Sound radiation and sound insulation

Size: px
Start display at page:

Download "Sound radiation and sound insulation"

Transcription

1 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance which determines what happen. In our case this will be the radiation impedance. Even here Snell s law will be valid Along the plate there is a pattern given by the bending wavelength λ B. This pattern has to be identical with the projection of the wavelength of the radiated sound. Only if the wavelength on the plate is bigger then the wavelength in air, sound radiation is possible (this is only true for infinite plates as we see later). In the case where the wavelength on the plate is shorter than the wavelength in air you cannot find an angle where the projection fits. This a relatively simple derivation of what is following in detail in later in the text. Radiation from infinite plates Three areas:! B <! air! B =! air! B >! air No radiation Only a nearfield Sound radiation parallel to the plate surface Sound radiation under a certain angle

2 11. This would be a good qualitative description. The effect that there is no sound radiation for! B <! air could be explained by the short-circuiting between positive and negative displacement on the plate. Instead of getting the air in a wave motion, it is just moved parallel to the surface. When! B =! air a sound wave propagates parallel to the plate surface. For frequencies with! B >! air sound is radiated under a certain angle. Radiation efficiency To characterise the efficiency of a radiator the radiated power is compared with the radiation of a plane wave with the same surface and the same averaged velocity. The radiation efficiency! = W radiated "cs v where S is the radiating surface and v is the averaged effective value of the velocity of the radiator (i.e. average over the surface). The radiation efficiency defined in this way can become bigger than unity, since it is not relating for instance mechanical power to radiated power, but compares the radiation from a structure with what would be radiated from a plate, vibrating in phase and with the same amplitude as the structure has in average. In our case the radiation efficiency has to look as this => For this analysis we can summarise that there is one frequency where c B, the speed of sound on the plate, is identical with c, speed of sound in air. This frequency is called critical frequency and can be calculated as c air = c B or c air = B 4! => m

3 f c = c air! m = c air B! " P h( 1 # $ ) h 3 E = c air 1 1! h " P ( 1 # $ ) E = 0.55 c air = 1 K c hc L h c L is the speed of sound for longitudinal waves in structures. The factor K c depends on the material only. Typical values are material K c [m/s] concrete 18 stone light concrete 36 gypsum 3 steel 1 aluminium 1 glass 14 Many of the values are in the same order. This means that it is mainly the thickness of the material, which will lead to differences in the critical frequency. Radiation from finite plates From our daily experience we know that all structures radiate independently where the critical frequency is situated. The results before are only valid for infinite plates. The main difference between infinite and finite plates become obvious when looking at a plate (e.g. a window) built into a bigger and more rigid structure (e.g. a wall). It is obvious that this so-called hydrodynamic short-circuiting does not work perfectly at the edges of the plate. There is some air, which cannot move from areas of high pressure to areas of low pressure. Indeed, one can show by theory that the edges of the plate are responsible for the radiated sound below the critical frequency. $! " % 1 Uc # Sf c f f c 0.45 Uc ( for f << f c for f " f c ) CHALMERS UNIVERSITY f c OF TECHNOLOGY Division of Applied Acoustics 1 for f >> f c ' * For a slightly damped plate the radiation efficiency can be calculated as where U is the circumference of the plate and S is its surface.

4 11.4 An increase of the radiated sound power does although occur when discontinuities are present such as stiffeners, material changes or close to the forces acting on the structure. Examples for the radiation efficiency are shown here For a vibrating plate built into a rigid wall: with decreasing size, the radiation efficiency is increasing. It approaches the radiation efficiency of a point source in front of a rigid wall. From radiation to excitation The radiation efficiency of walls, floors, ceiling etc. is and important factor for radiation of vibrations transported through the structure of the building. so-called flanking transmission is strongly depended on the radiation efficiency of the structures. the The

5 11.5 The source in the sending room excites a part of the structure. The structure is vibrating. These vibrations are transported to the next room and radiated into the room. Both, excitation and radiation depend on the radiation efficiency of the structure, this means on the relation between the wavelength on the structure (bending waves) and the wavelength in air. What can we do to keep the radiation efficiency low? One idea would b to chose the critical frequency in such a way that it will be very high. How to do this? Looking at the equation for the critical frequency f c = c air m! B It is clear that we need something heavy with low bending stiffness. Some materials might deliver this, eg. Heavy rubber plates. Alternative would be to make the plate softer by cutting small grooves into it. This will not affect the mass but making the structure softer. It is also clear that stiffening a structure by rips or beams might have a negative effect since it increases the bending stiffness strongly but will increase the mass only slightly. Is it not possible to modify the radiating wall or ceiling, one might cover the it with a second wall freely suspended. This second wall should then have a low radiation efficiency TASK: After all what you have learned draw your conclusions concerning sound insulation

6 11.6 Mathematical derivation of what we have learned (just for fun ) Sound radiation from bending waves on infinite plates In the Figure below a situation is shown, where a plate is vibrating with the wave length! B, and the velocity v P y = v B e! jk B y from the plate a wave might be radiated under a certain angel. Only one dimension of the plate is considered to simplify the problem. The radiated wave can be described as p rad ( x,y,! ) = p Ae " jk x x e " jk y y At the surface of the plate the velocity in the normal direction to the surface of the plate has to be identical with the particle velocity in air. This means that the wave number of the plate k B and the wave number in the y direction k y have to be identical (see Snell's law). The velocity in the field directly above the plate is v rad,x ( x = 0,y,! ) = k x p Ae # jk x x e # jkb y = v B e # jkb y which is equivalent with "! v rad,x k cos " ( x = 0,y,! ) = #! $ jk cos (" ) p A e x e $ jk B y = v B e $ jk B y This velocity has to be identical with the velocity of the plate. This allos us to calculate the unknown amplitude p A! = "! k x v B. The wave number in the x direction however, is not independent from the wave number in y-direction. For both the relation k = k x + k y has to be valid as we learned when discussing the oblique incidence of waves on a surface. Replacing k y by k B we obtain k x = k! k B or k x = k! k B where k is the wave number in air. The radiated pressure can finally be written as p rad ( x,y,! ) = v B "! k # k B e # j k #k B x e # jk B y Together with the velocity on the surface of the plate the intensity in the normal direction of the plate surface can be calculated

7 11.7 { v * y P } = 1 I x = 1 Re p x = 0,y #%!" '% v B Re $ ( % )% k x Three different cases can be distinguished. Case 1 : k air > k B or! air <! B In this case the wavelength in air is smaller than the wavelength on the plate. The root k! k B is real and consequently also the wave number k x. The radiated power per unit area is given as I = 1!" v B = 1!" v B k x k cos # = 1 v B!c cos # This can be interpreted as the effective value of the velocity times the radiation impedance for a wave radiated under the angle!. The angle! is determined by Snell's law k cos! = k " k B which gives cos! # or for the angle!! = cos "1 % % $ 1 " k B k = 1 " k B # ( % = cos "1 % 1 " ( % ' $ k c c B ( ( which we already have obtained ( ' for Snell's law. If the speed of sound in air is much smaller than the speed of sound for the bending waves on the plate, the angle! will become close to 0 degrees, i.e. the wave is radiated as a plane wave in normal direction to the plate. The radiation efficiency is! = W radiated "cs v = 1 v B "# k x S "cs 1 v B 1 = cos $ which becomes in this case close to unity. Case : k = k B,! =! B In this case the wavelength on the plate equals the wavelength in air. This also means that the speed of sound on the plate is identical with the speed of sound in air. This case gives in some way strange results. First of all the amplitude of the pressure wave as well as the radiated power and the radiation efficiency becomes infinity, since the

8 root k! k B 11.8 becomes zero. The angle! is in this case 90 degrees, which means that the wave is radiated in parallel to the plate. The somewhat strange results concerning pressure amplitude and radiated power is a consequence of that we do not include radiation loading. Creating a high pressure in front of the plate certainly means, that the plate will experience a force, which will act against the vibration. In most of the cases the radiation loading is neglected. However, in the case of very light structures or plates in a heavy medium like water, radiation load has to be considered. Case 3 k < k B,! <! B In this case the wavelength on the plate is shorter than the wavelength in air. The speed of sound on the plate is smaller than the speed of sound in air. The root k! k B becomes imaginary and consequently also the wave number in x-direction. Instead of a radiated wave only a nearfield (i.e. an in x-direction decreasing exponential function) is created. Since the wave number in x-direction is imaginary the intensity yields zero. This means there is no power radiated from the surface of the plate. The radiation efficiency consequently equals zero. The air particles in front of the surface move on circles as can be seen when considering both the velocity in x-direction and the velocity in y direction. Since the velocity amplitude in x-direction becomes imaginary, while the velocity amplitude in y-direction is still real, there is a phase difference of 90 degrees between both.

9 Sound insulation 11.9 In order to have a quiet room one needs possibilities to hinder the propagation of sound power W in into this room. The sound insulation of the walls (or whatever is around the room) determines how much sound power W tr is coming into the room. Definitions: The transmission factor! is a measure for the capability to isolate against the transport of sound power is! = W tr W in. The reduction index R is 10log 1! = 10logW in W tr. The reduction index can be measured for rooms where the sound field has statistical properties by measuring the averaged sound pressure level L S in the sending room the averaged sound pressure level L R in the receiving room the equivalent absorption area A R in the receiving room the surface area S through which the sound power is expected to be transported. The reduction index is R = L S! L R! 10log A R S. The reduction index weighted (i.e. compared with the reference curve) is called R w. A reduction index measured in field is indicated by a prime ( R!). If a construction consists of several parts with different reduction index the resulting reduction index is R res = 10log S 1 + S +...S n S 1 10! R S n 10! R n 10 "S = 10log i "S i # where S1, S= the area of the different parts andr1, R = the reduction index of the different parts. TASK: IS THERE A RELATION BETWEEN SOUND INSULATION AND SOUND RADIATION? Have a look on the notes from the last lecture on sound radiation. We found for a very big (infinite) plate:

10 11.10 no sound radiation below the critical frequency fc very high radiation parallel to the surface of the plate at the critical frequency radiation at frequencies above the critical frequency HAS THIS ANY CONSEQUENCE FOR THE SOUND INSULATON? Derivation of the theory for sound insulation of plates Airborne sound incident at a panel, wall or some other type of partition mainly excites bending waves in the construction. The sound insulation of plates can be derived in several ways. One way follows the approach we used for Snell's law (see notes). One assumes an incident wave, a reflected wave and a transmitted wave. All three waves together have to fulfil the boundary conditions at the plate: continuity of particle velocity the differe nce betwee n the pressure on both sides of the plate excites the plate to vibrations. Since we assume the same medium on both sides of the plate, the wavenumbers are the same as well as the angle of incidence and the angle under which the wave is radiated into the second medium. p i p r p t ( x,y,! ) = p A,i! ( x,y,! ) = rp A,i! ( x,y,! ) = tp A,i! "jk cos # e + jk cos " e " jk cos # e x e " jk sin # y x e #jk sin " x e "jk sin # The sin- and cosine functions come from the projection of the waves in the different directions. Each of the individual exponential functions gives the changes of the phase due to a change in the x- or y- co-ordinate. y y

11 11.11 The particle velocities of the waves (in the directions of the waves) are obtained from the pressure using the relation p/u =!c. The components normal to the plate are a factor cos ϑ smaller. u i u r u t (! ) p ( x,y,! ) = "r A,i cos ( # ) p ( x,y,! ) = A,i cos " #c $c p ( x,y,! ) = t A,i cos " #c e$jk cos " x e $ jk sin " y + jk cos (# )x "jk sin # (! ) e e y cos (" )x $ jk sin " (! ) e$jk e y When discussing Snell's law we had continuity of the pressure. However, this is not the case when a plate is separating both sides. There the pressure is different on both sides. Otherwise the plate would not reduce sound; there would be complete transmission through the plate. The vibration of the plate is described by the bending wave equation! 4 " x,t! " x,t B + m = p 1 x,t!x 4!t displacement on the plate has the form! x," # p ( x,t ) Assuming harmonic vibrations the =! B ( " ) e # jk By or u p ( x,! ) = u B (! ) e "jk By becomes after multiplication with j! : = j" p 1 ( x," ) $ p ( x," )! 4 j"# x," B $ " mj"# x,"!x 4 j!" is just the velocity u p of the plate.! 4 u P x," B # " mu P x,"!x 4 which is [ ] [ ] = j" p 1 ( x," ) # p ( x," ) Bk B 4 u B e!jk By! " mu B e! jk By = j" p 1 x," [! p ( x," )] Now we can replace the pressure by p 1 = p i + p r and p = p t. Since the velocity on the plate has to be identical with the velocity of the sound field on both sides for all y. This means that

12 !jk sin (" )y e 11.1 = e! jk By orkb = k sin (! ) has to be valid. Comment the impedance is Z = p, from the equation above we get the impedance of a u plate when exposed to a wave: [ p 1! p ] Z = p u p = u p = Bk 4 B! " m j" Using all equation for the pressures and velocities the two unknowns (reflection coefficient and transmission coefficient) can be determined. Task: try this by your own Transmission coefficient: t = cos (! ) [ j"#c $" m + Bk 4 sin 4! ] The transmission factor is the squared magnitude of the transmission coefficient:! = % cos " 1 + ( ' * ' #c$ * ' )* 1 [ +$ m + Bk 4 sin 4 " ] Physic behind the equation: The relation shows that the transmission through the plate depends on the angle of incidence. We see that there is a possibility for total transmission when the expression in the second parenthesis in the nominator becomes zero. Total transmission occurs for:!" m + Bk 4 sin 4 # = 0 or when k 4 sin 4! = " m Or for cos (! ) = 0. B

13 11.13 From this expression we can calculate the frequency at which total transmission occurs. This frequency is called the coincidence frequency and the phenomenon the coincidence phenomenon. The forced bending wave velocity coincides with the sound velocity in air. Or expressed in wave number, the projection of the wave number of the exciting wave in air onto the surface of the plate coincides with the wave number of the free bending wave in the plate, compare with what we have learned about critical frequency Reduction index as function of frequency and angel of incidence k sin! = " m 4 = k B. B For each angle of incidence we will find one coincidence frequency. The lowest coincidence frequency is obtained for a wave propagating parallel to the plate. This lowest frequency is the critical frequency) f coincidence = c! sin " The coincidence phenomenon is a special type of resonance. We are used to link the resonance concept to the case where a driving force or pressure has a frequency, which equals a natural frequency (eigenfrequency) of the driven system. Here, instead, it is a driving field the spatial distribution of which equals a (natural) bending wave field of the driven system. As we recall from physics (see Physics, V), it is the losses that limit the response of a system driven at resonance. So, at coincidence, the losses in the system get important. The reduction index does not drop to zero because there are always losses (damping) in real systems, which then determine the reduction index. m B. We see that for 90 degrees incidence (gracing incidence, parallel to the plate) the reduction is zero over the whole frequency range since cos ϑ = 0 and therefore τ = 1. However, this result is somewhat artificial since for a parallel wave there is no normal component to the plate and therefore there is no sound power transmitted through the plate.

14 11.14 When we are well below the coincidence frequency, Bk 4 sin 4! << " m. The wall or panel 1 has mass character. In this case the transmission factor becomes! = % cos # 1 + "m ( ' * ' $c * ' )* The sound insulation of the plate follows a mass law, which says that it increases with 6 db when doubling the mass per unit area. This does not mean that the plate as the whole is vibrating like one rigid mass, but each element vibrates more or less independently from its neighbour following the vibration pattern imposed by the sound field. Summary: For the sound reduction index we get quite different expressions below and above the critical frequency. We can divide the frequency range into three ranges; f <f c, f f c, and f > f c. We get f < fc The construction has mass character. The reduction index follows a mass law. We call this Non resonant transmission. f f c The construction gets sound transparent for gracing incidence if the losses can be neglected. Incident sound is totally transmitted. Resonant transmission. f > f c For a certain angle of incidence the sound transmission is total if the losses are zero. Also for constructions with losses the transmission becomes big. Resonant transmission. Diffuse sound field (Sound comes from all directions with the same probability). For f > fc we always have sound waves fulfilling the coincidence condition if the sound field is diffuse. This cannot happen for f < f c. We consider diffuse sound incidence at a wall, i.e. all angles of incidence ϑ are equally probable. We have to take the average over the transmitted sound power and the incident sound power for all angels! sin! d!

15 ! d = $ # / W in (" )!(" ) cos" sin"d" # / =!(" ) cos" sin"d" # / $ 0 W in (") cos" sin"d" $ 0 How to do : The total solid angle is 4π. The fraction of the sound field having an angle of incidence ϑ is then! sin"d" 4! = sin"d" Projected area against this incident sound is S cos ϑ. We then have to take the average of the transmission factor for diffuse sound incidence, τ d as! d = $ # / 0!(" ) cos" sin"d" # / =!(" ) cos" sin"d" # / $ 0 cos" sin"d" $ 0 Using this expression, τ d may be calculated for different cases. For f f c we have to introducee the losses of the plate or wall through a complex Youngs modulus E = E 0 (1 + jη) where η is the loss factor. This expression for τ (ϑ) is then inserted in the integral above. It is a more tricky derivation. However, in this case it is found that the total transmission is dominated by that part of the incident sound field that fulfils the coincidence condition. The integration only needs to be performed over this resonance peak. The derivation is found in Cremer s paper from 194. The results are:! d =!(0),3log 1!(0) or R d R(0) 10 log (0,3 R(0)) With τ(0) obtained from the formula for the transmission factor setting ϑ = 0 we obtain for the three frequency areas of interest: For f < fc R d mass law 0 log m + 0 log f 49 db For f f c η is the loss factor of the wall material. R d = R d,masslaw + 10log! + 8dB Finally for f > f c R! R(0) + 10log( f f c " 1) + 10log# " db

16 11.16 Comments: R(0) increases with 6 db/octave. We can then see that above the critical frequency Rd increases with 9 db/octave if we can assume the loss factor η to be frequency independent. For η = 0,01 the depth in the coincidence valley is approximately 1 db. The influence of the coincidence phenomenon may be observed in the reduction index already around fc/. The pure mass law is therefore valid to approximately 0,5fc. Thick brick- and concrete walls have such a low critical frequency that the expression describes the reduction index in most of the frequency range from 100 to a couple of 1000 Hz. shows in summary the schematical reduction index for a single wall of limited size. Observe that the frequency scale is normalised with regard to the critical frequency. For thin constructions such as gypsum boards, thin steel plates and thin glass plates the sound reduction index is determined by the mass law.

17 Problems to section a) A vibrating machine is mounted on a quadratic steel plate of thickness 10 mm and surface area of 10m. The machine is vibrating with a frequency of 500 Hz and the rms value of the velocity has been measured to 10-3 m/s. a) What is the critical frequency for the plate? b) What is the radiation factor at this frequency? c) How large is the radiated sound power from the plate? b) The steel plate in 11.1 is changed to a 16 cm thick quadratic concrete plate with the same area as in Assume that the vibration velocity in the concrete plate is the same as for the steel plate. The concrete has the density 300 kg/m 3 and a Young s modulus of 6 GPa. The Poisson s number can be set to 0,3. a. What is the critical frequency for the concrete plate? b. What is the radiation factor at this frequency? d) How large is the radiated sound power from the concrete plate in this case? c) An infinite plate vibrates with a frequency that is higher than the critical frequency. a) Why are sound waves radiating from a certain angle from the plate? c. Why does the infinite plate not radiate anything at all for frequencies below the critical frequency? d) Plane sound waves with a frequency of 50 Hz hits a 1 cm thick concrete plate ( E!, 5" Pa, ρ=300 kg/m 3,! " 0.3) with an angle of 45. a) What is the wave length of the forced bending waves in the plate? b) What is the wave length of the free bending waves in the plate at 50 Hz? c) At what angle of incidence will the wave length of the forced bending waves be equal to the free bending waves in the plate? e) A large plate vibrates in phase over the entire surface. The radiation factor is 1 then. The rms-value for the vibrational velocity is then v eff = 3,5!10 "5 m/s and the plate area is 0m. How large is the radiated power? f) The mean level was measured to 58 db (re 5!10 "8 m/s) for a wall of area 10m. Note the reference value for the velocity level. The wall is the only surface radiating to a room with the reverberation time 1s and dimensions 4 x 5 x,5 m 3. The resulting sound pressure level in the room was measured to 55 db (!10 "5 Pa). Calculate the radiation factor for the wall.

18 11.18 g) A machine is mostly vibrating below 700 Hz. The machine is built-in a sealed box in order to prevent radiation of sound from the machine to the surrounding. You shall now choose the material, which gives lowest amount of radiated sound. The largest available thickness is 80 mm due to limited available space. The available material is steel plate and aluminium plate with the following data: Steel: ρ=7880 kg/m 3, E=10 GPa, ν=0.3, thickness=44 mm. Aluminium: ρ=700 kg/m 3, E=70 GPa, ν=0.3, thickness=15 mm. V,T S v The floor of a car (see figure above) works as a source to the compartment when the car is driven on a road. Calculate the total sound level inside the compartment caused by the floor vibrations! Calculate the Schröder frequency. The following information is given for the indicated octave bands. f center [Hz] radiation-factor,! 0,0 0,01 0,30 0,80 1,00 T 6 0 [s] 0,15 0,10 0,08 0,09 0,07!v " [(m/s) ] 3,9x10-6 5,x10-6 9,81x10-8 3,1x10-7 1,98x10-6 Floor surface, S=3,5 m Compartment volume, V=5 m 3

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica Sound radiation and transmission Professor Phil Joseph Departamento de Engenharia Mecânica SOUND RADIATION BY A PISTON The piston generates plane waves in the tube with particle velocity equal to its own.

More information

The influence of Boundary Conditions on Sound Insulation

The influence of Boundary Conditions on Sound Insulation The influence of Boundary Conditions on Sound Insulation Master s Thesis in the Master s programme in Sound and Vibration CHRISTOFFER JANCO Department of Civil and Environmental Engineering Division of

More information

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Transmission, Reflections, Eigenfrequencies, Eigenmodes Tranversal and Bending waves D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Outline Introduction Types of waves Eigenfrequencies & Eigenmodes

More information

Acoustic design of lightweight cabin walls for cruise ships

Acoustic design of lightweight cabin walls for cruise ships Acoustic design of lightweight cabin walls for cruise ships A. Treviso 1, M. G. Smith 1 1 ISVR Consulting, University of Southampton University Road, SO17 BJ1, Southampton, United Kingdom e-mail: mgs@isvr.soton.ac.uk

More information

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS Kento Hashitsume and Daiji Takahashi Graduate School of Engineering, Kyoto University email: kento.hashitsume.ku@gmail.com

More information

Sound radiation of a plate into a reverberant water tank

Sound radiation of a plate into a reverberant water tank Sound radiation of a plate into a reverberant water tank Jie Pan School of Mechanical and Chemical Engineering, University of Western Australia, Crawley WA 6009, Australia ABSTRACT This paper presents

More information

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering D. W. Herrin, Ph.D., P.E. Department of Mechanical Engineering Reference 1. Ver, I. L., and Beranek, L. L. (2005). Control Engineering: Principles and Applications. John Wiley and Sons. 2. Sharp, B. H.

More information

Analytical and experimental study of single frame double wall

Analytical and experimental study of single frame double wall Analytical and experimental study of single frame double wall C. Guigou-Carter and M. Villot Center for Building Science and Technology Acoustics and Lighting Department Paper ID 203 Analytical and experimental

More information

Introduction to Waves in Structures. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Introduction to Waves in Structures. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Introduction to Waves in Structures Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Waves in Structures Characteristics of wave motion Structural waves String Rod Beam Phase speed, group velocity Low

More information

Reduction Index Modeling by Finite Elements Applied on a Double Leaf Construction

Reduction Index Modeling by Finite Elements Applied on a Double Leaf Construction Reduction Index Modeling by Finite Elements Applied on a Double Leaf Construction Master s Thesis in the Master s programme in Sound and Vibration MORTEN LINDBORG Department of Civil and Environmental

More information

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES PACS REFERENCE: 43.40-Rj RADIATION FROM VIBRATING STRUCTURES INTO FLUID MEDIA Names of the authors: Kohrs, Torsten; Petersson, Björn

More information

9. TRANSMISSION OF SOUND THROUGH STRUCTURES

9. TRANSMISSION OF SOUND THROUGH STRUCTURES NOISE CONTROL Transmission 9.1 9. TRANSMISSION OF SOUND THROUGH STRUCTURES 9.1 Basic Definitions A typical noise control application involves a combination of absorption of sound and transmission of sound

More information

Prediction of the Sound Reduction Index: Application to Monomurs Walls

Prediction of the Sound Reduction Index: Application to Monomurs Walls paper ID: 15 /p.1 Prediction of the Sound Reduction Index: Application to Monomurs Walls Thomas Buzzi, Cécile Courné, André Moulinier, Alain Tisseyre TISSEYRE & ASSOCIES, www.planete-acoustique.com 16

More information

The equivalent translational compliance of steel studs and resilient channel bars

The equivalent translational compliance of steel studs and resilient channel bars The equivalent translational compliance of steel studs and resilient channel bars Susumu HIRAKAWA 1 ; John Laurence DAVY 2 1, 2 RMIT University, Australia ABSTRACT A number of recent papers have determined

More information

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING In the preceding chapters, a model of a PZT actuator exciting a SS cylinder has been presented. The structural model is based on a modal expansion formulation

More information

SOUND TRANSMISSION LOSS

SOUND TRANSMISSION LOSS SOUND TRANSMISSION LOSS 9.1 TRANSMISSION LOSS Sound Transmission Between Reverberant Spaces The transmission of sound from one space to another through a partition is a subject of some complexity. In the

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at  ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 146 151 6th International Building Physics Conference, IBPC 2015 A combined experimental and analytical approach for the

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

Laser scanning vibrometry measurements on a light weight building element

Laser scanning vibrometry measurements on a light weight building element Laser scanning vibrometry measurements on a light weight building element N.B. Roozen, M. Rychtáriková, Katholieke Universiteit Leuven, Laboratory for Acoustics and Thermal Physics (ATF), Department of

More information

Radiated sound power estimates of building elements by means of laser Doppler vibrometry

Radiated sound power estimates of building elements by means of laser Doppler vibrometry Radiated sound power estimates of building elements by means of laser Doppler vibrometry N.B. Roozen, L. Labelle, M. Rychtáriková,2, C. Glorieux, D. Urbán 3, P. Za tko 3, H. Mullner 4 Laboratory of Acoustics,

More information

Sound transmission loss of windows on high speed trains

Sound transmission loss of windows on high speed trains Sound transmission loss of windows on high speed trains Yumei Zhang 1,, Xinbiao Xiao 1, David Thompson, Giacomo Squicciarini, Zefeng Wen 1, Zhihui Li 1, Yue Wu 1 1 State Key Laboratory of Traction Power,

More information

Impedance of standard impact sources and their effect on impact sound pressure level of floors

Impedance of standard impact sources and their effect on impact sound pressure level of floors Impedance of standard impact sources and their effect on impact sound pressure level of floors B. Zeitler and T. Nightingale NRC - Institute for Research in Construction, 1 Montreal Road, Building M-7,

More information

Answer - SAQ 1. The intensity, I, is given by: Back

Answer - SAQ 1. The intensity, I, is given by: Back Answer - SAQ 1 The intensity, I, is given by: Noise Control. Edited by Shahram Taherzadeh. 2014 The Open University. Published 2014 by John Wiley & Sons Ltd. 142 Answer - SAQ 2 It shows that the human

More information

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes Active Impact Sound Isolation with Floating Floors Gonçalo Fernandes Lopes Outubro 009 Active impact sound isolation with floating floors Abstract The users of buildings are, nowadays, highly demanding

More information

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME PACS REFERENCE: 4.55.Ev Stauskis Vytautas J. Vilnius Gediminas Technical University Sauletekio al., LT-4 Vilnius.

More information

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS Clemens A.J. Beijers and André de Boer University of Twente P.O. Box 7, 75 AE Enschede, The Netherlands email: c.a.j.beijers@utwente.nl Abstract An important

More information

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS Twelfth International Congress on Sound and Vibration CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS G. Pispola a and K. V. Horoshenkov b a Department

More information

Variability in structure-borne flanking transmission at low and mid frequencies

Variability in structure-borne flanking transmission at low and mid frequencies Variability in structure-borne flanking transmission at low and mid frequencies Arne DIJCKMANS 1 1 KU Leuven, Department of Civil Engineering, Kasteelpark Arenberg 40, B-3001 Leuven, Belgium ABSTRACT Structure-borne

More information

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Hongjian Wu, Herwig Peters, Roger Kinns and Nicole Kessissoglou School of Mechanical and Manufacturing, University

More information

TFI Report Sound Absorption Impact Sound Insulation

TFI Report Sound Absorption Impact Sound Insulation TFI Report 462257-01 Sound Absorption Impact Sound Insulation Customer Desso B.V. Taxandriaweg 15 5142 PA Waalwijk NETHERLANDS Product textile floor covering This report includes 2 pages and 2 annex(es)

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Lecture No. # 09 Electromagnetic Wave Propagation Inhomogeneous Plasma (Refer Slide Time: 00:33) Today, I

More information

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Gil F. Greco* 1, Bernardo H. Murta 1, Iam H. Souza 1, Tiago B. Romero 1, Paulo H. Mareze 1, Arcanjo Lenzi 2 and Júlio A.

More information

Lecture 9: Reflection, Transmission and Impedance

Lecture 9: Reflection, Transmission and Impedance Matthew Schwartz Lecture 9: Reflection, Transmission and Impedance Boundary conditions at a junction Suppose we take two taut strings, one thick and one thin and knot them together. What will happen to

More information

ACOUSTIC INTRINSIC PERFORMANCES OF NOISE BARRIERS: ACCURACY OF IN SITU MEASUREMENT TECHNIQUES

ACOUSTIC INTRINSIC PERFORMANCES OF NOISE BARRIERS: ACCURACY OF IN SITU MEASUREMENT TECHNIQUES Twelfth International Congress on Sound and Vibration ACOUSTIC INTRINSIC PERFORMANCES OF NOISE BARRIERS: ACCURACY OF IN SITU MEASUREMENT TECHNIQUES Francesco Asdrubali, Giulio Pispola and Francesco D Alessandro

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 LABORATORY MEASUREMENT

More information

THE RADIATION EFFICIENCY OF FINITE SIZE FLAT PANELS

THE RADIATION EFFICIENCY OF FINITE SIZE FLAT PANELS THE RADIATION EFFICIENCY OF FINITE SIZE FLAT PANELS John L. Davy () () () Manufacturing and Infrastructure Technology, CSIRO, Melbourne, Australia () Applied Physics, RMIT University, Melbourne, Australia

More information

Chapter 4 Analysis of a cantilever

Chapter 4 Analysis of a cantilever Chapter 4 Analysis of a cantilever Before a complex structure is studied performing a seismic analysis, the behaviour of simpler ones should be fully understood. To achieve this knowledge we will start

More information

TFI Report Sound Absorption Impact Sound Insulation

TFI Report Sound Absorption Impact Sound Insulation TFI Report 471194-01 Sound Absorption Impact Sound Insulation Customer egetaepper a/s Industrivej Nord 25 7400 Herning DENMARK Product textile floor covering This report includes 2 pages and 2 annex(es)

More information

Response of a Shell Structure Subject to Distributed Harmonic Excitation

Response of a Shell Structure Subject to Distributed Harmonic Excitation Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2016 Response of a Shell Structure Subject to Distributed Harmonic Excitation Rui Cao

More information

OPAC102. The Acoustic Wave Equation

OPAC102. The Acoustic Wave Equation OPAC102 The Acoustic Wave Equation Acoustic waves in fluid Acoustic waves constitute one kind of pressure fluctuation that can exist in a compressible fluid. The restoring forces responsible for propagating

More information

unit 4 acoustics & ultrasonics

unit 4 acoustics & ultrasonics unit 4 acoustics & ultrasonics acoustics ACOUSTICS Deals with the production, propagation and detection of sound waves Classification of sound: (i) Infrasonic 20 Hz (Inaudible) (ii) Audible 20 to 20,000Hz

More information

Lab 1: Damped, Driven Harmonic Oscillator

Lab 1: Damped, Driven Harmonic Oscillator 1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Lecture 18: Reflection and Impedance

Lecture 18: Reflection and Impedance Lecture 18: Reflection and Impedance Let us look again at the question of what happens when a sound wave in the air runs into the surface of a body of water (or a wall, or glass, or whatever). How much

More information

Evaluation of standards for transmission loss tests

Evaluation of standards for transmission loss tests Evaluation of standards for transmission loss tests M. Cassidy, R. K Cooper, R. Gault and J. Wang Queen s University Belfast, School of Mechanical and Aerospace Engineering, Ashby Building, Stranmillis

More information

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box New materials can be permanently entered into the materials.txt file. This is a simple ASCII text file. See the section New Materials for details of how to enter new materials. If desired you can send

More information

Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method csnak, 014 Int. J. Nav. Archit. Ocean Eng. (014) 6:894~903 http://dx.doi.org/10.478/ijnaoe-013-00 pissn: 09-678, eissn: 09-6790 A simple formula for insertion loss prediction of large acoustical enclosures

More information

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings Transmission loss of rectangular silencers using meso-porous and micro-perforated linings T.E.Vigran Acoustic Group, Department of Electronics and Telecommunications, Norwegian University of Science and

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Vibration Isolation Lecture - 1 Vibration Isolation 1 This

More information

Mobility and Impedance Methods. Professor Mike Brennan

Mobility and Impedance Methods. Professor Mike Brennan Mobility and Impedance Methods Professor Mike Brennan ibration control ibration Problem Understand problem Modelling (Mobility and Impedance Methods) Solve Problem Measurement Mobility and Impedance The

More information

Modelling Low-frequency Vibrations of Light Weight Timber Floors

Modelling Low-frequency Vibrations of Light Weight Timber Floors Modelling Low-frequency Vibrations of Light Weight Timber Floors Acoustics Research Centre, University of Auckland September, 2006, DTU Outline Introduction 1 Introduction Acknowledgement Motivation 2

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

A Modal Approach to Lightweight Partitions with Internal Resonators

A Modal Approach to Lightweight Partitions with Internal Resonators A Modal Approach to Lightweight Partitions with Internal Resonators Steffen Hettler, Philip Leistner Fraunhofer-Institute of Building Physics, D-7569 Stuttgart, Nobelstrasse, Germany e-mail: hettler@ibp.fraunhofer.de,

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 FREQUENCY DEPENDENCY AND ANISOTROPY OF THE ELASTIC CONSTANTS OF (NON-)POROUS MATERIALS AND THEIR INFLUENCE ON THE USAGE IN BUILDING

More information

Measurement of Acoustic Properties of light weight concrete SL-Deck

Measurement of Acoustic Properties of light weight concrete SL-Deck DELTA Test Report TEST Reg. no. 100 Measurement of Acoustic Properties of light weight concrete SL-Deck Performed for Abeo A/S Project no.: I100486 Page 1 of 25 30 June 2014 DELTA Venlighedsvej 4 2970

More information

Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method

Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method Shuo-Yen LIN 1 ; Shinichi SAKAMOTO 2 1 Graduate School, the University of Tokyo 2 Institute

More information

Modeling and simulation of windows with noise mitigation and natural ventilation

Modeling and simulation of windows with noise mitigation and natural ventilation Modeling and simulation of windows with noise mitigation and natural ventilation Xiang YU ; Fangsen CUI ; ze-tiong TAN 2 ; Kui YAO 3 Institute of High Performance Computing, A*TAR, ingapore 2 Building

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 22 Review Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters 1-8 Review

More information

Sound-Absorbing and Insulating Enclosures for Ultrasonic Range

Sound-Absorbing and Insulating Enclosures for Ultrasonic Range ARCHIVES OF ACOUSTICS Arch. Acoust., 35, 2, 157 164 (2010) DOI: 10.2478/v10168-010-0014-4 Sound-Absorbing and Insulating Enclosures for Ultrasonic Range Andrzej DOBRUCKI, Bronisław ŻÓŁTOGÓRSKI, Piotr PRUCHNICKI,

More information

Discrete Models upon Calculation of Soundproofing by Solid Plate

Discrete Models upon Calculation of Soundproofing by Solid Plate Volume 119 No. 10 2108, 439-443 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Discrete Models upon Calculation of Soundproofing by Solid Plate Arkadiy

More information

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 140-6 Second edition 1998-08-15 Acoustics Measurement of sound insulation in buildings and of building elements Part 6: Laboratory measurements of impact sound insulation of

More information

Introduction to Acoustics. Phil Joseph

Introduction to Acoustics. Phil Joseph Introduction to Acoustics Phil Joseph INTRODUCTION TO ACOUSTICS Sound and Noise Sound waves Frequency, wavelength and wavespeed Point sources Sound power and intensity Wave reflection Standing waves Measures

More information

Design possibilities for impact noise insulation in lightweight floors A parameter study

Design possibilities for impact noise insulation in lightweight floors A parameter study Downloaded from orbit.dtu.dk on: Dec 23, 218 Design possibilities for impact noise insulation in lightweight floors A parameter study Brunskog, Jonas; Hammer, Per Published in: Euronoise Publication date:

More information

Niigata University, Japan. Kobayasi Institute of Physical Research, Japan. Niigata University, Japan

Niigata University, Japan. Kobayasi Institute of Physical Research, Japan. Niigata University, Japan INTER-NOISE 216 Control of resonance penetration phenomenon in double leaf structure for sound insulation by insertion of small Helmholt resonator and porous material Teruo IWASE 1 ; Satoshi SUGIE 2 ;

More information

Amplified catalogue of vibration reduction index formulas for junctions based on numerical simulations

Amplified catalogue of vibration reduction index formulas for junctions based on numerical simulations INTER-NOISE 16 Amplified catalogue of vibration reduction index formulas for junctions based on numerical simulations Jordi POBLET-PUIG 1 ; Catherine GUIGOU-CARTER 2 1 Universitat Politècnica de Catalunya,

More information

Sound transmission through triple-panel structures lined with poroelastic materials

Sound transmission through triple-panel structures lined with poroelastic materials Sound transmission through triple-panel structures lined with poroelastic materials Yu Liu a a Department of Mechanical Engineering Sciences University of Surrey Guildford GU2 7XH UK Abstract In this paper

More information

TFI Report Sound Absorption Impact Sound Insulation

TFI Report Sound Absorption Impact Sound Insulation TFI Report 481380-01 Sound Absorption Impact Sound Insulation Customer NEWSPEC CARPET (NINGBO) CO. LTD Cevin Yindong South Road NO. 399 315100 Ningbo CHINA VR Product textile floor covering This report

More information

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2013 The Influence of Boundary Conditions and Constraints on the Performance of Noise

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES 43.40r Philippe JEAN; Jean-François RONDEAU Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

WINTER 16 EXAMINATION

WINTER 16 EXAMINATION Model ject Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Absorption boundary conditions for geometrical acoustics

Absorption boundary conditions for geometrical acoustics Absorption boundary conditions for geometrical acoustics Cheol-Ho Jeong a) Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark, DK-800, Kongens Lyngby, Denmark Defining

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 1 Review of Basics of Mechanical Vibrations Lecture - 2 Introduction

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES P-7 THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES RYU, YUNSEON BRUEL & KJAER SOUND & VIBRATION MEASUREMENT A/S SKODSBORGVEJ 307 NAERUM 2850 DENMARK TEL : +45 77 41 23 87 FAX : +45 77

More information

TFI Report Sound Absorption Impact Sound Insulation

TFI Report Sound Absorption Impact Sound Insulation TFI Report 480781-01 Sound Absorption Impact Sound Insulation Customer egetaepper a/s Industrivej Nord 25 7400 Herning DENMARK Product textile floor covering This report includes 2 pages and 2 annex(es)

More information

Physics 106a/196a Problem Set 7 Due Dec 2, 2005

Physics 106a/196a Problem Set 7 Due Dec 2, 2005 Physics 06a/96a Problem Set 7 Due Dec, 005 Version 3, Nov 7, 005 In this set we finish up the SHO and study coupled oscillations/normal modes and waves. Problems,, and 3 are for 06a students only, 4, 5,

More information

1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction

1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction 1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction Vidmantas Dikavičius 1, Kęstutis Miškinis 2, Karolis Banionis 3,

More information

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A.

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A. VIBRATION RESPONSE OF A CYLINDRICAL SKIN TO ACOUSTIC PRESSURE VIA THE FRANKEN METHOD Revision H By Tom Irvine Email: tomirvine@aol.com September 16, 2008 Introduction The front end of a typical rocket

More information

UNIT 1 MODULE 2: OSCILLATIONS AND WAVES GENERAL OBJECTIVES EXPLANATORY NOTES SPECIFIC OBJECTIVES. On completion of this Module, students should:

UNIT 1 MODULE 2: OSCILLATIONS AND WAVES GENERAL OBJECTIVES EXPLANATORY NOTES SPECIFIC OBJECTIVES. On completion of this Module, students should: MODULE 2: OSCILLATIONS AND WAVES GENERAL OBJECTIVES On completion of this Module, students should: 1. understand the different types of oscillatory motion; 2. appreciate the properties common to all 3.

More information

Dynamic Analysis on Vibration Isolation of Hypersonic Vehicle Internal Systems

Dynamic Analysis on Vibration Isolation of Hypersonic Vehicle Internal Systems International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 55-60 International Research Publication House http://www.irphouse.com Dynamic Analysis on Vibration

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at   ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 128 133 6th International Building Physics Conference, IBPC 2015 Sound insulation of building elements at low frequency:

More information

Application of Binaural Transfer Path Analysis to Sound Quality Tasks

Application of Binaural Transfer Path Analysis to Sound Quality Tasks Application of Binaural Transfer Path Analysis to Sound Quality Tasks Dr.-Ing. Klaus Genuit HEAD acoustics GmbH 1. INTRODUCTION The Binaural Transfer Path Analysis was developed in order to predict the

More information

Transient response prediction of an impulsively excited structure using a scaling approach

Transient response prediction of an impulsively excited structure using a scaling approach Numerical Techniques (others): Paper ICA2016-668 Transient response prediction of an impulsively excited structure using a scaling approach Xianhui Li (a), Jing Zhang (b), Tuo Xing (c) (a) Beijing Municipal

More information

FDTD analysis on the sound insulation performance of wall system with narrow gaps

FDTD analysis on the sound insulation performance of wall system with narrow gaps FDTD analysis on the sound insulation performance of wall system with narrow gaps Takumi Asakura a Shinichi Sakamoto b Institute of Industrial Science, The University of Tokyo. Komaba 4-6-, Meguro-ku,

More information

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile 1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile Xian-lin Ren School of Mechatronics Engineering, University of Electronic Science

More information

Porous Materials for Sound Absorption and Transmission Control

Porous Materials for Sound Absorption and Transmission Control Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 8-2005 Porous Materials for Sound Absorption and Transmission Control J Stuart Bolton, bolton@purdue.edu Follow this and additional

More information

ACS Fluid Structure Interaction

ACS Fluid Structure Interaction ACS 519 - Fluid Structure Interaction Spring 2009 Instructor: Stephen A. Hambric Office: Garfield Thomas Water Tunnel Hours: By appointment email: sah19@arl.psu.edu Phone: (814) 863-3030 Fluid-structure

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES Proceedings of DETC98: 1998 ASME Design Engineering Technical Conference September 13-16, 1998, Atlanta, GA DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES O TRANSMISSION CASING STRUCTURES D. Crimaldi Graduate

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

PLEASE DO NOT REMOVE THIS PAGE

PLEASE DO NOT REMOVE THIS PAGE Thank you for downloading this document from the RMIT ResearchR Repository Citation: Davy, J, Larner, D, Wareing, R and Pearse, J 015, 'Approximate equations for the radiation impedance of a rectangular

More information

Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element Method

Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element Method Send Orders for Reprints to reprints@benthamscience.ae 91 The Open Mechanical Engineering Journal, 214, 8, 91-915 Open Access Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element

More information

ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA)

ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA) ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA) Panos Economou, Panagiotis Charalampous P.E. Mediterranean Acoustics Research & Development Ltd, Cyprus email: panos@pemard.com Geometrical

More information

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne PEER REVIEW 1... Your future in science will be largely controlled by anonymous letters from your peers. Matt peers Corinne 2 3 4 5 6 MULTIPLE DRIVNG FREQUENCIES LRC circuit L I = (1/Z)V ext Z must have

More information