A reciprocity relationship for random diffuse fields in acoustics and structures with application to the analysis of uncertain systems.

Size: px
Start display at page:

Download "A reciprocity relationship for random diffuse fields in acoustics and structures with application to the analysis of uncertain systems."

Transcription

1 A reciprocity relationship for random diffuse fields in acoustics and structures with application to the analysis of uncertain systems Robin Langley

2 Example 1: Acoustic loads on satellites Arianne 5 Launch Acoustic test facility at ESTEC

3 Satellite computational model Plane wave Pressure p Structural model { } p = α exp ikrsinθ cosφ + ikrsinθ sinφ + ikr cosθ + iωt j k Diffuse acoustic field jk j k j k j Pressure modelled as a summation of plane waves at each frequency This is very time consuming - is there a more efficient approach?

4 Example 2: High frequency structural vibrations Thin panels very many modes, response can be viewed as a diffuse wave field Stiff components detailed FE model needed

5 Structure computational model FE model displacement dofs SEA model diffuse wave fields How do we couple these very different types of model? Again we need to compute the forces arising from the diffuse waves.

6 The diffuse field reciprocity relation Finite element model has dof x Pressure p produces force vector f Can we avoid summing waves to compute f? The diffuse field reciprocity relation states: *T 4E S ff = E ff = Im D ωπ n { } E is the energy of the diffuse field n is the modal density of the diffuse field (for acoustics E/n is specified by the noise level) D is the dynamic stiffness matrix for radiation into an infinite acoustic system readily computable

7 Short proof of the relation (structural component) q B = boundary freedoms D D q g = D D q B T I q I = interior freedoms Express q I in terms of blocked modes q I = Φa where a are the modal amplitudes D11 C12 qb g = T C12 Λ a 0 Λ = kk ωk (1 iη) ω Boundary dynamic stiffness Force on boundary due to interior waves { D C Λ C } q = g or Dq = g 1 T f = C a ff = C aa C B *T *T T B

8 Ensemble averaging Assume that: -the natural frequencies are random -The modal amplitudes a correspond to a diffuse field, i.e. they are statistically independent and each mode stores equal energy [ ] DD= D= D C C Λ Λ CC = D = C C C C 2 T T ηω 1 T k[ C1212 C12 ij ] 1 T *T ij Dij D E[Im( Dij)] ) 11, ij E[ ]( πn/ 2 N 2 2 ω) 2 2 k ( kωω k (1 + ) iη) ( ω k ω + ηω ) ff = C aa C E[ ff ] = E[ C C ](2 E/ Nω ) *T *T T *T T Thus: *T 4E E ff = E[Im { D} ] ωπ n The proof is completed by noting that E[ D]= D Smith, P. JASA 34, , 1962 Shorter, P.J. and Langley, R.S. JASA 117, 85-95, 2005

9 Application 1: diffuse acoustic loading D is the radiation dynamic stiffness of the structure. This can be found by using the boundary element method. The diffuse field reciprocity relation *T 4E E ff = E[Im { D} ] ωπ n replaces the need for a direct summation { } p = α exp ikrsinθ cosφ + ikrsinθ sinφ + ikr cosθ + iωt j k jk j k j k j

10 Example acoustic transmission, ensemble of random cavities

11 Application 2: the hybrid FE-SEA method Thin panels very many modes, response can be viewed as a diffuse wave field. SEA degree of freedom E k Stiff components detailed FE model needed FE degrees of freedom q

12 Hybrid Equations the response of subsystem k Direct Field Reverberant Field + Boundary freedoms q Boundary motions generate a direct field of ingoing waves. Associated boundary forces written as: D ( k ) dir q Reflections produce the reverberant field. Associated boundary forces written as: ( ) k f rev

13 Hybrid Equations continued So the system equations are written as: D q = f + f, D = D + D ( k) ( k) tot rev tot d dir k k D ( k ) dir ( k ) frev can be found by considering wave radiation into a semi-infinite system is accounted for by using a diffuse field reciprocity result: 4E S E f f = Im D { } ( k), rev ( k) ( k)* T k ( k) ff rev rev dir ωπ nk

14 Final form of the Hybrid Equations ωη ( + η ) E + ωη n ( E / n E / n ) = P ext j d, j j jk j j j k k in, j k 4E S = D S + Im{ D k } D 1 k ( ) 1*T qq tot ff dir tot k ωπ nk where: ωη ωη P ( j) 1 1*T { D }( ) = ( ω /2) Im D S D ext in, j dir, rs tot ff tot rs n j k { D, } { } rs ( ) = (2 / π ) Im D Im D D ( ) 1 ( ) 1*T jk j dir rs tot dir tot rs 2 j = Im{ D } Im D { D } D ( 1 ( ) 1*T ) d, j d, rs tot dir tot π n j rs rs rs

15 Example application of the hybrid method Test box frame: welded beam sections 1 x1 x1/8 5 plates of different thickness Courtesy of General Motors Corporation

16 Example application of the hybrid FE-SEA method -50 Frame 1-50 Frame 2 2 H 2 (db ref. 1 m 2 /N 2 ) Plate 1-50 Plate 2-50 Plate 3 H 2 (db ref. 1 m 2 /N 2 ) Frequency (Hz) Frequency (Hz) Frequency (Hz)

17 Further Development: Variance Prediction in the Hybrid Method Research example: two plates coupled through 3 points Plate 1 is deterministic (long wavelength, ~ 9 modes below 100 Hz) Plate 2 is randomized by masses and edge springs (short wavelength, ~ 148 modes below 100 Hz) Harmonic point force on plate 1 1 2

18 Ensemble mean & relative variance of plate 2 energy response -20 Energy of plate Relative variance of energy T 2 (db ref. 1 J) Var[T 2 ] / E[T 2 ] Frequency (Hz) Frequency (Hz)

19 0 Auto-spectra of velocity response 10 1 Relative variance of veloc ity auto-spectra Ensemble mean & relative variance auto-spectra response at 3 points on plate 1 Sq 1 q 1 (db ref. 1 m 2 /N 2 ) Sq 1 q 1 (db ref. 1 m 2 /N 2 ) Var[Sq 1 q 1 ] / E[Sq 1 q 1 ] 2 Var[Sq 1 q 1 ] / E[Sq 1 q 1 ] Sq 1 q 1 (db ref. 1 m 2 /N 2 ) Frequency (Hz) Var[Sq 1 q 1 ] / E[Sq 1 q 1 ] Frequency (Hz)

20 Postcript For systems that are driven purely at the boundary, it is unlikely that the excitation will produce a perfect diffuse field. In this case it has recently been found that the reciprocity relationship must be extended: ff 4E 2 = + + πωn D π m S S { } ˆˆ qm ˆˆ *T E[ ] Im( ) 2 Re( ) ( ) ff This extension clears up an apparent anomaly between the reciprocity relationship and recent results concerning the variance of the response of a random system. ff Langley, R.S. JASA submitted, 2006

FLINOVIA 2017, State Collage, USA. Dr. Alexander Peiffer, Dr. Uwe Müller 27 th -28 th April 2017

FLINOVIA 2017, State Collage, USA. Dr. Alexander Peiffer, Dr. Uwe Müller 27 th -28 th April 2017 Review of efficient methods for the computation of transmission loss of plates with inhomogeneous material properties and curvature under turbulent boundary layer excitation FLINOVIA 2017, State Collage,

More information

Deterministic, Hybrid and Statistical Vibro-Acoustic Models - a Methodology to Determine the VLS Payload Fairing Acoustic Behavior

Deterministic, Hybrid and Statistical Vibro-Acoustic Models - a Methodology to Determine the VLS Payload Fairing Acoustic Behavior doi: 10.5028/jatm.v7i1.392 Deterministic, Hybrid and Statistical Vibro-Acoustic Models - a Methodology to Determine the VLS Payload Fairing Acoustic Behavior Rogério Pirk 1,2, Carlos d Andrade Souto 1,2

More information

Research Article Interior Noise Prediction of the Automobile Based on Hybrid FE-SEA Method

Research Article Interior Noise Prediction of the Automobile Based on Hybrid FE-SEA Method Mathematical Problems in Engineering Volume 2011, Article ID 327170, 20 pages doi:10.1155/2011/327170 Research Article Interior Noise Prediction of the Automobile Based on Hybrid FE-SEA Method S. M. Chen,

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.6 AN INNOVATIVE APPROACH

More information

Sound radiation from nested cylindrical shells

Sound radiation from nested cylindrical shells Sound radiation from nested cylindrical shells Hongjian Wu 1 ; Herwig Peters 1 ; Nicole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering, UNSW Australia, Sydney NSW 252 ABSTRACT Fluid-loaded

More information

Analytical and experimental study of single frame double wall

Analytical and experimental study of single frame double wall Analytical and experimental study of single frame double wall C. Guigou-Carter and M. Villot Center for Building Science and Technology Acoustics and Lighting Department Paper ID 203 Analytical and experimental

More information

Preliminary proceedings ISMA-USD 2018

Preliminary proceedings ISMA-USD 2018 Dynamical energy analysis modelling by using transfer path analysis S. Morita 1, T. Hartmann 2, G. Tanner 2 1 Yanmar R&D Europe, Viale Galileo 3/A 50125, Firenze, Italy 2 University of Nottingham, University

More information

DEVELOPMENT OF A GENERAL PERIODIC SEA SUBSYSTEM FOR MODELING THE VIBRO-ACOUSTIC RESPONSE OF COMPLEX STRUCTURES. V. Cotoni 1, R.

DEVELOPMENT OF A GENERAL PERIODIC SEA SUBSYSTEM FOR MODELING THE VIBRO-ACOUSTIC RESPONSE OF COMPLEX STRUCTURES. V. Cotoni 1, R. ICSV14 Cairns Australia 9-12 July, 2007 DEVELOPMENT OF A GENERAL PERIODIC SEA SUBSYSTEM FOR MODELING THE VIBRO-ACOUSTIC RESPONSE OF COMPLEX STRUCTURES Abstract V. Cotoni 1, R. Langley 2 1 ESI Group, 12555

More information

Prediction of high-frequency responses in the time domain by a transient scaling approach

Prediction of high-frequency responses in the time domain by a transient scaling approach Prediction of high-frequency responses in the time domain by a transient scaling approach X.. Li 1 1 Beijing Municipal Institute of Labor Protection, Beijing Key Laboratory of Environmental Noise and Vibration,

More information

Fundamentals of noise and Vibration analysis for engineers

Fundamentals of noise and Vibration analysis for engineers Fundamentals of noise and Vibration analysis for engineers M.P.NORTON Department of Mechanical Engineering, University of Western Australia CAMBRIDGE UNIVERSITY PRESS Preface xii Acknowledgements xv Introductory

More information

Prediction of Light Rail Vehicle Noise in Running Condition using SEA

Prediction of Light Rail Vehicle Noise in Running Condition using SEA Prediction of Light Rail Vehicle Noise in Running Condition using SEA Sebastian PREIS ; Gérard BORELLO Siemens AG Austria Urban Transport, Austria InterAC, France ABSTRACT A complete Light Rail vehicle

More information

Sound radiation of a plate into a reverberant water tank

Sound radiation of a plate into a reverberant water tank Sound radiation of a plate into a reverberant water tank Jie Pan School of Mechanical and Chemical Engineering, University of Western Australia, Crawley WA 6009, Australia ABSTRACT This paper presents

More information

MODal ENergy Analysis

MODal ENergy Analysis MODal ENergy Analysis Nicolas Totaro, Jean-Louis Guyader To cite this version: Nicolas Totaro, Jean-Louis Guyader. MODal ENergy Analysis. RASD, Jul 2013, Pise, Italy. 2013. HAL Id: hal-00841467

More information

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES PACS REFERENCE: 43.40-Rj RADIATION FROM VIBRATING STRUCTURES INTO FLUID MEDIA Names of the authors: Kohrs, Torsten; Petersson, Björn

More information

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response Vibration Testing For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response i) Excitation sources Typically either

More information

MEASUREMENT OF INSERTION LOSS OF AN ACOUSTIC TREATMENT IN THE PRESENCE OF ADDITIONAL UNCORRELATED SOUND SOURCES

MEASUREMENT OF INSERTION LOSS OF AN ACOUSTIC TREATMENT IN THE PRESENCE OF ADDITIONAL UNCORRELATED SOUND SOURCES MEASUREMENT OF INSERTION LOSS OF AN ACOUSTIC TREATMENT IN THE PRESENCE OF ADDITIONAL UNCORRELATED SOUND SOURCES Jacob Klos and Daniel L. Palumbo Structural Acoustics Branch NASA Langley Research Center

More information

1 Introduction The prediction of transmission paths of vibrations is of importance in, among others, structural, automotive, marine and aviation engin

1 Introduction The prediction of transmission paths of vibrations is of importance in, among others, structural, automotive, marine and aviation engin Energy Flow in Plate Assembles by Hierarchical Version of Finite Element Method M. Wachulec, P.H. Kirkegaard Λ Department of Civil Engineering, Aalborg University Sohngaardsholmsvej 57, 9000, Aalborg,

More information

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F By Tom Irvine Email: tomirvine@aol.com May 19, 2011 Introduction Consider a launch vehicle with a payload. Intuitively, a realistic payload

More information

ENERGY FLOW MODELS FROM FINITE ELEMENTS: AN APPLICATION TO THREE COUPLED PLATES

ENERGY FLOW MODELS FROM FINITE ELEMENTS: AN APPLICATION TO THREE COUPLED PLATES FIFTH INTERNATIONAL CONGRESS ON SOUND DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA AND VIBRATION ENERGY FLOW MODELS FROM FINITE ELEMENTS: AN APPLICATION TO THREE COUPLED PLATES P.J. Shorter and B.R.

More information

Sound radiation and sound insulation

Sound radiation and sound insulation 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance

More information

Vibration analysis of concrete bridges during a train pass-by using various models

Vibration analysis of concrete bridges during a train pass-by using various models Journal of Physics: Conference Series PAPER OPEN ACCESS Vibration analysis of concrete bridges during a train pass-by using various models To cite this article: Qi Li et al 2016 J. Phys.: Conf. Ser. 744

More information

Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch

Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch Report for Stage 4 Tasks 1 and 2 July 24 Prepared For:

More information

Broadband Vibration Response Reduction Using FEA and Optimization Techniques

Broadband Vibration Response Reduction Using FEA and Optimization Techniques Broadband Vibration Response Reduction Using FEA and Optimization Techniques P.C. Jain Visiting Scholar at Penn State University, University Park, PA 16802 A.D. Belegundu Professor of Mechanical Engineering,

More information

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method csnak, 014 Int. J. Nav. Archit. Ocean Eng. (014) 6:894~903 http://dx.doi.org/10.478/ijnaoe-013-00 pissn: 09-678, eissn: 09-6790 A simple formula for insertion loss prediction of large acoustical enclosures

More information

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Kauê Werner and Júlio A. Cordioli. Department of Mechanical Engineering Federal University of Santa Catarina

More information

Transient response prediction of an impulsively excited structure using a scaling approach

Transient response prediction of an impulsively excited structure using a scaling approach Numerical Techniques (others): Paper ICA2016-668 Transient response prediction of an impulsively excited structure using a scaling approach Xianhui Li (a), Jing Zhang (b), Tuo Xing (c) (a) Beijing Municipal

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

Penn State Center for Acoustics and Vibration (CAV)

Penn State Center for Acoustics and Vibration (CAV) Penn State Center for Acoustics and Vibration () Structural Vibration and Acoustics Group Presented as part of the 2013 Spring workshop Stephen Hambric, Group Leader Marty Trethewey Stephen Conlon Andrew

More information

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS Clemens A.J. Beijers and André de Boer University of Twente P.O. Box 7, 75 AE Enschede, The Netherlands email: c.a.j.beijers@utwente.nl Abstract An important

More information

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Introduction to Vibration Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Vibration Most vibrations are undesirable, but there are many instances where vibrations are useful Ultrasonic (very high

More information

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Daipei LIU 1 ; Herwig PETERS 1 ; Nicole KESSISSOGLOU 1 ; Steffen MARBURG 2 ; 1 School of

More information

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica Sound radiation and transmission Professor Phil Joseph Departamento de Engenharia Mecânica SOUND RADIATION BY A PISTON The piston generates plane waves in the tube with particle velocity equal to its own.

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

Influence of background noise on non-contact vibration measurements using particle velocity sensors

Influence of background noise on non-contact vibration measurements using particle velocity sensors Influence of background noise on non-contact vibration measurements using particle velocity sensors Daniel FERNANDEZ COMESAÑA 1 ; Fan YANG 1,2 ; Emiel TIJS 1 1 Microflown Technologies, the Netherlands

More information

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Jinlong Yuan 1, Haibo Chen 2, Qiang Zhong 3, Kongjuan Li 4 Department of Modern mechanics, University of Science

More information

Estimation of Modal Density of idealized subsystem (Beam) by Theoretical, Experimental and FEM method.

Estimation of Modal Density of idealized subsystem (Beam) by Theoretical, Experimental and FEM method. Estimation of Modal Density of idealized subsystem (Beam) by Theoretical, Experimental and FEM method. Vrushali H. Patil Prof. N. S. Hanamapure M. E. Student Professor Tatyasaheb Kore Institute of Engineering

More information

SPACECRAFT EQUIPMENT VIBRATION QUALIFICATION TESTING APPLICABILITY AND ADVANTAGES OF NOTCHING

SPACECRAFT EQUIPMENT VIBRATION QUALIFICATION TESTING APPLICABILITY AND ADVANTAGES OF NOTCHING SPACECRAFT EQUIPMENT VIBRATION QUALIFICATION TESTING APPLICABILITY AND ADVANTAGES OF NOTCHING Andrea Ceresetti Alenia Spazio S.p.A. - Technical Directorate Strada Antica di Collegno 53, 46 TORINO, Italy

More information

SPERIMENTAZIONE DI STRUTTURE AEROSPAZIALI TESTING OF AEROSPACE STRUCTURES

SPERIMENTAZIONE DI STRUTTURE AEROSPAZIALI TESTING OF AEROSPACE STRUCTURES SPERIMENTAZIONE DI STRUTTURE AEROSPAZIALI TESTING OF AEROSPACE STRUCTURES Giuliano Coppotelli c aa 2014/2015 Versione aggiornata al 24 Settembre 2014 Trascrizione e figure a cura di Roberta Cumbo Indice

More information

Statistical Energy Analysis Software & Training Materials, Part II

Statistical Energy Analysis Software & Training Materials, Part II Statistical Energy Analysis Software & Training Materials, Part II Tom Irvine Dynamic Concepts, Inc. NASA Engineering & Safety Center (NESC) 20-22 June 2017 The Aerospace Corporation 2010 The Aerospace

More information

Radiated Sound Power from a Curved Honeycomb Panel

Radiated Sound Power from a Curved Honeycomb Panel Radiated Sound Power from a Curved Honeycomb Panel Jay H. Robinson Ralph D. Buehrle Jacob Klos NASA Langley Research Center, Hampton, VA 23681-2199 Ferdinand W. Grosveld Lockheed Martin Engineering and

More information

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Hongjian Wu, Herwig Peters, Roger Kinns and Nicole Kessissoglou School of Mechanical and Manufacturing, University

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations

Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations ANZIAM J. 45 (E) ppc845 C856, 2004 C845 Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations D. S. Holloway G. A. Thomas M. R. Davis (Received 8 August 2003) Abstract

More information

Mobility and Impedance Methods. Professor Mike Brennan

Mobility and Impedance Methods. Professor Mike Brennan Mobility and Impedance Methods Professor Mike Brennan ibration control ibration Problem Understand problem Modelling (Mobility and Impedance Methods) Solve Problem Measurement Mobility and Impedance The

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

A Modal Approach to Lightweight Partitions with Internal Resonators

A Modal Approach to Lightweight Partitions with Internal Resonators A Modal Approach to Lightweight Partitions with Internal Resonators Steffen Hettler, Philip Leistner Fraunhofer-Institute of Building Physics, D-7569 Stuttgart, Nobelstrasse, Germany e-mail: hettler@ibp.fraunhofer.de,

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response Proceedings of the Acoustics 22 Nantes Conference 23-27 April 22, Nantes, France Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response C. Maury a and T.

More information

1 Introduction. Lin Ji 1 Xiaozhen Sheng. Xinbiao Xiao

1 Introduction. Lin Ji 1 Xiaozhen Sheng. Xinbiao Xiao J. Mod. Transport. (2015) 23(3):159 168 DOI 10.1007/s40534-015-0080-4 A review of mid-frequency vibro-acoustic modelling for highspeed train extruded aluminium panels as well as the most recent developments

More information

INFLUENCE OF FILL EFFECT ON PAYLOAD IN A LARGE LAUNCH VEHICLE FAIRING

INFLUENCE OF FILL EFFECT ON PAYLOAD IN A LARGE LAUNCH VEHICLE FAIRING INFLUENCE OF FILL EFFECT ON PAYLOAD IN A LARGE LAUNCH VEHICLE FAIRING Zheng Ling State Key Laboratory of Mechanical Transmission, College of Automotive Engineering, Chongqing University, Chongqing email:

More information

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Yung-Chang Tan Graduate Student Research Assistant Matthew P. Castanier Assistant Research Scientist

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

Modal Based Fatigue Monitoring of Steel Structures

Modal Based Fatigue Monitoring of Steel Structures Modal Based Fatigue Monitoring of Steel Structures Jesper Graugaard-Jensen Structural Vibration Solutions A/S, Denmark Rune Brincker Department of Building Technology and Structural Engineering Aalborg

More information

Variability in structure-borne flanking transmission at low and mid frequencies

Variability in structure-borne flanking transmission at low and mid frequencies Variability in structure-borne flanking transmission at low and mid frequencies Arne DIJCKMANS 1 1 KU Leuven, Department of Civil Engineering, Kasteelpark Arenberg 40, B-3001 Leuven, Belgium ABSTRACT Structure-borne

More information

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING In the preceding chapters, a model of a PZT actuator exciting a SS cylinder has been presented. The structural model is based on a modal expansion formulation

More information

Sub-structuring of mechanical systems based on the path concept

Sub-structuring of mechanical systems based on the path concept Sub-structuring of mechanical systems based on the path concept Francesc Xavier MAGRANS 1 ; Jordi POBLET-PUIG 2 ; Antonio RODRÍGUEZ-FERRAN 3 1 Ingeniería para el Control del Ruido S.L., Spain 1,2,3 Universitat

More information

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A.

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A. VIBRATION RESPONSE OF A CYLINDRICAL SKIN TO ACOUSTIC PRESSURE VIA THE FRANKEN METHOD Revision H By Tom Irvine Email: tomirvine@aol.com September 16, 2008 Introduction The front end of a typical rocket

More information

IDENTIFICATION OF MODAL PARAMETERS FROM TRANSMISSIBILITY MEASUREMENTS

IDENTIFICATION OF MODAL PARAMETERS FROM TRANSMISSIBILITY MEASUREMENTS IDENTIFICATION OF MODAL PARAMETERS FROM TRANSMISSIBILITY MEASUREMENTS Patrick Guillaume, Christof Devriendt, and Gert De Sitter Vrije Universiteit Brussel Department of Mechanical Engineering Acoustics

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.0 VIBRATIONS OF FLAT

More information

UNIVERSITY OF CINCINNATI

UNIVERSITY OF CINCINNATI UNIVERSITY OF CINCINNATI Date: 04/14/06 I, Suresh Babu Chennagowni, hereby submit this work as part of the requirements for the degree of: Master of Science in: Mechanical Engineering It is entitled: Study

More information

Vibration Transmission in Complex Vehicle Structures

Vibration Transmission in Complex Vehicle Structures Vibration Transmission in Complex Vehicle Structures Christophe Pierre Professor Matthew P. Castanier Assistant Research Scientist Yung-Chang Tan Dongying Jiang Graduate Student Research Assistants Vibrations

More information

Prediction of rail and bridge noise from concrete railway viaducts using a. multi-layer rail fastener model and a wavenumber domain method

Prediction of rail and bridge noise from concrete railway viaducts using a. multi-layer rail fastener model and a wavenumber domain method Paper accepted for publication by Journal of Rail and Rapid Transit, 18 June 2017 Prediction of rail and bridge noise from concrete railway viaducts using a multi-layer rail fastener model and a wavenumber

More information

Recent developments for frequency domain analysis in LS-DYNA

Recent developments for frequency domain analysis in LS-DYNA Recent developments for frequency domain analysis in LS-DYNA Yun Huang, Zhe Cui Livermore Software Technology Corporation 1 Introduction Since ls971 R6 version, a series of frequency domain features have

More information

MOOC QP Set 2 Principles of Vibration Control

MOOC QP Set 2 Principles of Vibration Control Section I Section II Section III MOOC QP Set 2 Principles of Vibration Control (TOTAL = 100 marks) : 20 questions x 1 mark/question = 20 marks : 20 questions x 2 marks/question = 40 marks : 8 questions

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping By Tom Irvine Introduction Recall the homework assignment from Unit 1A. The data.txt time history represented a rocket vehicle dropped from

More information

Measurement techniques of the sensitivity functions to characterize the vibroacoustic response of panels under random excitations

Measurement techniques of the sensitivity functions to characterize the vibroacoustic response of panels under random excitations Measurement techniques of the sensitivity functions to characterize the vibroacoustic response of panels under random ecitations C.MARCHETTO (1-2), L. MAXIT (1), O. ROBIN (2), A. BERRY (2) (1) Laboratoire

More information

Noise in enclosed spaces. Phil Joseph

Noise in enclosed spaces. Phil Joseph Noise in enclosed spaces Phil Joseph MODES OF A CLOSED PIPE A 1 A x = 0 x = L Consider a pipe with a rigid termination at x = 0 and x = L. The particle velocity must be zero at both ends. Acoustic resonances

More information

Sensitivity analysis and its application for dynamic improvement

Sensitivity analysis and its application for dynamic improvement SaÅdhanaÅ, Vol. 25, Part 3, June 2000, pp. 291±303. # Printed in India Sensitivity analysis and its application for dynamic improvement NOBUYUKI OKUBO and TAKESHI TOI Department of Precision Mechanics,

More information

Perturbation of periodic equilibrium

Perturbation of periodic equilibrium Perturbation of periodic equilibrium by Arnaud Lazarus A spectral method to solve linear periodically time-varying systems 1 A few history Late 19 th century Emile Léonard Mathieu: Wave equation for an

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Chapter 5: Random Vibration. ANSYS Mechanical. Dynamics. 5-1 July ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Chapter 5: Random Vibration. ANSYS Mechanical. Dynamics. 5-1 July ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Chapter 5: Random Vibration ANSYS Mechanical Dynamics 5-1 July 2009 Analysis Random Vibration Analysis Topics covered: Definition and purpose Overview of Workbench capabilities Procedure 5-2 July 2009

More information

An Introduction to Lattice Vibrations

An Introduction to Lattice Vibrations An Introduction to Lattice Vibrations Andreas Wacker 1 Mathematical Physics, Lund University November 3, 2015 1 Introduction Ideally, the atoms in a crystal are positioned in a regular manner following

More information

Design possibilities for impact noise insulation in lightweight floors A parameter study

Design possibilities for impact noise insulation in lightweight floors A parameter study Downloaded from orbit.dtu.dk on: Dec 23, 218 Design possibilities for impact noise insulation in lightweight floors A parameter study Brunskog, Jonas; Hammer, Per Published in: Euronoise Publication date:

More information

Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental Verification

Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental Verification Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-2015 Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental

More information

ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES

ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES TECHNICAL TRAINING TTR01 ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES 1 OBJECTIVES The objectives of the technical training are the followings: understand the phenomenon

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE Figure 3.18 (a) Imbalanced motor with mass supported by a housing mass m, (b) Freebody diagram for, The product is called the imbalance vector.

More information

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes Active Impact Sound Isolation with Floating Floors Gonçalo Fernandes Lopes Outubro 009 Active impact sound isolation with floating floors Abstract The users of buildings are, nowadays, highly demanding

More information

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device by Zachary T. Kitts Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES Proceedings of DETC98: 1998 ASME Design Engineering Technical Conference September 13-16, 1998, Atlanta, GA DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES O TRANSMISSION CASING STRUCTURES D. Crimaldi Graduate

More information

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES 43.40r Philippe JEAN; Jean-François RONDEAU Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin

More information

Structural changes detection with use of operational spatial filter

Structural changes detection with use of operational spatial filter Structural changes detection with use of operational spatial filter Jeremi Wojcicki 1, Krzysztof Mendrok 1 1 AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Krakow, Poland Abstract

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Time Frequency and Wavelet Techniquesc Satish Nagarajaiah Professor of Civil and

More information

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Gil F. Greco* 1, Bernardo H. Murta 1, Iam H. Souza 1, Tiago B. Romero 1, Paulo H. Mareze 1, Arcanjo Lenzi 2 and Júlio A.

More information

TRANSIENT RESPONSE OF SANDWICH AND LAMINATED COMPOSITES WITH DAMPING UNDER IMPULSE LOADING

TRANSIENT RESPONSE OF SANDWICH AND LAMINATED COMPOSITES WITH DAMPING UNDER IMPULSE LOADING TRANSIENT RESPONSE OF SANDWICH AND LAMINATED COMPOSITES WITH DAMPING UNDER IMPULSE LOADING Evgeny Barkanov, Andris Chate and Rolands Rikards Institute of Computer Analysis of Structures, Riga Technical

More information

Computing the uncertain vibrations of plates with spatially-extended random excitation using the image source method

Computing the uncertain vibrations of plates with spatially-extended random excitation using the image source method Computing the uncertain vibrations of plates with spatially-extended random excitation using the image source method J. Cuenca, M. Kurowski,2, B. Peeters Siemens Industry Software NV Interleuvenlaan 68,

More information

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS 1 EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS Nicolas Ludovic LARUE (1), Jean Marie LOME (2), Alice PRADINES (3) (1) Mechanical analysis and test engineer, EADS Astrium - 31 avenue des Cosmonautes,

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Seismic analysis of structural systems with uncertain damping

Seismic analysis of structural systems with uncertain damping Seismic analysis of structural systems with uncertain damping N. Impollonia, G. Muscolino, G. Ricciardi Dipartirnento di Costruzioni e Tecnologie Avanzate, Universita di Messina Contrada Sperone, 31 -

More information

17. Investigation of loudspeaker cabinet vibration using reciprocity

17. Investigation of loudspeaker cabinet vibration using reciprocity 17. Investigation of loudspeaker cabinet vibration using reciprocity H Alavi & K R Holland, ISVR, University of Southampton E-mail: Hessam.Alavi@soton.ac.uk This paper investigates the contribution of

More information

OPERATIONAL MODAL ANALYSIS BY USING TRANSMISSIBILITY MEASUREMENTS WITH CHANGING DISTRIBUTED LOADS.

OPERATIONAL MODAL ANALYSIS BY USING TRANSMISSIBILITY MEASUREMENTS WITH CHANGING DISTRIBUTED LOADS. ICSV4 Cairns Australia 9- July, 7 OPERATIONAL MODAL ANALYSIS BY USING TRANSMISSIBILITY MEASUREMENTS WITH CHANGING DISTRIBUTED LOADS. Abstract Devriendt Christof, Patrick Guillaume, De Sitter Gert, Vanlanduit

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

Vibro-acoustic Analysis for Noise Reduction of Electric Machines

Vibro-acoustic Analysis for Noise Reduction of Electric Machines Vibro-acoustic Analysis for Noise Reduction of Electric Machines From Flux to OptiStruct Example : Synchronous Machine Flux 2D coupling to OptiStruct Patrick LOMBARD Application Team Manager Patrick.Lombard@cedrat.com

More information

S. A. Hambric Applied Research Laboratory, The Pennsylvania State University, P.O. Box 30, State College, Pennsylvania 16804

S. A. Hambric Applied Research Laboratory, The Pennsylvania State University, P.O. Box 30, State College, Pennsylvania 16804 Predicting the vibroacoustic response of satellite equipment panels S. C. Conlon a) Graduate Program in Acoustics, The Pennsylvania State University, P.O. Box 30, State College, Pennsylvania 16804 S. A.

More information

Vibration Testing. Typically either instrumented hammers or shakers are used.

Vibration Testing. Typically either instrumented hammers or shakers are used. Vibration Testing Vibration Testing Equipment For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response Excitation

More information

Laser scanning vibrometry measurements on a light weight building element

Laser scanning vibrometry measurements on a light weight building element Laser scanning vibrometry measurements on a light weight building element N.B. Roozen, M. Rychtáriková, Katholieke Universiteit Leuven, Laboratory for Acoustics and Thermal Physics (ATF), Department of

More information

Structural Analysis with Vibro-Acoustic Loads in LS-DYNA

Structural Analysis with Vibro-Acoustic Loads in LS-DYNA 10 th International LS-DYNA Users Conference Simulation Technology () Structural Analysis with Vibro-Acoustic Loads in LS-DYNA Mostafa Rassaian 1, Yun Huang, JungChuan Lee 1, Thomas T. Arakawa 1 1 Boeing

More information