Connection Formulae. The WKB approximation falls apart near a turning point. Then E V 0 so 1

Size: px
Start display at page:

Download "Connection Formulae. The WKB approximation falls apart near a turning point. Then E V 0 so 1"

Transcription

1 P3 WKB I D.Rubin February 8, 8 onnection Formulae The WKB approximation falls apart near a turning point. Then E V so p. And because the momentum goes to zero the wavelength gets very long the approximation is only valid if the wavelength is short compared to the distance over which the potential changes. But if want to determine bound state energies, we need to be able to match wave functions at the turning points. The strategy to overcome this limitation of the WKB wave functions at the turning points is to. Linearize the potential at the turning point (x = ). V (x) = V ()x dv dx. Solve Schrodinger s equation exactly near the turning point for the linear potential There will be two cases to consider. One where dv > dx the particle has positive kinetic energy to the left of the turning point (x < ), negative kinetic energy to the right (x > ). The other case is when dv < then there is negative kinetic energy to dx the left positive to the right. We consider first dv >. dx h d ψ m dx (V () xv )ψ = Eψ d ψ dx = m h (E V () xv )ψ = p h ψ The turning point is at x = that is where V (x) = E. So V () = E we have d ψ dx = α3 xψ where α 3 = m V. Then if we define the dimensionless parameter h z = αx we have d ψ dz = zψ which is Airy s equation the general solution is ψ p = aai(x) bbi(x)

2 ψ p is referred to as the patching wave function since its sole purpose is to patch together the WKB wave functions on each side of the turning point. 3. Determine the WKB wave function in the region of the linear potential. It will be different on each side of the turning point. To the left of the turning point for case one, the WKB wave function is ψ l (x) = A p e iφ(x) B p e iφ(x) where φ(x) = h p(x) = p(x )dx = α 3 ( x) dx = 3 ( αx) 3 () m(e V ) m( xv ) = hα 3 ( x) (Since we are to the left of the turning point x < the argument of the square root is positive.) The WKB wave function to the left of the turning point where the slope of the potential is positive is A ψ l (x) = e i h ( α3 x) 3 ( αx) 3 B h ( α3 x) or in terms of the parameter z = αx A ψ l (x) = e i ( hα) ( z) 3 ( z) 3 B ( hα) ( z) e i 3 ( αx) 3 e i 3 ( z) 3 () (3) To the right of the turning point, (x > ), the WKB wave function is ψ r (x) = p eφ(x) p D e φ(x) φ(x) = h p(x ) dx = 3 (αx) 3 () the WKB wave function to the right of the crossing point is ψ r (x) = e h (α3 x) 3 (αx) 3 D h (α3 x) e 3 (αx) 3 (5)

3 or in terms of the parameter z ψ r (x) = e ( hα) z 3 z 3 D ( hα) z e 3 z 3 (6). Now we want to use the patching wave function to connect the WKB wave to the left of the turning point with the WKB wave function to the right. We use the large negatve z asymtotic form of the Airy functions Ai(z) sin [ ( z) ] 3 π π( z) 3 = π( z) i [ e i 3 ( z) 3 e i π e i 3 ( z) 3 e i π Bi(z) cos [ ( z) ] [ ] 3 π π( z) 3 = e i 3 ( z) 3 e i π e i 3 ( z) 3 e i π π( z) ] z Then setting we have ψ l (z) = aai(z) bbi(z) Evidently ψ l (x) = = π( z) A ( hα) ( z) e i 3 ( z) 3 B e i ( hα) ( z) 3 ( z) 3 [ ] (b ia)e i 3 ( z) 3 e i π (b ia)e i 3 ( z) 3 e i π B b ia = ( hα) / π π ei A b ia = ( hα) / π π e i Solving for a b in terms of A B we have that π π b = hα (Aeiπ/ Be iπ/ ) a = hα (Ae iπ/ Be iπ/ ) (7) that takes care of matching the WKB wave function to the left of the turing point to the patching wave function. Now let s do the same thing to the right of the turning point. Here we use the large positive z asymtotic form of the Airy functions. Namely Ai(z) e π(z) / 3 z 3 z Bi(z) π(z) / e 3 z 3 3

4 Setting we have e ( hα) z 3 z 3 D ( hα) z from which we see that a = ψ r (z) = aai(z) bbi(z) e 3 z 3 = a π(z) e / 3 z 3 b e 3 z 3 π(z) / π hα D b = π hα (8) Finally we equate equations 7 8 to eliminate a b yielding the connection formulae π hα D = π hα (Ae iπ/ Be iπ/ ) (9) π π hα = hα (Aeiπ/ Be iπ/ ) () In summary, for a barrier to the right, the connection formulae are D = (Ae iπ/ Be iπ/ ) = Ae iπ/ Be iπ/ barrier to right A = De iπ/ e iπ/ B = De iπ/ eiπ/ Note that in the connection formulae, there is no mention of the linearized potential, the parameter α, V or Airy functions. The linearization procedure served only as a mechanism to relate the constants A B to the left of the turning point with the constants D to the right of the turning point. Having established that relationship, which by the way is good for any arbitrary potential, (as long as it is not too nonlinear), we no longer need the patching wave function. Now we know how to deal with a turning point to the right (namely with V > ). We need an equivalent set of relations to deal with turning points to the left (V < ) they can be derived by a similar procedure. The derivations are nearly identical. The only difference is that the phase integrals change sign. Equation will become φ(x) = h p(x )dx = α 3 ( x) dx = 3 ( αx) 3 ()

5 equation will become φ(x) = h p(x ) dx = 3 (αx) 3 () The result is that we interchange A for B for D. The connection formulae for a barrier to the left are given here for reference. D = Ae iπ/ Be iπ/ = (Aeiπ/ Be iπ/ ) barrier to left A = Deiπ/ e iπ/ B = De iπ/ e iπ/ 5. Now that we know how to match WKB wave functions at the turning points we can derive the quantization condition. Suppose that we are trying to determine the energy of a bound state. Imagine something like the harmonic oscillator potential with V < at the left turning point (x = x ) V > at the right turning point (x = x ). Then the region x < x is classically forbidden, (we refer to it as region I) ψ I (x) = p e x h x p(x ) dx D p e x h x p(x ) dx (3) In region II the WKB wave function for x > x is ψ II (x) = A e ī x h x p(x )dx B e i x h x p(x )dx () p p In order that ψ I (x) be finite for x, it must be that D =. Then connection formulae for a barrier to the left yield = Ae iπ/ Be iπ/, A = ib, A = e iπ/, B = e iπ/ (5) And using Equation 5 to substitute for A B, Equation becomes ψ II (x) = e ī x h x p(x )dx iπ/ p e i x h x p(x )dx iπ/ (6) p Next we have to connect WKB wave functions for region II III at x = x. In order to apply the connection formulae for a barrier to the right we need to have the wave function in the form ψ = A p e ī h x p(x )dx B e i h p x p(x )dx (7) 5

6 We can write Equation 6 in the same form as follows ψ II (x) = p e ī h ( x p(x )dx x p(x )dx iπ/) p e i h ( x p(x )dx x p(x )dx iπ/) omparing the previous equation with 7 we have that where e i(θ π/) = A, e i(θ π/) = B θ = h x p(x )dx Now we can use the connection formulae for a barrier to the right to connect ψ II with ψ III. ψ III (x) = p e x h x p(x ) dx D p e x h x p(x ) dx (8) We know that = since is the coefficient of the exponentially growing term for the WKB wave function in region III. The connection formulae for a barrier to the right give = A e iπ/ B e iπ/ = e i(θ π/) e iπ/ e i(θ π/) e iπ/ = cos θ But = so cos θ =, θ = (n )π (9) p(x)dx = hπ(n x ) () Equation determines the allowed energies of the system. 6

Analogous comments can be made for the regions where E < V, wherein the solution to the Schrödinger equation for constant V is

Analogous comments can be made for the regions where E < V, wherein the solution to the Schrödinger equation for constant V is 8. WKB Approximation The WKB approximation, named after Wentzel, Kramers, and Brillouin, is a method for obtaining an approximate solution to a time-independent one-dimensional differential equation, in

More information

Physics 443, Solutions to PS 4

Physics 443, Solutions to PS 4 Physics, Solutions to PS. Neutrino Oscillations a Energy eigenvalues and eigenvectors The eigenvalues of H are E E + A, and E E A and the eigenvectors are ν, ν And ν ν b Similarity transformation S S ν

More information

Last time: Normalization of eigenfunctions which belong to continuously variable eigenvalues. often needed - alternate method via JWKB next lecture

Last time: Normalization of eigenfunctions which belong to continuously variable eigenvalues. often needed - alternate method via JWKB next lecture 1. identities. ψδk, ψδp, ψδe, ψbox 3. trick using box normalization 4. Last time: Normalization of eigenfunctions which belong to continuously variable eigenvalues. # states # particles δθ δx dn de L 1/

More information

Physics 221A Fall 2010 Notes 7 The WKB Method

Physics 221A Fall 2010 Notes 7 The WKB Method Physics 22A Fall 200 Notes 7 The WKB Method. Introduction The WKB method is important both as a practical means of approximating solutions to the Schrödinger equation, and also as a conceptual framework

More information

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2 Physics 443 Prelim # with solutions March 7, 8 Each problem is worth 34 points.. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator H p m + mω x (a Use dimensional analysis to

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Creation and Destruction Operators and Coherent States

Creation and Destruction Operators and Coherent States Creation and Destruction Operators and Coherent States WKB Method for Ground State Wave Function state harmonic oscillator wave function, We first rewrite the ground < x 0 >= ( π h )1/4 exp( x2 a 2 h )

More information

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t Quantum Mechanics Wave functions and the Schrodinger equation Particles behave like waves, so they can be described with a wave function (x,y,z,t) A stationary state has a definite energy, and can be written

More information

Understand the basic principles of spectroscopy using selection rules and the energy levels. Derive Hund s Rule from the symmetrization postulate.

Understand the basic principles of spectroscopy using selection rules and the energy levels. Derive Hund s Rule from the symmetrization postulate. CHEM 5314: Advanced Physical Chemistry Overall Goals: Use quantum mechanics to understand that molecules have quantized translational, rotational, vibrational, and electronic energy levels. In a large

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

The wave function for a particle of energy E moving in a constant potential V

The wave function for a particle of energy E moving in a constant potential V Chapter 37 WKB quantization The wave function for a particle of energy E moving in a constant potential V is ψ = Ae i pq (37.1) with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/, and

More information

Lecture-XXVI. Time-Independent Schrodinger Equation

Lecture-XXVI. Time-Independent Schrodinger Equation Lecture-XXVI Time-Independent Schrodinger Equation Time Independent Schrodinger Equation: The time-dependent Schrodinger equation: Assume that V is independent of time t. In that case the Schrodinger equation

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution PHYSICS 72/82 - Spring Semester 2 - ODU Graduate Quantum Mechanics II Midterm Exam - Solution Problem ) An electron (mass 5, ev/c 2 ) is in a one-dimensional potential well as sketched to the right (the

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

(Refer Slide Time: 1:20) (Refer Slide Time: 1:24 min)

(Refer Slide Time: 1:20) (Refer Slide Time: 1:24 min) Engineering Chemistry - 1 Prof. K. Mangala Sunder Department of Chemistry Indian Institute of Technology, Madras Lecture - 5 Module 1: Atoms and Molecules Harmonic Oscillator (Continued) (Refer Slide Time:

More information

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. CHEM 2060 Lecture 18: Particle in a Box L18-1 Atomic Orbitals If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. We can only talk

More information

Quantum Physics Lecture 8

Quantum Physics Lecture 8 Quantum Physics ecture 8 Steady state Schroedinger Equation (SSSE): eigenvalue & eigenfunction particle in a box re-visited Wavefunctions and energy states normalisation probability density Expectation

More information

Quantum Physics III (8.06) Spring 2016 Assignment 3

Quantum Physics III (8.06) Spring 2016 Assignment 3 Quantum Physics III (8.6) Spring 6 Assignment 3 Readings Griffiths Chapter 9 on time-dependent perturbation theory Shankar Chapter 8 Cohen-Tannoudji, Chapter XIII. Problem Set 3. Semi-classical approximation

More information

Abstract. PACS number(s): Sq, Ge, Yz

Abstract. PACS number(s): Sq, Ge, Yz Classical solution of the wave equation M. N. Sergeenko The National Academy of Sciences of Belarus, Institute of Physics Minsk 007, Belarus, Homel State University, Homel 6699, Belarus and Department

More information

Lecture 2: simple QM problems

Lecture 2: simple QM problems Reminder: http://www.star.le.ac.uk/nrt3/qm/ Lecture : simple QM problems Quantum mechanics describes physical particles as waves of probability. We shall see how this works in some simple applications,

More information

Dimensional analysis

Dimensional analysis Dimensional analysis Calvin W. Johnson September 9, 04 Dimensional analysis Dimensional analysis is a powerful and important tool in calculations. In fact, you should make it a habit to automatically use

More information

WKB Approximation in 3D

WKB Approximation in 3D 1 WKB Approximation in 3D We see solutions ψr of the stationary Schrodinger equations for a spinless particle of energy E: 2 2m 2 ψ + V rψ = Eψ At rst, we just rewrite the Schrodinger equation in the following

More information

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Chemistry 432 Problem Set 4 Spring 2018 Solutions Chemistry 4 Problem Set 4 Spring 18 Solutions 1. V I II III a b c A one-dimensional particle of mass m is confined to move under the influence of the potential x a V V (x) = a < x b b x c elsewhere and

More information

More On Carbon Monoxide

More On Carbon Monoxide More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations of CO 1 / 26 More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations

More information

Review of Quantum Mechanics, cont.

Review of Quantum Mechanics, cont. Review of Quantum Mechanics, cont. 1 Probabilities In analogy to the development of a wave intensity from a wave amplitude, the probability of a particle with a wave packet amplitude, ψ, between x and

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

QM1 - Tutorial 2 Schrodinger Equation, Hamiltonian and Free Particle

QM1 - Tutorial 2 Schrodinger Equation, Hamiltonian and Free Particle QM - Tutorial Schrodinger Equation, Hamiltonian and Free Particle Yaakov Yuin November 07 Contents Hamiltonian. Denition...................................................... Example: Hamiltonian of a

More information

Chapter 38. Photons and Matter Waves

Chapter 38. Photons and Matter Waves Chapter 38 Photons and Matter Waves The sub-atomic world behaves very differently from the world of our ordinary experiences. Quantum physics deals with this strange world and has successfully answered

More information

Minimal coupling and Berry s phase

Minimal coupling and Berry s phase Phys460.nb 63 5 Minimal coupling Berry s phase Q: For charged quantum particles (e.g. electrons), if we apply an E&M field (E or B), the particle will feel the field. How do we consider the effect E B

More information

4 Differential Equations

4 Differential Equations Advanced Calculus Chapter 4 Differential Equations 65 4 Differential Equations 4.1 Terminology Let U R n, and let y : U R. A differential equation in y is an equation involving y and its (partial) derivatives.

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

JWKB QUANTIZATION CONDITION. exp ± i x. wiggly-variable k(x) Logical Structure of pages 6-11 to 6-14 (not covered in lecture):

JWKB QUANTIZATION CONDITION. exp ± i x. wiggly-variable k(x) Logical Structure of pages 6-11 to 6-14 (not covered in lecture): 7-1 JWKB QUANTIZATION CONDITION Last time: ( ) i 3 1. V ( ) = α φ( p) = Nep Ep p 6m hα ψ( ) = Ai( z) zeroes of Ai, Ai tales of Ai (and Bi) asymptotic forms far from turning points 2. Semi-Classical Approimation

More information

Quantum Mechanics: Vibration and Rotation of Molecules

Quantum Mechanics: Vibration and Rotation of Molecules Quantum Mechanics: Vibration and Rotation of Molecules 8th April 2008 I. 1-Dimensional Classical Harmonic Oscillator The classical picture for motion under a harmonic potential (mass attached to spring

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t.

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t. General properties of Schrödinger s Equation: Quantum Mechanics Schrödinger Equation (time dependent) m Standing wave Ψ(x,t) = Ψ(x)e iωt Schrödinger Equation (time independent) Ψ x m Ψ x Ψ + UΨ = i t +UΨ

More information

PHYS 3313 Section 001 Lecture #20

PHYS 3313 Section 001 Lecture #20 PHYS 3313 Section 001 ecture #0 Monday, April 10, 017 Dr. Amir Farbin Infinite Square-well Potential Finite Square Well Potential Penetration Depth Degeneracy Simple Harmonic Oscillator 1 Announcements

More information

t L(q, q)dt (11.1) ,..., S ) + S q 1

t L(q, q)dt (11.1) ,..., S ) + S q 1 Chapter 11 WKB and the path integral In this chapter we discuss two reformulations of the Schrödinger equations that can be used to study the transition from quantum mechanics to classical mechanics. They

More information

Wave propagation in an inhomogeneous plasma

Wave propagation in an inhomogeneous plasma DRAFT Wave propagation in an inhomogeneous plasma Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX NP, UK This version is of 7 February 208. Introduction In

More information

Physics 443, Solutions to PS 3 1

Physics 443, Solutions to PS 3 1 Physics 443 Solutions to PS 3. Griffiths 3.3. It is easiest to first write the hamiltonian matrix. By inspection ( ) H ɛ We find the eigenvalues λ by setting det(h λi) Then λ ± ±ɛ. Let ( ) a v b be an

More information

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ MODEL SYSTEM: PARTICLE IN A BOX Important because: It illustrates quantum mechanical principals It illustrates the use of differential eqns. & boundary conditions to solve for ψ It shows how discrete energy

More information

Solution: Drawing Bound and Scattering State Wave Function Warm-up: (a) No. The energy E is greater than the potential energy in region (i).

Solution: Drawing Bound and Scattering State Wave Function Warm-up: (a) No. The energy E is greater than the potential energy in region (i). Solution: Drawing Bound and Scattering State Wave Function Warm-up: 1. 2. 3. 4. (a) No. The energy E is greater than the potential energy in region (i). (b) No. The energy E is greater than the potential

More information

Sample Quantum Chemistry Exam 1 Solutions

Sample Quantum Chemistry Exam 1 Solutions Chemistry 46 Fall 217 Dr Jean M Standard September 27, 217 Name SAMPE EXAM Sample Quantum Chemistry Exam 1 Solutions 1 (24 points Answer the following questions by selecting the correct answer from the

More information

A. Time dependence from separation of timescales

A. Time dependence from separation of timescales Lecture 4 Adiabatic Theorem So far we have considered time independent semiclassical problems. What makes these semiclassical is that the gradient term (which is multiplied by 2 ) was small. In other words,

More information

MAE294B/SIOC203B: Methods in Applied Mechanics Winter Quarter sgls/mae294b Solution IV

MAE294B/SIOC203B: Methods in Applied Mechanics Winter Quarter sgls/mae294b Solution IV MAE9B/SIOC3B: Methods in Applied Mechanics Winter Quarter 8 http://webengucsdedu/ sgls/mae9b 8 Solution IV (i The equation becomes in T Applying standard WKB gives ɛ y TT ɛte T y T + y = φ T Te T φ T +

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Soliton-like Solutions to NLS on Compact Manifolds

Soliton-like Solutions to NLS on Compact Manifolds Soliton-like Solutions to NLS on Compact Manifolds H. Christianson joint works with J. Marzuola (UNC), and with P. Albin (Jussieu and UIUC), J. Marzuola, and L. Thomann (Nantes) Department of Mathematics

More information

6. Qualitative Solutions of the TISE

6. Qualitative Solutions of the TISE 6. Qualitative Solutions of the TISE Copyright c 2015 2016, Daniel V. Schroeder Our goal for the next few lessons is to solve the time-independent Schrödinger equation (TISE) for a variety of one-dimensional

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

The Schrödinger Equation in One Dimension

The Schrödinger Equation in One Dimension The Schrödinger Equation in One Dimension Introduction We have defined a comple wave function Ψ(, t) for a particle and interpreted it such that Ψ ( r, t d gives the probability that the particle is at

More information

Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad

Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad Overview The goal of this research was to examine the

More information

CHEM 301: Homework assignment #5

CHEM 301: Homework assignment #5 CHEM 30: Homework assignment #5 Solutions. A point mass rotates in a circle with l =. Calculate the magnitude of its angular momentum and all possible projections of the angular momentum on the z-axis.

More information

Problem Set 5 Solutions

Problem Set 5 Solutions Chemistry 362 Dr Jean M Standard Problem Set 5 Solutions ow many vibrational modes do the following molecules or ions possess? [int: Drawing Lewis structures may be useful in some cases] In all of the

More information

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables Physics 06a, Caltech 3 November, 08 Lecture 3: Action, Hamilton-Jacobi Theory Starred sections are advanced topics for interest and future reference. The unstarred material will not be tested on the final

More information

Chapter. 5 Bound States: Simple Case

Chapter. 5 Bound States: Simple Case Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 12 HW3 (due 3/2) 13, 15, 20, 31, 36, 41, 48, 53, 63, 66 ***** Exam: 3/12 Ch.2, 3, 4, 5 Feb. 26, 2015 Physics

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 13 The Schrödinger Equation 13.1 Where we are so far We have focused primarily on electron spin so far because it s a simple quantum system (there are only two basis states!), and yet it still

More information

Chemistry 3502/4502. Exam I. September 19, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam I. September 19, ) This is a multiple choice exam. Circle the correct answer. D Chemistry 350/450 Exam I September 9, 003 ) This is a multiple choice exam. Circle the correct answer. ) There is one correct answer to every problem. There is no partial credit. 3) A table of useful

More information

Notes on Quantum Mechanics

Notes on Quantum Mechanics Notes on Quantum Mechanics Kevin S. Huang Contents 1 The Wave Function 1 1.1 The Schrodinger Equation............................ 1 1. Probability.................................... 1.3 Normalization...................................

More information

Deriving quantum mechanics from statistical assumptions

Deriving quantum mechanics from statistical assumptions from statistical assumptions U. Klein University of Linz, Institute for Theoretical Physics, A-4040 Linz, Austria Joint Annual Meeting of ÖPG/SPS/ÖGAA - Innsbruck 2009 The interpretation of quantum mechanics

More information

QUANTUM MECHANICS A (SPA 5319) The Finite Square Well

QUANTUM MECHANICS A (SPA 5319) The Finite Square Well QUANTUM MECHANICS A (SPA 5319) The Finite Square Well We have already solved the problem of the infinite square well. Let us now solve the more realistic finite square well problem. Consider the potential

More information

Semi-Dirac Dispersion, and its Various Aspects SWAPNONIL BANERJEE DISSERTATION

Semi-Dirac Dispersion, and its Various Aspects SWAPNONIL BANERJEE DISSERTATION Semi-Dirac Dispersion, and its Various Aspects By SWAPNONIL BANERJEE DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in PHYSICS in the OFFICE OF

More information

CHAPTER 36. 1* True or false: Boundary conditions on the wave function lead to energy quantization. True

CHAPTER 36. 1* True or false: Boundary conditions on the wave function lead to energy quantization. True CHAPTER 36 * True or false: Boundary conditions on the we function lead to energy quantization. True Sketch (a) the we function and (b) the probability distribution for the n 4 state for the finite squarewell

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg March 9, 0 Lecture 5 Let s say something about SO(0. We know that in SU(5 the standard model fits into 5 0(. In SO(0 we know that it contains SU(5, in two

More information

Lecture2A--Model QM Problems with Exact Solutions (1-D)

Lecture2A--Model QM Problems with Exact Solutions (1-D) Lecture2A--Model QM Problems with Exact Solutions (1-D) (Ch 2.2-Levine, 3-3 Atkins, Ch. 2-R&S) 1. Free Particle -- If there is no potential then Schroedinger Equation becomes T (x) = E (x) ==> -(h 2 /2m)

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree THE SCHRÖDINGER EQUATION (A REVIEW) We do not derive F = ma; we conclude F = ma by induction from a large series of observations. We use it as long as its predictions agree with our experiments. As with

More information

Physics 443, Solutions to PS 2

Physics 443, Solutions to PS 2 . Griffiths.. Physics 443, Solutions to PS The raising and lowering operators are a ± mω ( iˆp + mωˆx) where ˆp and ˆx are momentum and position operators. Then ˆx mω (a + + a ) mω ˆp i (a + a ) The expectation

More information

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation Diatomic Molecules 7th May 2009 1 Hydrogen Molecule: Born-Oppenheimer Approximation In this discussion, we consider the formulation of the Schrodinger equation for diatomic molecules; this can be extended

More information

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 21 Square-Integrable Functions (Refer Slide Time: 00:06) (Refer Slide Time: 00:14) We

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 28 Complex Analysis Module: 6:

More information

Solution to Problem Set 5 Physics 480 / Fall 1999 Prof. Klaus Schulten / Prepared by Pinaki Sengupta & Ioan Kosztin

Solution to Problem Set 5 Physics 480 / Fall 1999 Prof. Klaus Schulten / Prepared by Pinaki Sengupta & Ioan Kosztin Solution to Problem Set 5 Physics 480 / Fall 1999 Prof. Klaus Schulten / Prepared by Pinaki Sengupta & Ioan Kosztin Problem 1: Energies of the Bound States of the Morse Potential in the Semiclassical Approximation

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler March 8, 011 1 Lecture 19 1.1 Second Quantization Recall our results from simple harmonic oscillator. We know the Hamiltonian very well so no need to repeat here.

More information

PSI Lectures on Complex Analysis

PSI Lectures on Complex Analysis PSI Lectures on Complex Analysis Tibra Ali August 14, 14 Lecture 4 1 Evaluating integrals using the residue theorem ecall the residue theorem. If f (z) has singularities at z 1, z,..., z k which are enclosed

More information

Physics 486 Discussion 5 Piecewise Potentials

Physics 486 Discussion 5 Piecewise Potentials Physics 486 Discussion 5 Piecewise Potentials Problem 1 : Infinite Potential Well Checkpoints 1 Consider the infinite well potential V(x) = 0 for 0 < x < 1 elsewhere. (a) First, think classically. Potential

More information

One-dimensional potentials: potential step

One-dimensional potentials: potential step One-dimensional potentials: potential step Figure I: Potential step of height V 0. The particle is incident from the left with energy E. We analyze a time independent situation where a current of particles

More information

( ), λ. ( ) =u z. ( )+ iv z

( ), λ. ( ) =u z. ( )+ iv z AMS 212B Perturbation Metho Lecture 18 Copyright by Hongyun Wang, UCSC Method of steepest descent Consider the integral I = f exp( λ g )d, g C =u + iv, λ We consider the situation where ƒ() and g() = u()

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

The Position Representation in Quantum Mechanics

The Position Representation in Quantum Mechanics The Position Representation in Quantum Mechanics Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 13, 2007 The x-coordinate of a particle is associated with

More information

Chemistry 3502/4502. Exam I Key. September 19, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam I Key. September 19, ) This is a multiple choice exam. Circle the correct answer. D Chemistry 350/450 Exam I Key September 19, 003 1) This is a multiple choice exam. Circle the correct answer. ) There is one correct answer to every problem. There is no partial credit. 3) A table of

More information

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems.

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems. D Chemistry 3502/4502 Exam I February 6, 2006 1) Circle the correct answer on multiple-choice problems. 2) There is one correct answer to every multiple-choice problem. There is no partial credit. On the

More information

U(x) Finite Well. E Re ψ(x) Classically forbidden

U(x) Finite Well. E Re ψ(x) Classically forbidden Final Exam Physics 2130 Modern Physics Tuesday December 18, 2001 Point distribution: All questions are worth points 8 points. Answers should be bubbled onto the answer sheet. 1. At what common energy E

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23)

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23) Vibrational motion Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion F == dv where k Parabolic V = 1 f k / dx = is Schrodinge h m d dx ψ f k f x the force constant x r + ( 拋物線 ) 1 equation

More information

REVIEW: The Matching Method Algorithm

REVIEW: The Matching Method Algorithm Lecture 26: Numerov Algorithm for Solving the Time-Independent Schrödinger Equation 1 REVIEW: The Matching Method Algorithm Need for a more general method The shooting method for solving the time-independent

More information

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as Vector Fields The most general Poincaré-invariant local quadratic action for a vector field with no more than first derivatives on the fields (ensuring that classical evolution is determined based on the

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

The Particle in a Box

The Particle in a Box Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given:

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Section 9 Variational Method. Page 492

Section 9 Variational Method. Page 492 Section 9 Variational Method Page 492 Page 493 Lecture 27: The Variational Method Date Given: 2008/12/03 Date Revised: 2008/12/03 Derivation Section 9.1 Variational Method: Derivation Page 494 Motivation

More information

Resonant Tunneling in Quantum Field Theory

Resonant Tunneling in Quantum Field Theory Resonant Tunneling in Quantum Field Theory Dan Wohns Cornell University work in progress with S.-H. Henry Tye September 18, 2009 Dan Wohns Resonant Tunneling in Quantum Field Theory 1/36 Resonant Tunneling

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L "

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L Chem 352/452 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 26 Christopher J. Cramer Lecture 8, February 3, 26 Solved Homework (Homework for grading is also due today) Evaluate

More information

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Modern Physics Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Ron Reifenberger Professor of Physics Purdue University 1 There are many operators in QM H Ψ= EΨ, or ˆop

More information

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4 Variational calculations for Hydrogen and Helium Recall the variational principle See Chapter 16 of the textbook The variational theorem states that for a Hermitian operator H with the smallest eigenvalue

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information