Vectors. AP/Honors Physics Mr. Velazquez

Size: px
Start display at page:

Download "Vectors. AP/Honors Physics Mr. Velazquez"

Transcription

1 Vectors AP/Honors Physics Mr. Velazquez

2 The Basics Any quantity that refers to a magnitude and a direction is known as a vector quantity. Velocity, acceleration, force, momentum, displacement Other quantities have no direction associated with them, and can only be represented by a number. These are called scalar quantities. Time, mass, density, temperature, volume, distance** We can use special mathematical arrow notation, v or v, to represent a vector.

3 Adding Vectors If two vectors are in the same direction, adding them is a matter of simple arithmetic. Walk 2 miles north, then 3 miles north, and you ve walked 5 miles north from your starting point If two vectors are acting in opposite directions, one of these vectors will be considered negative, and adding the two is still just a matter of subtraction. Walk 6 miles west, then 2 miles east, and you end up 4 miles west of your starting point This raises the question: what shall we do with vectors that are in two dimensions?

4 Adding Vectors Suppose you walk 3 miles east, then 4 miles north. How far would you then be from your starting point? In terms of vectors, we are adding a displacement vector, D 1 = 3 miles east, to another displacement vector, D 2 = 4 miles north, and asking what the resultant displacement, D R, will be. Graphically, this resultant can be represented by placing one vector onto the endpoint of the other, and drawing a new vector going from the start of the first, to the end of the second. We can find the length of the resultant vector easily in this case, because the vectors are perpendicular, which allows us to use the Pythagorean Theorem D 1 D 2

5 Adding Vectors by Components What if two vectors are not perpendicular to each other? Suppose you walk 6 miles in a direction 30 degrees north-ofeast, then 5 miles at 20 degrees south-of-east. How far (and in what direction) would you be from your starting point? We can solve this graphically, but that would be tedious. Instead, we use a clever method that involves separating each individual vector into its component vectors, and then simply adding up the components. Using a little trigonometry, this process can be simplified and generalized for any number of two-dimensional vectors.

6 Adding Vectors by Components Always remember SOHCAHTOA sin θ = opp hyp = a h cos θ = adj hyp = b h θ tan θ = opp adj = a b

7 Adding Vectors by Components Rearranging these equations: a = h sin θ b = hcos θ θ h = a 2 + b 2 θ = tan 1 a b

8 Adding Vectors by Components V x Applied to a vector, V: V y = V sin θ V y V V y V x = V cos θ V = V x 2 + V y 2 θ V x θ = tan 1 V y V x Alternatively: θ = sin 1 V y V θ = cos 1 V x V

9 Adding Vectors by Components v Suppose the vector in question is a velocity vector of 15.0 m/s applied at an angle of 80 above the horizontal. v y The 15.0 m/s refers to the magnitude of the velocity vector (sometimes referred to as speed ), and is written as v. The 80 is the angle of application, often represented with the greek letter θ. 80 v x According to the trigonometric equations we just derived, we can find the horizontal and vertical components of this vector using the following process: v x = v cos θ = v y = v sin θ = 15 m s cos 80 = m s 15 m s sin 80 = m s

10 Adding Vectors by Components

11 Adding Vectors by Components Given: A = 3.00 m s, B = 6.00 m s, C = 2.50 m s Find the resultant velocity vector, v R First, we break each vector up into its horizontal (x) and vertical (y) components: A x = A cos θ A = A y = A sin θ A = 3.00 m s cos 130 = 1.93 m s 3.00 m s sin 130 = 2.30 m s B x = B cos θ B = B y = B sin θ B = 6.00 m s cos 45 = m s 6.00 m s sin 45 = 4.24 m s C x = 2.50 m s C y = 0

12 Adding Vectors by Components Given: A = 3.00 m s, B = 6.00 m s, C = 2.50 m s Find the resultant velocity vector, v R Now add up all the x-components, then add up the y-components: v Rx = A x + B x + C x v Rx = 1.93 m s m s m s v Rx = m s v Ry = A y + B y + C y v Ry = 2.30 m s m s + 0 m s v Ry = m s We now have the components of v R

13 Adding Vectors by Components Given: A = 3.00 m s, B = 6.00 m s, C = 2.50 m s Find the resultant velocity vector, v R v R Now that we have the components of v R, we can put them together to find the magnitude and angle of the resultant vector v R : v R = v Rx 2 + v Ry 2 = 4.81 m s m s 2 v R = = m s θ = tan 1 v Ry = tan v Rx 4.81 = We now write our resultant as v R = m s, (these are known as polar coordinates )

14 Try it Out! Add the following pairs of vectors, A and B, by adding up their horizontal and vertical components. (Express the resultant vector, R, in polar coordinates) (1) A = 5.00 m s, 30 B = 3.50 m s, 290 (2) A = 27.0 m s, 110 B = 14.5 m s, 15 R 1 = m s, R 2 = m s, 77. 6

15 More to Consider Subtraction is merely the addition of a negative. This is the same for vectors. To subtract a vector, just add its opposite (same magnitude, opposite direction) Take extreme care when determining the angle of application, θ. Occasionally, the angle in the problem might be given in relation to the vertical axis rather than the horizontal. δ θ θ = 90 δ When this happens, just shift your perspective by 90, and/or use SOHCAHTOA to orient yourself.

16 Real World Problem An airplane trip involves three legs, with two stopovers. The first leg is 620 km due east; the second leg is 440 km at 45 south-ofeast; and the third leg is 550 km at 53 south-of-west. What is the plane s total displacement? D 1 = 620 km, D 2 = 440 km, 45 D 3 = 550 km, 233

17 Real World Problem An airplane trip involves three legs, with two stopovers. The first leg is 620 km due east; the second leg is 440 km at 45 south-of-east; and the third leg is 550 km at 53 south-of-west. What is the plane s total displacement? D R D 1 45 D 2 53 D 3 Vector x-component y-component D km 0 km D 2 D 3 D x2 = 440 cos 45 D x2 = 311 km D x3 = 550 cos 233 D x3 = 331 km D y2 = 440 sin 45 D y2 = 311 km D y3 = 550 sin 233 D y3 = 439 km D R 600 km 750 km

18 Real World Problem An airplane trip involves three legs, with two stopovers. The first leg is 620 km due east; the second leg is 440 km at 45 south-of-east; and the third leg is 550 km at 53 south-of-west. What is the plane s total displacement? θ D 1 45 D R = D x 2 + D y 2 = km D R = 960 km D 2 D R 53 D 3 θ = tan 1 D y = tan D x 600 θ = 51 D R = 960 km, 51

19 Classwork/Exit Ticket You ride your bike north 13.0 miles, then you ride in a direction north-of-east for 25.0 miles, then finally you ride in a direction 15 south-of-west for 18.5 miles. What is your final displacement from your starting point (write your answer in polar coordinate form)? D 1 D D 3

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

Chapter 8 Scalars and vectors

Chapter 8 Scalars and vectors Chapter 8 Scalars and vectors Heinemann Physics 1 4e Section 8.1 Scalars and vectors Worked example: Try yourself 8.1.1 DESCRIBING VECTORS IN ONE DIMENSION west east + 50 N Describe the vector using: a

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

Chapter 3 Vectors in Physics. Copyright 2010 Pearson Education, Inc.

Chapter 3 Vectors in Physics. Copyright 2010 Pearson Education, Inc. Chapter 3 Vectors in Physics Units of Chapter 3 Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors

More information

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods I. Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocity, force, momentum A scalar has only a magnitude. Some scalar quantities: mass, time, temperature

More information

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto COLLEGE PHYSICS Chapter 3: Two-Dimensional Kinematics Lesson 7 Video Narrated by Jason Harlow, Physics Department, University of Toronto VECTORS A quantity having both a magnitude and a direction is called

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

Here is a sample problem that shows you how to use two different methods to add twodimensional

Here is a sample problem that shows you how to use two different methods to add twodimensional LAB 2 VECTOR ADDITION-METHODS AND PRACTICE Purpose : You will learn how to use two different methods to add vectors. Materials: Scientific calculator, pencil, unlined paper, protractor, ruler. Discussion:

More information

Unit IV: Introduction to Vector Analysis

Unit IV: Introduction to Vector Analysis Unit IV: Introduction to Vector nalysis s you learned in the last unit, there is a difference between speed and velocity. Speed is an example of a scalar: a quantity that has only magnitude. Velocity is

More information

Pythagoras Theorem. What it is: When to use: What to watch out for:

Pythagoras Theorem. What it is: When to use: What to watch out for: Pythagoras Theorem a + b = c Where c is the length of the hypotenuse and a and b are the lengths of the other two sides. Note: Only valid for right-angled triangles! When you know the lengths of any two

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ?

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ? VECTOS EVIEW Solve the following geometric problems. a. Line touches the circle at a single point. Line etends through the center of the circle. i. What is line in reference to the circle? ii. How large

More information

Vectors. An Introduction

Vectors. An Introduction Vectors An Introduction There are two kinds of quantities Scalars are quantities that have magnitude only, such as position speed time mass Vectors are quantities that have both magnitude and direction,

More information

Have both a magnitude and direction Examples: Position, force, moment

Have both a magnitude and direction Examples: Position, force, moment Force Vectors Vectors Vector Quantities Have both a magnitude and direction Examples: Position, force, moment Vector Notation Vectors are given a variable, such as A or B Handwritten notation usually includes

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

Jan 1 4:08 PM. We write this in a shorter manner for simplicity. leg

Jan 1 4:08 PM. We write this in a shorter manner for simplicity. leg Review Pythagorean Theorem Jan 1 4:08 PM We write this in a shorter manner for simplicity. leg hyp leg or a c b Note, the last statement can be misleading if the letters used are not in the correct position.

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review Chapter 3 Vectors and Two-Dimensional Motion Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size) and

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

SOH CAH TOA. b c. sin opp. hyp. cos adj. hyp a c. tan opp. adj b a

SOH CAH TOA. b c. sin opp. hyp. cos adj. hyp a c. tan opp. adj b a SOH CAH TOA sin opp hyp b c c 2 a 2 b 2 cos adj hyp a c tan opp adj b a Trigonometry Review We will be focusing on triangles What is a right triangle? A triangle with a 90º angle What is a hypotenuse?

More information

Physics 20 Lesson 10 Vector Addition

Physics 20 Lesson 10 Vector Addition Physics 20 Lesson 10 Vector Addition I. Vector Addition in One Dimension (It is strongly recommended that you read pages 70 to 75 in Pearson for a good discussion on vector addition in one dimension.)

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Physics 2A Chapter 1 - Vectors Fall 2017

Physics 2A Chapter 1 - Vectors Fall 2017 These notes are eight pages. That includes some diagrams, but I realize reading them could get a bit tedious. So here is a quick summary: A vector quantity is one for which direction is relevant, like

More information

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors. Introduction. Prof Dr Ahmet ATAÇ Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both n u m e r i c a l a n d d i r e c t i o n a l properties Mathematical operations of vectors in this chapter A d d i t i o

More information

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS The moment of truth has arrived! To discuss objects that move in something other than a straight line we need vectors. VECTORS Vectors

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Today After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a vector (only right triangles) Add and subtract

More information

Lecture Notes (Vectors)

Lecture Notes (Vectors) Lecture Notes (Vectors) Intro: - up to this point we have learned that physical quantities can be categorized as either scalars or vectors - a vector is a physical quantity that requires the specification

More information

Name, Date, Period. R Θ R x R y

Name, Date, Period. R Θ R x R y Name, Date, Period Virtual Lab Vectors & Vector Operations Setup 1. Make sure your calculator is set to degrees and not radians. Sign out a laptop and power cord. Plug in the laptop and leave it plugged

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics As we have already discussed, the study of the rules of nature (a.k.a. Physics) involves both

More information

Vector Addition and Subtraction: Graphical Methods

Vector Addition and Subtraction: Graphical Methods Vector Addition and Subtraction: Graphical Methods Bởi: OpenStaxCollege Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai i to

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Be prepared to take a test covering the whole assignment in September. MATH REVIEW

Be prepared to take a test covering the whole assignment in September. MATH REVIEW P- Physics Name: Summer 013 ssignment Date Period I. The attached pages contain a brief review, hints, and example problems. It is hoped that combined with your previous math knowledge this assignment

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

BROAD RUN HIGH SCHOOL AP PHYSICS C: MECHANICS SUMMER ASSIGNMENT

BROAD RUN HIGH SCHOOL AP PHYSICS C: MECHANICS SUMMER ASSIGNMENT AP Physics C - Mechanics Due: September 2, 2014 Name Time Allotted: 8-10 hours BROAD RUN HIGH SCHOOL AP PHYSICS C: MECHANICS SUMMER ASSIGNMENT 2014-2015 Teacher: Mrs. Kent Textbook: Physics for Scientists

More information

Chapter 3 Vectors in Physics

Chapter 3 Vectors in Physics Chapter 3 Vectors in Physics Is 1+1 always =2? Not true for vectors. Direction matters. Vectors in opposite directions can partially cancel. Position vectors, displacement, velocity, momentum, and forces

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors Why Vectors? Say you wanted to tell your friend that you re running late and will be there in five minutes. That s precisely enough information for your friend to know when you

More information

Experiment 3: Vector Addition

Experiment 3: Vector Addition Experiment 3: Vector Addition EQUIPMENT Force Table (4) Pulleys (4) Mass Hangers Masses Level (TA s Table) (2) Protractors (2) Rulers (4) Colored Pencils (bold colors) Figure 3.1: Force Table 15 16 Experiment

More information

Unit 1: Math Toolbox Math Review Guiding Light #1

Unit 1: Math Toolbox Math Review Guiding Light #1 Unit 1: Math Toolbox Math Review Guiding Light #1 Academic Physics Unit 1: Math Toolbox Math Review Guiding Light #1 Table of Contents Topic Slides Algebra Review 2 8 Trigonometry Review 9 16 Scalar &

More information

Scalar Quantities - express only magnitude ie. time, distance, speed

Scalar Quantities - express only magnitude ie. time, distance, speed Chapter 6 - Vectors Scalar Quantities - express only magnitude ie. time, distance, speed Vector Quantities - express magnitude and direction. ie. velocity 80 km/h, 58 displacement 10 km (E) acceleration

More information

AP Physics 1 Summer Assignment 2017

AP Physics 1 Summer Assignment 2017 P Physics 1 Summer ssignment 2017 The attached pages contain a brief review, hints, and example problems. It is hoped that based on your previous math knowledge and some review, this assignment will be

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER CHAPTER 3 VECTORS 3-1 What is Physics? Physics deals with a great many quantities that have both size and direction, and it needs a special mathematical language the language of vectors to describe those

More information

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class.

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class. Name P Physics Summer ssignment Fall 013-014 Welcome to P Physics. I am very excited that you have signed up to take the P Physics class. You may ask I sure would why a summer packet? There is so much

More information

Vectors. Vectors are a very important type of quantity in science, but what is it? A simple definition might be:

Vectors. Vectors are a very important type of quantity in science, but what is it? A simple definition might be: Vectors Vectors are a very important type of quantity in science, but what is it? A simple definition might be: Vector: A quantity that has magnitude, unit, and direction; and is commonly represented by

More information

Chapter 3: Vectors and Projectile Motion

Chapter 3: Vectors and Projectile Motion Chapter 3: Vectors and Projectile Motion Vectors and Scalars You might remember from math class the term vector. We define a vector as something with both magnitude and direction. For example, 15 meters/second

More information

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009 Newton 3 & Vectors Action/Reaction When you lean against a wall, you exert a force on the wall. The wall simultaneously exerts an equal and opposite force on you. You Can OnlyTouch as Hard as You Are Touched

More information

Review. Projectile motion is a vector. - Has magnitude and direction. When solving projectile motion problems, draw it out

Review. Projectile motion is a vector. - Has magnitude and direction. When solving projectile motion problems, draw it out Projectile Motion Review Projectile motion is a vector - Has magnitude and direction When solving projectile motion problems, draw it out Two methods to drawing out vectors: 1. Tail-to-tip method 2. Parallelogram

More information

Electrical Theory. Mathematics Review. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Mathematics Review. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Mathematics Review PJM State & Member Training Dept. PJM 2018 Objectives By the end of this presentation the Learner should be able to: Use the basics of trigonometry to calculate the

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters!

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters! Vectors Chapter 3 Vector and Vector Addition Sometimes direction matters! (vector) Force Velocity Momentum Sometimes it doesn t! (scalar) Mass Speed Time Arithmetic Arithmetic works for scalars. 2 apples

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

Trigonometric Functions. Copyright Cengage Learning. All rights reserved.

Trigonometric Functions. Copyright Cengage Learning. All rights reserved. 4 Trigonometric Functions Copyright Cengage Learning. All rights reserved. 4.3 Right Triangle Trigonometry Copyright Cengage Learning. All rights reserved. What You Should Learn Evaluate trigonometric

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

Part A Atwood Machines Please try this link:

Part A Atwood Machines Please try this link: LAST NAME FIRST NAME DATE Assignment 2 Inclined Planes, Pulleys and Accelerating Fluids Problems 83, 108 & 109 (and some handouts) Part A Atwood Machines Please try this link: http://www.wiley.com/college/halliday/0470469080/simulations/sim20/sim20.html

More information

Student Content Brief Advanced Level

Student Content Brief Advanced Level Student Content Brief Advanced Level Vectors Background Information Physics and Engineering deal with quantities that have both size and direction. These physical quantities have a special math language

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 7 th edition Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors This work is protected by United States copyright laws and is

More information

Adding Integers. Adding Integers.notebook. September 22, Symbols. Addition: A walk on the number line. Let's do on the number line.

Adding Integers. Adding Integers.notebook. September 22, Symbols. Addition: A walk on the number line. Let's do on the number line. Symbols Adding Integers We will use "+" to indicate addition and " " for subtraction. Parentheses will also be used to show things more clearly. For instance, if we want to add 3 to 4 we will write: 4

More information

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Scalar Example Speed Distance Age Heat Number

More information

The geometry of least squares

The geometry of least squares The geometry of least squares We can think of a vector as a point in space, where the elements of the vector are the coordinates of the point. Consider for example, the following vector s: t = ( 4, 0),

More information

Significant Figures & Vectors

Significant Figures & Vectors You have to complete this reading Booklet before you attempt the Substantive Assignment. Significant Figures Significant Figures & Vectors There are two kinds of numbers in the world Exact: o Example:

More information

1-dimensional: origin. Above is a vector drawing that represents the displacement of the point from zero. point on a line: x = 2

1-dimensional: origin. Above is a vector drawing that represents the displacement of the point from zero. point on a line: x = 2 I. WHT IS VECTO? UNIT XX: VECTOS VECTO is a variable quantity consisting of two components: o o MGNITUDE: How big? This can represent length, pressure, rate, and other quantities DIECTION: Which way is

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length

More information

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Vectors a vector is a quantity that has both a magnitude (size) and a direction Vectors In physics, a vector is a quantity that has both a magnitude (size) and a direction. Familiar examples of vectors include velocity, force, and electric field. For any applications beyond one dimension,

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp ) Page! 1 of! 14

Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp ) Page! 1 of! 14 Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp 541-544) Page! 1 of! 14 Attendance Problems. Write each fraction as a decimal rounded to the nearest hundredths. 2 7 1.! 2.! 3 24 Solve each equation.

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Vectors. Introduction

Vectors. Introduction Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this chapter Addition Subtraction Introduction

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Graphical Vector Addition

Graphical Vector Addition Vectors Chapter 4 Vectors and Scalars Measured quantities can be of two types Scalar quantities: only require magnitude (and proper unit) for description. Examples: distance, speed, mass, temperature,

More information

AP-B Physics Math Review and Summer Work

AP-B Physics Math Review and Summer Work AP-B Physics Math Review and Summer Work Name I. Physics, and AP Physics in particular, requires an exceptional proficiency in algebra, trigonometry, and geometry. In addition to the science concepts Physics

More information

Motion in Two Dimensions An Algebraic Approach

Motion in Two Dimensions An Algebraic Approach . Motion in Two Dimensions An Algebraic Approach In ection.1 you learned how to solve motion problems in two dimensions by using vector scale diagrams. This method has some limitations. First, the method

More information

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1 P PHYSICS SUMME SSIGNMENT: Calculators allowed! 1 The Metric System Everything in physics is measured in the metric system. The only time that you will see English units is when you convert them to metric

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

AP Physics C Mechanics Summer Assignment

AP Physics C Mechanics Summer Assignment AP Physics C Mechanics Summer Assignment 2018 2019 School Year Welcome to AP Physics C, an exciting and intensive introductory college physics course for students majoring in the physical sciences or engineering.

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

Vectors. Vectors. Vectors. Reminder: Scalars and Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vectors. Vectors. Reminder: Scalars and Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 Reminder: Scalars and Vectors Vector: Scalar: A number (magnitude) with a direction. Just a number. I have continually asked you, which

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

P Physics Summer ssignment I. The dvanced placement eams are in early May which necessitates a very fast pace. This summer homework will allow us to start on the Physics subject matter immediately when

More information

The assignment is in two parts.

The assignment is in two parts. A.P. Physics 1 Summer Assignment This is a college level class. It will be a mathematically and conceptually challenging course and will require approximately 3-4 hours of homework a week. If you are not

More information

AP Physics Math Review Packet

AP Physics Math Review Packet AP Physics Math Review Packet The science of physics was developed to help explain the physics environment around us. Many of the subjects covered in this class will help you understand the physical world

More information

10.2 Introduction to Vectors

10.2 Introduction to Vectors Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 10.2 Introduction to Vectors In the previous calculus classes we have seen that the study of motion involved the introduction of a variety

More information

North by Northwest - An Introduction to Vectors

North by Northwest - An Introduction to Vectors HPP A9 North by Northwest - An Introduction to Vectors Exploration GE 1. Let's suppose you and a friend are standing in the parking lot near the Science Building. Your friend says, "I am going to run at

More information