectors Intro 20 21 22/23 24 End of 9-wks Pep-Rally Operations

More information

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract.

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract. Express a Vector in Component Form Find the component form of with initial point A(1, 3) and terminal point B(1, 3). = x 2 x 1, y 2 y 1 Component form = 1 1, 3 ( 3) (x 1, y 1 ) = (1, 3) and ( x 2, y 2

More information

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1 Introduction Law of Sines Precalculus 6.1 In this section, we will solve oblique triangles triangles that have no right angles. As standard notation, the angles of a triangle are labeled A, B, and C, and

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

When two letters name a vector, the first indicates the and the second indicates the of the vector.

When two letters name a vector, the first indicates the and the second indicates the of the vector. 8-8 Chapter 8 Applications of Trigonometry 8.3 Vectors, Operations, and the Dot Product Basic Terminology Algeraic Interpretation of Vectors Operations with Vectors Dot Product and the Angle etween Vectors

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

Vectors. An Introduction

Vectors. An Introduction Vectors An Introduction There are two kinds of quantities Scalars are quantities that have magnitude only, such as position speed time mass Vectors are quantities that have both magnitude and direction,

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be characterized by a single real number scaled to appropriate units of

More information

6.3 Vectors in a Plane

6.3 Vectors in a Plane 6.3 Vectors in a Plane Plan: Represent ectors as directed line segments. Write the component form of ectors. Perform basic ector operations and represent ectors graphically. Find the direction angles of

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Scalar Quantities - express only magnitude ie. time, distance, speed

Scalar Quantities - express only magnitude ie. time, distance, speed Chapter 6 - Vectors Scalar Quantities - express only magnitude ie. time, distance, speed Vector Quantities - express magnitude and direction. ie. velocity 80 km/h, 58 displacement 10 km (E) acceleration

More information

1 Vector Geometry in Two and Three Dimensions

1 Vector Geometry in Two and Three Dimensions 1 Vector Geometry in Two and Three Dimensions 1.1 Vectors in Two Dimensions You ve probably heard of vectors as objects with both magnitude and direction, or something along these lines. Another way to

More information

PreCalculus Second Semester Review Chapters P-3(1st Semester)

PreCalculus Second Semester Review Chapters P-3(1st Semester) PreCalculus Second Semester Review Chapters P-(1st Semester) Solve. Check for extraneous roots. All but #15 from 1 st semester will be non-calculator. P 1. x x + 5 = 1.8. x x + x 0 (express the answer

More information

8-2 Vectors in the Coordinate Plane

8-2 Vectors in the Coordinate Plane 37. ROWING Nadia is rowing across a river at a speed of 5 miles per hour perpendicular to the shore. The river has a current of 3 miles per hour heading downstream. a. At what speed is she traveling? b.

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

( 3 ) = (r) cos (390 ) =

( 3 ) = (r) cos (390 ) = MATH 7A Test 4 SAMPLE This test is in two parts. On part one, you may not use a calculator; on part two, a (non-graphing) calculator is necessary. When you complete part one, you turn it in and get part

More information

Vectors (Trigonometry Explanation)

Vectors (Trigonometry Explanation) Vectors (Trigonometry Explanation) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5)

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5) Test # Review Math 14 Name (6.5 to 6.7, 10.1 to 10.,and 10.5) Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the product of the complex

More information

Student Content Brief Advanced Level

Student Content Brief Advanced Level Student Content Brief Advanced Level Vectors Background Information Physics and Engineering deal with quantities that have both size and direction. These physical quantities have a special math language

More information

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Scalar Example Speed Distance Age Heat Number

More information

PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator

PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator Solve. Express answer using interval notation where appropriate. Check for extraneous solutions. P3 1. x x+ 5 1 3x = P5.

More information

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction)

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction) Pre-Calculus Section 10.3: Vectors & Their Applications (Part I) 1. Vocabulary (Summary): 4. Algebraic Operations on Vectors: If u = Scalar: A quantity possessing only magnitude (such weight or length

More information

Here is a sample problem that shows you how to use two different methods to add twodimensional

Here is a sample problem that shows you how to use two different methods to add twodimensional LAB 2 VECTOR ADDITION-METHODS AND PRACTICE Purpose : You will learn how to use two different methods to add vectors. Materials: Scientific calculator, pencil, unlined paper, protractor, ruler. Discussion:

More information

Skills Practice Skills Practice for Lesson 14.1

Skills Practice Skills Practice for Lesson 14.1 Skills Practice Skills Practice for Lesson 1.1 Name Date By Air and By Sea Introduction to Vectors Vocabulary Match each term to its corresponding definition. 1. column vector notation a. a quantity that

More information

AP Physics C Mechanics Vectors

AP Physics C Mechanics Vectors 1 AP Physics C Mechanics Vectors 2015 12 03 www.njctl.org 2 Scalar Versus Vector A scalar has only a physical quantity such as mass, speed, and time. A vector has both a magnitude and a direction associated

More information

PreCalculus: Chapter 9 Test Review

PreCalculus: Chapter 9 Test Review Name: Class: Date: ID: A PreCalculus: Chapter 9 Test Review Short Answer 1. Plot the point given in polar coordinates. 3. Plot the point given in polar coordinates. (-4, -225 ) 2. Plot the point given

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

Precalculus: Trigonometry of Circular Functions Practice Problems. Questions. and sin θ > Find csc θ and cot θ if tan θ = 4 3

Precalculus: Trigonometry of Circular Functions Practice Problems. Questions. and sin θ > Find csc θ and cot θ if tan θ = 4 3 Questions. Find csc θ and cot θ if tan θ = 4 3 and sin θ > 0. 2. An airplane flying at an altitude of 8000 ft passes directly over a group of hikers who are at 7400 ft. If θ is the angle of elevation from

More information

Vectors. AP/Honors Physics Mr. Velazquez

Vectors. AP/Honors Physics Mr. Velazquez Vectors AP/Honors Physics Mr. Velazquez The Basics Any quantity that refers to a magnitude and a direction is known as a vector quantity. Velocity, acceleration, force, momentum, displacement Other quantities

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A

1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A 1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A 2. For Cosine Rule of any triangle ABC, c² is equal to A.

More information

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters!

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters! Vectors Chapter 3 Vector and Vector Addition Sometimes direction matters! (vector) Force Velocity Momentum Sometimes it doesn t! (scalar) Mass Speed Time Arithmetic Arithmetic works for scalars. 2 apples

More information

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ?

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ? VECTOS EVIEW Solve the following geometric problems. a. Line touches the circle at a single point. Line etends through the center of the circle. i. What is line in reference to the circle? ii. How large

More information

2 Dimensional Vectors

2 Dimensional Vectors 2 Dimensional Vectors Vectors that are not collinear must be added using trigonometry or graphically (with scale diagrams) Vector quantities are drawn as arrows, the length of the arrow indicates the magnitude

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14. For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having

More information

Halliday/Resnick/Walker 7e Chapter 3

Halliday/Resnick/Walker 7e Chapter 3 HRW 7e Chapter 3 Page 1 of 7 Halliday/Resnick/Walker 7e Chapter 3 1. The x and the y components of a vector a lying on the xy plane are given by a = acos θ, a = asinθ x y where a = a is the magnitude and

More information

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics As we have already discussed, the study of the rules of nature (a.k.a. Physics) involves both

More information

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4. Chapter 3 Solutions *3.1 = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.76 m 3.2 (a) d = ( 2 1 ) 2 + ( 2 1 ) 2 = (2.00 [ 3.00] 2 ) + ( 4.00 3.00)

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

North by Northwest - An Introduction to Vectors

North by Northwest - An Introduction to Vectors HPP A9 North by Northwest - An Introduction to Vectors Exploration GE 1. Let's suppose you and a friend are standing in the parking lot near the Science Building. Your friend says, "I am going to run at

More information

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume. Math 150 Prof. Beydler 7.4/7.5 Notes Page 1 of 6 Vectors Suppose a car is heading NE (northeast) at 60 mph. We can use a vector to help draw a picture (see right). v A vector consists of two parts: 1.

More information

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009 Newton 3 & Vectors Action/Reaction When you lean against a wall, you exert a force on the wall. The wall simultaneously exerts an equal and opposite force on you. You Can OnlyTouch as Hard as You Are Touched

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

MAT 1339-S14 Class 8

MAT 1339-S14 Class 8 MAT 1339-S14 Class 8 July 28, 2014 Contents 7.2 Review Dot Product........................... 2 7.3 Applications of the Dot Product..................... 4 7.4 Vectors in Three-Space.........................

More information

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc. 7 Applications of Trigonometry and Vectors Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 7.4 Geometrically Defined Vectors and Applications Basic Terminology The Equilibrant Incline Applications

More information

United Arab Emirates University

United Arab Emirates University United Arab Emirates University University Foundation Program - Math Program ALGEBRA - COLLEGE ALGEBRA - TRIGONOMETRY Practice Questions 1. What is 2x 1 if 4x + 8 = 6 + x? A. 2 B. C. D. 4 E. 2. What is

More information

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level file://c:\users\buba\kaz\ouba\c_rev_a_.html Eercise A, Question Epand and simplify ( ) 5. ( ) 5 = + 5 ( ) + 0 ( ) + 0 ( ) + 5 ( ) + ( ) 5 = 5 + 0 0 + 5 5 Compare ( + ) n with ( ) n. Replace n by 5 and

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Vectors: Direction o. vector steps 2018.notebook. September 26, Quantities can either be scalar or vector. 90 o.

Vectors: Direction o. vector steps 2018.notebook. September 26, Quantities can either be scalar or vector. 90 o. Vectors: Quantities can either be scalar or vector Size only mass time speed Size and direction force velocity acceleration Vector quantities can be represented by an arrow called a vector. The vector

More information

3.1 Using Vectors 3.3 Coordinate Systems and Vector Components.notebook September 19, 2017

3.1 Using Vectors 3.3 Coordinate Systems and Vector Components.notebook September 19, 2017 Using Vectors A vector is a quantity with both a size (magnitude) and a direction. Figure 3.1 shows how to represent a particle s velocity as a vector. Section 3.1 Using Vectors The particle s speed at

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

Vectors. However, cartesian coordinates are really nothing more than a way to pinpoint an object s position in space

Vectors. However, cartesian coordinates are really nothing more than a way to pinpoint an object s position in space Vectors Definition of Scalars and Vectors - A quantity that requires both magnitude and direction for a complete description is called a vector quantity ex) force, velocity, displacement, position vector,

More information

Culminating Review for Vectors

Culminating Review for Vectors Culminating Review for Vectors 0011 0010 1010 1101 0001 0100 1011 An Introduction to Vectors Applications of Vectors Equations of Lines and Planes 4 12 Relationships between Points, Lines and Planes An

More information

Math Review -- Conceptual Solutions

Math Review -- Conceptual Solutions Math Review Math Review -- Conceptual Solutions 1.) Is three plus four always equal to seven? Explain. Solution: If the numbers are scalars written in base 10, the answer is yes (if the numbers are in

More information

PreCalculus First Semester Exam Review

PreCalculus First Semester Exam Review PreCalculus First Semester Eam Review Name You may turn in this eam review for % bonus on your eam if all work is shown (correctly) and answers are correct. Please show work NEATLY and bo in or circle

More information

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary Name Chapter 6 Additional Topics in Trigonometry Section 6.1 Law of Sines Objective: In this lesson you learned how to use the Law of Sines to solve oblique triangles and how to find the areas of oblique

More information

Chapter 5: Double-Angle and Half-Angle Identities

Chapter 5: Double-Angle and Half-Angle Identities Haberman MTH Section II: Trigonometric Identities Chapter 5: Double-Angle and Half-Angle Identities In this chapter we will find identities that will allow us to calculate sin( ) and cos( ) if we know

More information

Chapter 2 THE DERIVATIVE

Chapter 2 THE DERIVATIVE Chapter 2 THE DERIVATIVE 2.1 Two Problems with One Theme Tangent Line (Euclid) A tangent is a line touching a curve at just one point. - Euclid (323 285 BC) Tangent Line (Archimedes) A tangent to a curve

More information

Chapter 8 Scalars and vectors

Chapter 8 Scalars and vectors Chapter 8 Scalars and vectors Heinemann Physics 1 4e Section 8.1 Scalars and vectors Worked example: Try yourself 8.1.1 DESCRIBING VECTORS IN ONE DIMENSION west east + 50 N Describe the vector using: a

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER CHAPTER 3 VECTORS 3-1 What is Physics? Physics deals with a great many quantities that have both size and direction, and it needs a special mathematical language the language of vectors to describe those

More information

Problem Set 1: Solutions 2

Problem Set 1: Solutions 2 UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Spring 2009 Problems due 15 January 2009. Problem Set 1: Solutions 2 1. A person walks in the following pattern: 3.1 km north,

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

Geometric Interpretation of Vectors

Geometric Interpretation of Vectors Math 36 "Fall 08" 7.4 "Vectors" Skills Objectives: * Represent vectors geometrically and algebraically * Find the magnitude and direction of a vector * Add and subtract vectors * Perform scalar multiplication

More information

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Unit 1 Laws of Sines and Cosines Unit 4 Polar Equations Law of Cosines Law of Sines Ambiguous Case Sine Area Formula Hero s Formula Applications

More information

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE A Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON HW NO. SECTIONS (Brown Book) ASSIGNMENT DUE V 1 1 1/1 Practice Set A V 1 3 Practice Set B #1 1 V B 1

More information

Section 6.1 Sinusoidal Graphs

Section 6.1 Sinusoidal Graphs Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle We noticed how the x and y values

More information

8.1 Solutions to Exercises

8.1 Solutions to Exercises Last edited 9/6/17 8.1 Solutions to Exercises 1. Since the sum of all angles in a triangle is 180, 180 = 70 + 50 + α. Thus α = 60. 10 α B The easiest way to find A and B is to use Law of Sines. sin( )

More information

VECTORS IN A STRAIGHT LINE

VECTORS IN A STRAIGHT LINE A. The Equation of a Straight Line VECTORS P3 VECTORS IN A STRAIGHT LINE A particular line is uniquely located in space if : I. It has a known direction, d, and passed through a known fixed point, or II.

More information

Pre-Calculus Vectors

Pre-Calculus Vectors Slide 1 / 159 Slide 2 / 159 Pre-Calculus Vectors 2015-03-24 www.njctl.org Slide 3 / 159 Table of Contents Intro to Vectors Converting Rectangular and Polar Forms Operations with Vectors Scalar Multiples

More information