Response of a Shell Structure Subject to Distributed Harmonic Excitation

Size: px
Start display at page:

Download "Response of a Shell Structure Subject to Distributed Harmonic Excitation"

Transcription

1 Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering Response of a Shell Structure Subject to Distributed Harmonic Excitation Rui Cao Purdue University, cao101@purdue.edu J Stuart Bolton Purdue University, bolton@purdue.edu Follow this and additional works at: Cao, Rui and Bolton, J Stuart, "Response of a Shell Structure Subject to Distributed Harmonic Excitation" (2016). Publications of the Ray W. Herrick Laboratories. Paper This document has been made available through Purdue e-pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

2 Response of a shell structure subject to distributed harmonic excitation Rui Cao, J. Stuart Bolton, Ray W. Herrick Laboratories School of Mechanical Engineering, Purdue University

3 I. Introduction Tire vibration problems can be modeled as ring/shell structure vibration problems x Tread vibration usually includes: In-plane vibration - y ( in the direction of travel) - x (axial direction) Out-of-plane vibration - z (radial direction) y z Ring model: S.C. Huang and W. Soedel. "Effects of coriolis acceleration on the free and forced in-plane vibrations of rotating rings on elastic foundation. Journal of Sound and Vibration (1987): MoViC&RASD 2

4 I. Introduction Experimental dispersion results of a tire with empty air cavity Tire surface mobility measurement MoViC&RASD 3

5 I. Introduction Experimental dispersion results of a tire with fibrous material filled air cavity A ring structure tire model can well capture the lower frequency wave types, but incapable of expressing the highlighted wave type in tire structures MoViC&RASD 4

6 I. Introduction 2D ring model 3D shell model Axial shearing motion in tires is experimentally found to be important in high frequency range Drawbacks: 1. No axial direction motion 2. Only allow radial and circumferential excitations 3. Not a good model for wide shell structures such as wide treadbands Advantage: 1. Axial motion is included 2. Allows 2D excitations 3. Suitable for modeling wide shell-like structures MoViC&RASD 5

7 II. Model description 1. Undeformed shell model 2. Pressurized from inside 3. Waves can travel in circumferential (θ) and axial (x) directions 4. Structure has motion in radial (r), circumferential (θ) and axial (x) directions 5. Discrete input forces are applied over an area to represent road surface input MoViC&RASD 6

8 III. Mathematical formulation Free vibration analysis Equations of motion Axial direction: L u, u, u h x x r 2 u t 2 x Tangential direction: Radial direction: L u, u, u h x r L u, u, u h r x r 2 u t 2 t 2 u 2 r L - linear differential operators, describing the stress strain relations in the shell MoViC&RASD Ref: W. Soedel. Vibrations of Shells and Plates. CRC Press,

9 III. Mathematical formulation Free vibration analysis Boundary conditions r Fixed BC in radial direction u (0, ) 0, u ( L, ) 0 r r θ x Fixed BC in circumferential direction u (0, ) 0, u ( L, ) 0 No constraint in axial direction N (0, ) 0, N ( L, ) 0 xx xx M (0, ) 0, M ( L, ) 0 xx xx MoViC&RASD 8

10 III. Mathematical formulation Free vibration analysis Solving for natural frequencies Assumed solutions satisfying the BCs k x u A x k L m cos cos n 2 h k k k A k h k k B k k h k C k x u B k L m sin sin n k x u C r k L m sin cos n EOM Set determinant to zero k m - axial wavenumber k n - tangential wavenumber k xx - relating k m, k n and material/geometry constants Damping is incorporated through complex Young s Modulus MoViC&RASD 9

11 III. Mathematical formulation Forced vibration analysis N1 N2 2 h h u q mni mni mni mni i m1 n0 η mni modal participation factor, q i applied total force in i direction i = 1, axial wave motion i = 2, tangential wave motion i = 3, radial wave motion N 1 number of axial modes used N 2 number of tangential modes used The equations are multiplied by orthogonal modes and integrated over the structure domain to solve for all η mni MoViC&RASD 10

12 III. Mathematical formulation Forced vibration analysis Generic area excitations FN 1 FN 2 Frpq q x x R r p q p1 q1 FN 1 FN 2 F ij q x x R p1 q1 p q p index of drive point along axial direction q index of drive point along tangential direction FN 1 total number of axial drive points FN 2 total number of circumferential drive points FN FN 1 2 F F u ( x, ) F u ( x, ) mni r xmni p q mni p q p1 q1 x θ r F mni resultant modal force MoViC&RASD 11

13 III. Mathematical formulation Forced vibration analysis Because no initial phase was assumed, two orthogonal assumed solution need to be assumed to cover all possible solutions. Using derived modal participation factors, we can substitute to obtain the forced response. 3 N N 1 2 u u u x mni (1) xmni (1) mni ( 2 ) xmni ( 2 ) i 1 m 1 n 0 3 N N 1 2 u u u mni (1) mni (1) mni ( 2 ) mni ( 2 ) i 1 m 1 n 0 3 N N 1 2 u u u r mni (1) rmni (1) mni ( 2 ) rmni ( 2 ) i 1 m 1 n 0 MoViC&RASD 12

14 Free vibration - Dispersion relation m = 1, n = 1 V r V a V c n Flexural wave (radial disturbance) Low frequency range Slow wave speed Due to relatively low flexural stiffness MoViC&RASD 13

15 Free vibration - Dispersion relation m = 2, n = 1 V r V a V c n Flexural wave (radial disturbance) Low frequency range Slow wave speed Due to relatively low flexural stiffness MoViC&RASD 14

16 Free vibration - Dispersion relation m = 2, n = 2 V r V a V c n Flexural wave (radial disturbance) Low frequency range Slow wave speed Due to relatively low flexural stiffness MoViC&RASD 15

17 Free vibration - Dispersion relation m = 1, n = 1 V r V a V c n Longitudinal wave (Axial disturbance) Mid frequency range Mid wave speed Due to relatively high in-plane stiffness in the axial direction MoViC&RASD 16

18 Free vibration - Dispersion relation m = 2, n = 1 V r V a V c n Longitudinal wave (Axial disturbance) Mid frequency range Mid wave speed Due to relatively high in-plane stiffness in the axial direction MoViC&RASD 17

19 Free vibration - Dispersion relation m = 2, n = 2 V r V a V c n Longitudinal wave (Axial disturbance) Mid frequency range Mid wave speed Due to relatively high in-plane stiffness in the axial direction MoViC&RASD 18

20 Free vibration - Dispersion relation m = 1, n = 1 V r V a V c n Longitudinal wave (circumferential disturbance) High frequency range High wave speed Due to high in-plane stiffness in the circumferential direction MoViC&RASD 19

21 Free vibration - Dispersion relation m = 2, n = 1 V r V a V c n Longitudinal wave (circumferential disturbance) High frequency range High wave speed Due to high in-plane stiffness in the circumferential direction MoViC&RASD 20

22 Free vibration - Dispersion relation m = 2, n = 2 V r V a V c n Longitudinal wave (circumferential disturbance) High frequency range High wave speed Due to high in-plane stiffness in the circumferential direction MoViC&RASD 21

23 Forced vibration Transfer mobility x r θ Radial transfer mobility along the circumference, driven by radial harmonic point excitation MoViC&RASD 22

24 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion due to radial harmonic point excitation Due to radial excitation, flexural waves are driven obviously Due to curvature coupling, axial in-plane waves are also driven, but at much lower amplitude MoViC&RASD 23

25 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion due to radial harmonic point excitation Due to radial excitation, flexural waves are driven obviously Due to curvature coupling, axial in-plane waves are also driven, but at much lower amplitude MoViC&RASD 24

26 Forced vibration Transfer mobility x r θ Radial transfer mobility along the circumference, driven by radial harmonic line excitation MoViC&RASD 25

27 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion due to radial harmonic line excitation The radial line input across the axial direction suppressed the axial in-plane and out-of-plane motion MoViC&RASD 26

28 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion due to radial harmonic line excitation The radial line input across the axial direction suppressed the axial in-plane motion MoViC&RASD 27

29 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion due to radial harmonic line excitation (1/10 normal damping) Axial and circumferential wave show up MoViC&RASD 28

30 Forced vibration Transfer mobility x r θ Radial transfer mobility along the circumference, driven by radial harmonic area excitation MoViC&RASD 29

31 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion due to radial harmonic area excitation The area input not only suppressed the axial motion but also eliminated the response associated with certain wavenumbers MoViC&RASD 30

32 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion due to radial harmonic area excitation The area input not only suppressed the axial motion but also eliminated the response associated with certain wavenumbers MoViC&RASD 31

33 Forced vibration Transfer mobility x r θ Tangential transfer mobility along the circumference, driven by 45 oblique harmonic area excitation The mobility along the circumference is no longer symmetric MoViC&RASD 32

34 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion (from u r ) due to 45 oblique harmonic area excitation The oblique excitation drives the in-plane motion mostly at high frequency MoViC&RASD 33

35 Forced vibration Dispersion (from wave decomposition) x r θ Dispersion (from u θ ) due to 45 oblique harmonic area excitation The oblique excitation drives the in-plane motion mostly at high frequency MoViC&RASD 34

36 V. Conclusions In-plane shearing exist in both the circumferential and axial directions The circumferential shearing is associated with various mode shapes in the axial direction The axial shearing is due to the changing mode shapes in the circumferential direction Due to coupling, the shearing modes create out-of-plane motion which can radiate sound effectively due to high phase speeds Excitation area distribution creates a spatial domain windowing effect, which can suppress certain modes and wave types in the forced response MoViC&RASD 35

Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental Verification

Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental Verification Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-2015 Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental

More information

Sound Radiation Modes of a Tire on a Reflecting Surface

Sound Radiation Modes of a Tire on a Reflecting Surface Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 7-2004 Sound Radiation Modes of a Tire on a Reflecting Surface J Stuart Bolton, bolton@purdue.edu Kiho Yum Follow this and additional

More information

Acoustic Radiation Modes of a Tire on a Reflecting Surface

Acoustic Radiation Modes of a Tire on a Reflecting Surface Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 3-2005 Acoustic Radiation Modes of a Tire on a Reflecting Surface Kiho Yum Purdue University

More information

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 11-6-2015 Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

More information

Visualization of Automotive Power Seat Slide Motor Noise

Visualization of Automotive Power Seat Slide Motor Noise Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 9-2014 Visualization of Automotive Power Seat Slide Motor Noise J Stuart Bolton Purdue University,

More information

Effects of rotation on the dynamics of a circular cylindrical shell with application to tire vibration $

Effects of rotation on the dynamics of a circular cylindrical shell with application to tire vibration $ Journal of Sound and Vibration 275 (24) 65 621 JOURNA OF SOUND AND VIBRATION www.elsevier.com/locate/jsvi Effects of rotation on the dynamics of a circular cylindrical shell with application to tire vibration

More information

Effect of Circumferential Edge Constraint on the Transmission Loss of Glass Fiber Materials

Effect of Circumferential Edge Constraint on the Transmission Loss of Glass Fiber Materials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 12-1999 Effect of Circumferential Edge Constraint on the ransmission Loss of Glass Fiber

More information

Experimental Investigation of the Use of Equivalent Sources Model in Room Acoustics Simulations

Experimental Investigation of the Use of Equivalent Sources Model in Room Acoustics Simulations Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-216 Experimental Investigation of the Use of Equivalent Sources Model in Room Acoustics

More information

Random incidence transmission loss of a metamaterial barrier system

Random incidence transmission loss of a metamaterial barrier system Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 11-2014 Random incidence transmission loss of a metamaterial barrier system Srinivas Varanasi

More information

Sound Radiation Of Cast Iron

Sound Radiation Of Cast Iron Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Sound Radiation Of Cast Iron N. I. Dreiman Tecumseh Products Company Follow this and

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS

NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS Nonlinear Structural Dynamics Using FE Methods emphasizes fundamental mechanics principles and outlines a modern approach to understanding structural dynamics.

More information

The Effect of Flexibility on the Acoustical Performance of Microperforated Materials

The Effect of Flexibility on the Acoustical Performance of Microperforated Materials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering -- The Effect of Flexibility on the Acoustical Performance of Microperforated Materials

More information

Porous Materials for Sound Absorption and Transmission Control

Porous Materials for Sound Absorption and Transmission Control Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 8-2005 Porous Materials for Sound Absorption and Transmission Control J Stuart Bolton, bolton@purdue.edu Follow this and additional

More information

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A.

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A. VIBRATION RESPONSE OF A CYLINDRICAL SKIN TO ACOUSTIC PRESSURE VIA THE FRANKEN METHOD Revision H By Tom Irvine Email: tomirvine@aol.com September 16, 2008 Introduction The front end of a typical rocket

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Sound radiation and sound insulation

Sound radiation and sound insulation 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

Fibrous Material Microstructure Design for Optimal Damping Performance

Fibrous Material Microstructure Design for Optimal Damping Performance Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 12-8-2017 Fibrous Material Microstructure Design for Optimal Damping Performance Yutong

More information

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2013 The Influence of Boundary Conditions and Constraints on the Performance of Noise

More information

AEROELASTIC ANALYSIS OF SPHERICAL SHELLS

AEROELASTIC ANALYSIS OF SPHERICAL SHELLS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,   ISSN X The receptance method applied to the free vibration of a circular cylindrical shell filled with fluid and with attached masses M. Amabili Dipartimento di Meccanica, Universita di Ancona, 1-60131 Ancona,

More information

Source Visualization by Using Statistically Optimized Near-Field Acoustical Holography in Conical Coordinates

Source Visualization by Using Statistically Optimized Near-Field Acoustical Holography in Conical Coordinates Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-01 Source Visualiation by Using Statistically Optimied Near-Field Acoustical Holography

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING In the preceding chapters, a model of a PZT actuator exciting a SS cylinder has been presented. The structural model is based on a modal expansion formulation

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Modeling of Membrane Sound Absorbers

Modeling of Membrane Sound Absorbers Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 8- Modeling of Membrane Sound Absorbers J Stuart Bolton, bolton@purdue.edu Jinho Song Follow this and additional works at: http://docs.lib.purdue.edu/herrick

More information

Inverse Characterization of Poro-Elastic Materials Based on Acoustical Input Data

Inverse Characterization of Poro-Elastic Materials Based on Acoustical Input Data Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 0-29-2009 Inverse Characterization of Poro-Elastic Materials Based on Acoustical Input Data

More information

R 4 (w u ) EA R 2 (w + u )+N(u w )+k c u + σ( u +Ωu )=0, + EA R 2 (w + u )+N(u w )+k r w + σ(ẇ +Ωw )=Pδ(θ), N = pbr + ρar 2 Ω 2.

R 4 (w u ) EA R 2 (w + u )+N(u w )+k c u + σ( u +Ωu )=0, + EA R 2 (w + u )+N(u w )+k r w + σ(ẇ +Ωw )=Pδ(θ), N = pbr + ρar 2 Ω 2. Proceedings of XLIII International Summer SchoolConference APM 2015 On the existence of a critical speed of a rotating ring under a stationary point load Tao Lu Andrei V. Metrikine T.Lu-2@tudelft.nl Abstract

More information

Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System

Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Analysis And Control Of Severe Vibration Of A Screw Compressor Outlet Piping System

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

More information

Sound radiation of a plate into a reverberant water tank

Sound radiation of a plate into a reverberant water tank Sound radiation of a plate into a reverberant water tank Jie Pan School of Mechanical and Chemical Engineering, University of Western Australia, Crawley WA 6009, Australia ABSTRACT This paper presents

More information

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories chool of Mechanical Engineering 5-21-2013 The Application of ingular Value Decomposition to Determine the ources of Far Field

More information

A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube

A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 2009 A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Modern Applied Science

Modern Applied Science wwwccsenetorg/mashtml Vol, No September 7 Study on Combined shell Mechanics Analysis Xiangzhong Meng College of Marine, Northwestern Polytechnical University, Xi an 77, China Tel: 86-9-887- E-mail: mengxz@mailnwpueducn

More information

Advanced Structural Analysis EGF Cylinders Under Pressure

Advanced Structural Analysis EGF Cylinders Under Pressure Advanced Structural Analysis EGF316 4. Cylinders Under Pressure 4.1 Introduction When a cylinder is subjected to pressure, three mutually perpendicular principal stresses will be set up within the walls

More information

Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates

Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates (3) 78 795 Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates Abstract In this paper, free vibration characteristics of laminated composite plates are

More information

Connecting the Singular Values of an Input Cross- Spectral Density Matrix to Noise Sources in a Diesel Engine

Connecting the Singular Values of an Input Cross- Spectral Density Matrix to Noise Sources in a Diesel Engine Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-2012 Connecting the Singular Values of an Input Cross- Spectral Density Matrix to Noise

More information

Testing of Fans with Microperforated Housings

Testing of Fans with Microperforated Housings Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-2013 Testing of Fans with Microperforated Housings J Stuart Bolton Purdue University,

More information

The Pennsylvania State University. The Graduate School. Graduate Program in Acoustics DETERMINATION OF INTERNAL PIPE ACOUSTIC PRESSURE

The Pennsylvania State University. The Graduate School. Graduate Program in Acoustics DETERMINATION OF INTERNAL PIPE ACOUSTIC PRESSURE The Pennsylvania State University The Graduate School Graduate Program in Acoustics DETERMINATION OF INTERNAL PIPE ACOUSTIC PRESSURE USING EXTERNAL ACCELEROMETERS A Thesis in Acoustics by Alexandria R.

More information

Modification of Simulated Far-field Engine Noise by Changing Near Field Measurement Singular Values

Modification of Simulated Far-field Engine Noise by Changing Near Field Measurement Singular Values Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-27-2013 Modification of Simulated Far-field Engine Noise by Changing Near Field Measurement

More information

ACOUSTIC RADIATION FROM FINITE LENGTH CYLINDRICAL SHELLS USING BOUNDARY ELEMENT METHOD

ACOUSTIC RADIATION FROM FINITE LENGTH CYLINDRICAL SHELLS USING BOUNDARY ELEMENT METHOD FIFTH INTERNATIONAL w CONGRESS ON SOUND DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA AND VIBRATION ACOUSTIC RADIATION FROM FINITE LENGTH CYLINDRICAL SHELLS USING BOUNDARY ELEMENT METHOD C.Wang J.CS.Lai

More information

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Sound Radiation of Structural Metals at Normal and Elevated Temperatures

Sound Radiation of Structural Metals at Normal and Elevated Temperatures Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Sound Radiation of Structural Metals at Normal and Elevated Temperatures N. Dreiman

More information

Tyre/road interaction noise-a 3D viscoelastic multilayer model of a tyre belt

Tyre/road interaction noise-a 3D viscoelastic multilayer model of a tyre belt Loughborough University Institutional Repository Tyre/road interaction noise-a 3D viscoelastic multilayer model of a tyre belt This item was submitted to Loughborough University's Institutional Repository

More information

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Exact Solutions Relation between Discrete and Distributed

More information

Shape Optimization of Oldham Coupling in Scroll Compressor

Shape Optimization of Oldham Coupling in Scroll Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 24 Shape Optimization of Oldham Coupling in Scroll Compressor In Hwe Koo LG Electronics

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Developing Evaluation Model of Tire Pattern Impact Noise

Developing Evaluation Model of Tire Pattern Impact Noise Developing Evaluation Model of Tire Pattern Impact Noise Nobutaka TSUJIUCHI 1 ; Akihito ITO 2 ; Atsushi MASUDA 3 ; Hamiyu SEKI 4 ; Hisashi TAKAHASHI 5 1-4 Doshisha University, Japan 5 Toyo Tire & Rubber

More information

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 3398-3411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS DILEEP

More information

Composite Structures- Modeling, FEA, Optimization and Diagnostics

Composite Structures- Modeling, FEA, Optimization and Diagnostics Composite Structures- Modeling, FEA, Optimization and Diagnostics Ratan Jha Mechanical and Aeronautical Engineering Clarkson University, Potsdam, NY Composite Laminate Modeling Refined Higher Order Displacement

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.0 VIBRATIONS OF FLAT

More information

Materials and Systems for Noise Control: Categorization and Challenges

Materials and Systems for Noise Control: Categorization and Challenges Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 5-13-2010 Materials and Systems for Noise Control: Categorization and Challenges J Stuart

More information

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Qianwen HUANG 1 ; Jia LIU 1 ; Cong ZHANG 1,2 ; inping YAN 1,2 1 Reliability Engineering Institute,

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Statistical Energy Analysis Software & Training Materials, Part II

Statistical Energy Analysis Software & Training Materials, Part II Statistical Energy Analysis Software & Training Materials, Part II Tom Irvine Dynamic Concepts, Inc. NASA Engineering & Safety Center (NESC) 20-22 June 2017 The Aerospace Corporation 2010 The Aerospace

More information

A broadband noise prediction scheme for lownoise centrifugal blowers

A broadband noise prediction scheme for lownoise centrifugal blowers Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 10-1990 A broadband noise prediction scheme for lownoise centrifugal blowers Peter Konieczny

More information

VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS

VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS Mechanical Engineering Department, Indian Institute of Technology, New Delhi 110 016, India (Received 22 January 1992,

More information

Vibro-Acoustic Modelling of Hermetic Reciprocating Compressors

Vibro-Acoustic Modelling of Hermetic Reciprocating Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Vibro-Acoustic Modelling of Hermetic Reciprocating Compressors L. Gavric CETIM Follow

More information

VIBRATION RESPONSE OF AN ELECTRIC GENERATOR

VIBRATION RESPONSE OF AN ELECTRIC GENERATOR Research Report BVAL35-001083 Customer: TEKES/SMART VIBRATION RESPONSE OF AN ELECTRIC GENERATOR Paul Klinge, Antti Hynninen Espoo, Finland 27 December, 2001 1 (12) Title A B Work report Public research

More information

Gradient-Based Estimation of Air Flow and Geometry Configurations in a Building Using Fluid Dynamic Adjoint Equations

Gradient-Based Estimation of Air Flow and Geometry Configurations in a Building Using Fluid Dynamic Adjoint Equations Purdue University Purdue e-pubs International High Performance Buildings Conference School of Mechanical Engineering 2016 Gradient-Based Estimation of Air Flow and Geometry Configurations in a Building

More information

Application of piezoelectric actuators to active control of composite spherical caps

Application of piezoelectric actuators to active control of composite spherical caps Smart Mater. Struct. 8 (1999 18. Printed in the UK PII: S964-176(991661-4 Application of piezoelectric actuators to active control of composite spherical caps Victor Birman, Gareth J Knowles and John J

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS

SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS 43 SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS E John MARSH And Tam J LARKIN SUMMARY This paper presents a study of surface wave characteristics using a two dimensional nonlinear seismic

More information

A longitudinal wave travels through a medium from left to right.

A longitudinal wave travels through a medium from left to right. 1. This question is about simple harmonic oscillations. A longitudinal wave travels through a medium from left to right. Graph 1 shows the variation with time t of the displacement x of a particle P in

More information

Sound Reduction Of Rotary Compressor Using Topology Optimization

Sound Reduction Of Rotary Compressor Using Topology Optimization Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Sound Reduction Of Rotary Compressor Using Topology Optimization S. Wang Kwangju Institute

More information

Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Lectures on. Constitutive Modelling of Arteries. Ray Ogden Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics

More information

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR UNITED STATES DEPARTMENT OF AGRICULTURE. FOREST SERVICE - FOREST PRODUCTS LABORATORY - MADISON, WIS. STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR NOVEMBER 1963 FPL-020 STRESSES WITHIN CURVED LAMINATED

More information

Measurement of Structural Intensity Using an Angular Rate Sensor

Measurement of Structural Intensity Using an Angular Rate Sensor Measurement of Structural Intensity Using an Angular Rate Sensor Nobuaki OMATA 1 ; Hiroki NAKAMURA ; Yoshiyuki WAKI 3 ; Atsushi KITAHARA 4 and Toru YAMAZAKI 5 1,, 5 Kanagawa University, Japan 3, 4 BRIDGESTONE,

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

More information

Preliminary proceedings ISMA-USD 2018

Preliminary proceedings ISMA-USD 2018 Dynamical energy analysis modelling by using transfer path analysis S. Morita 1, T. Hartmann 2, G. Tanner 2 1 Yanmar R&D Europe, Viale Galileo 3/A 50125, Firenze, Italy 2 University of Nottingham, University

More information

Dynamics of the Swash Plate Mechanism

Dynamics of the Swash Plate Mechanism Purdue University Purdue e-pubs nternational Compressor Engineering Conference School of Mechanical Engineering 1984 Dynamics of the Swash Plate Mechanism J. F. Below D. A. Miloslavich Follow this and

More information

Noise and Vibration Characterization and Statistical Energy Analysis of a Scroll Compressor

Noise and Vibration Characterization and Statistical Energy Analysis of a Scroll Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Noise and Vibration Characterization and Statistical Energy Analysis of a Scroll Compressor

More information

Finite Element Analysis of Dynamic Properties of Thermally Optimal Two-phase Composite Structure

Finite Element Analysis of Dynamic Properties of Thermally Optimal Two-phase Composite Structure Vibrations in Physical Systems Vol.26 (2014) Finite Element Analysis of Dynamic Properties of Thermally Optimal Two-phase Composite Structure Abstract Maria NIENARTOWICZ Institute of Applied Mechanics,

More information

VIBRATION PROBLEMS IN ENGINEERING

VIBRATION PROBLEMS IN ENGINEERING VIBRATION PROBLEMS IN ENGINEERING FIFTH EDITION W. WEAVER, JR. Professor Emeritus of Structural Engineering The Late S. P. TIMOSHENKO Professor Emeritus of Engineering Mechanics The Late D. H. YOUNG Professor

More information

Parametric Instability and Snap-Through of Partially Fluid- Filled Cylindrical Shells

Parametric Instability and Snap-Through of Partially Fluid- Filled Cylindrical Shells Available online at www.sciencedirect.com Procedia Engineering 14 (011) 598 605 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Parametric Instability and Snap-Through

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load 1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load Nader Mohammadi 1, Mehrdad Nasirshoaibi 2 Department of Mechanical

More information

Vibration Characteristic Analysis of Welding Point Based on the Loss Factor of Rotary Compressor

Vibration Characteristic Analysis of Welding Point Based on the Loss Factor of Rotary Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2 Vibration Characteristic Analysis of Welding Point Based on the Loss Factor of Rotary

More information

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering Static & Dynamic Analysis of Structures A Physical Approach With Emphasis on Earthquake Engineering Edward LWilson Professor Emeritus of Civil Engineering University of California, Berkeley Fourth Edition

More information

Simple Modeling and Modal Analysis of Reciprocating Compressor Crankshaft System

Simple Modeling and Modal Analysis of Reciprocating Compressor Crankshaft System Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2010 Simple Modeling and Modal Analysis of Reciprocating Compressor Crankshaft System Binyan

More information

Simple Harmonic Motion

Simple Harmonic Motion 3/5/07 Simple Harmonic Motion 0. The Ideal Spring and Simple Harmonic Motion HOOKE S AW: RESTORING FORCE OF AN IDEA SPRING The restoring force on an ideal spring is F x k x spring constant Units: N/m 3/5/07

More information

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS J. Kandasamy 1, M. Madhavi 2, N. Haritha 3 1 Corresponding author Department of Mechanical

More information

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Hongjian Wu, Herwig Peters, Roger Kinns and Nicole Kessissoglou School of Mechanical and Manufacturing, University

More information

DYNAMIC CHARACTERISTICS OF A PARTIALLY FLUID- FILLED CYLINDRICAL SHELL

DYNAMIC CHARACTERISTICS OF A PARTIALLY FLUID- FILLED CYLINDRICAL SHELL DOI: 10.5516/NET.2011.43.2.167 DYNAMIC CHARACTERISTICS OF A PARTIALLY FLUID- FILLED CYLINDRICAL SHELL MYUNG JO JHUNG *1, SEON OH YU 1, and YEONG TAEK LIM 2 1 Safety Research Division, Korea Institute of

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement

1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement Textbook Correlation Textbook Correlation Physics 1115/2015 Chapter 1 Introduction, Measurement, Estimating 1.1 Describe thoughts of Aristotle vs. Galileo in describing motion 1 1 Nature of Science 1.2

More information

Analytical Strip Method for Thin Isotropic Cylindrical Shells

Analytical Strip Method for Thin Isotropic Cylindrical Shells IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 4 Ver. III (Jul. Aug. 2017), PP 24-38 www.iosrjournals.org Analytical Strip Method for

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Direct Identification of Damping Parameters From FRF and Its Application to Compressor Engineering

Direct Identification of Damping Parameters From FRF and Its Application to Compressor Engineering Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2000 Direct Identification of Damping Parameters From FRF and Its Application to Compressor

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

Prob. 1 SDOF Structure subjected to Ground Shaking

Prob. 1 SDOF Structure subjected to Ground Shaking Prob. 1 SDOF Structure subjected to Ground Shaking What is the maximum relative displacement and the amplitude of the total displacement of a SDOF structure subjected to ground shaking? magnitude of ground

More information