The Position Representation in Quantum Mechanics

Size: px
Start display at page:

Download "The Position Representation in Quantum Mechanics"

Transcription

1 The Position Representation in Quantum Mechanics Sungwook Lee Department of Mathematics University of Southern Mississippi July 13, 2007 The x-coordinate of a particle is associated with an operator ˆx. The set of numbers that are eigenvalues of an operator is called the spectrum of the operator. The spectrum of ˆx consists of real numbers < x <. x is the state in which the particle is certainly at x and satisfies the eigenvalue equation ˆx x = x x. If the particle is in some state ψ, the amplitude to find the particle at x is the complex number x ψ. The functional dependence of this number on x is what is called the wave function ψ(x): ψ(x) = x ψ. Since the particle has to be somewhere, the sum of the probabilities ψ(x) 2 has to be 1. Since the values of x is continuous, 1 = dx ψ(x) 2 = dx ψ x x ψ. (1) In discrete case, if ψ n, n = 1, 2, denote eigenkets, then ψ = ψ n ψ n ψ. n=1 So, n=1 ψ n ψ n = I. Similarly, from (1) we obtain dx x x = I. (2) By (2), x ψ = dx x x x ψ. (3) 1

2 Recall that the Dirac delta function is defined by ψ(x ) = dxδ(x x )ψ(x). Compare this with (3), we get If φ and ψ are two states, then 1 by (2) φ ψ = dx φ x x ψ = dxφ (x)ψ(x). x x = δ(x x ). (4) In the position representation, the functional form ψ( ) is identified with the state ψ and the complex number ψ(x) with the amplitude x ψ. Now, let us calculate x ˆx ψ. First we assume that ˆx is hermitian, i.e., (ˆx) = ˆx as usual in quantum mechanics. x ˆx ψ = (ˆx) x ψ = ˆxx ψ = x x ψ = xψ(x). This calculation also can be done without assuming that ˆx is hermitian: x ˆx ψ = x ˆx I ψ = = = = = xψ(x). dx x ˆx x x ψ dx x ˆxx ψ(x ) dxx δ(x x )ψ(x ) dxδ(x x )x ψ(x ) 1 Here, we consider only 1-dimensional case, so φ (x) = φ(x). 2

3 Hence, the operator ˆx turns ψ that evaluates ψ(x) into the one that evaluates xψ(x). In the position representation, x-momentum p operates on wave functions by differentiation 2 : h x ˆp ψ = x ˆpψ = ˆpψ(x) = i ψ. = J s is the Dirac constant or the reduced Planck constant, where h J s is the Planck constant. Let u p (x) := x p. Then x ˆp p = x ˆpp = i u p = pu p (x), since ˆp p = p p. That is, we obtain the differential equation i u p = pu p. The differential equation has a general solution u p (x) = Ae ipx/. The unknown constant A can be determined as follows: δ(p p ) = p p = dx p x x p = dxu p (x)u p(x) = A 2 dxe i(p p )x/ = A 2 δ(p p ). 1 Here, we used the familiar integral dte ixt = δ(x) in Fourier transforms. Recall that this integral came from the sequence of functions δ n (x) = sin nx πx = 1 n n dte ixt, n = 1, 2, 2 For now, we will take it as a definition, but it will be proved later. 3

4 which approximates the Dirac delta function δ(x), i.e., δ(x) lim n δ n(x) = 1 Since A > 0, A = 1. Hence, dte ixt. Figure 1: The sequence δ n (x) u p (x) = 1 e ipx/. This is the wave function of a state of momentum. In physics, the hamiltonian H plays an important role in the study of dynamics. It is given by H = T + V, where T and V are the kinetic energy and the potential energy, respectively. The hamiltonian H represents the energy of a physical system. The kinetic energy is given by T = p2 2m where p is the momentum. So, the hamiltonian can be written as H(p, x) = p2 2m + V (x). 4

5 A typical classical example is the hamiltonian for a harmonic oscillator: H(p, x) = p2 2m mω2 x 2. In the position representation, the hamiltonian for a particle acts by a combination of differentiation and multiplications: x H ψ = x Hψ = Hψ(x) ( = 2 ) 2m 2 + V (x) ψ(x). For a single particle moving along a real line R, there are two important observables: position and momentum. As we discussed earlier, in the quantum mechanical description of such a particle, the position operator ˆx and momentum operator ˆp are respectively given by x ˆx ψ = xψ(x), (5) x ˆp ψ = i ψ(x). (6) Now, we prove (6). This is what Larry Mead taught me 3. Let H be a Hilbert space of states. Suppose that O is a hermitian operator 4 on H such that the unitary operator g(a) = e ioa/, < a < satisfies the property: g(a)ψ(x) = ψ(x + a). (7) That is, g(a) gives rise to a translation of ψ(x) along the real line. unitary operator g(a) = e ioa/ acts on ψ(x) as 5 e ioa/ ψ(x) = (1 + = ψ(x) + ia ) ia a2 O 2! 2 O2 + ψ(x) Oψ(x) a2 2! 2 O2 ψ(x) +. The 3 If there is any misleading in the following argument, it is solely due to my misunderstanding on the material. 4 Let G be the group of unitary operators on a Hilbert space H and O a hermitian operator on H. Then {e ioa/ : a R} is a one-parameter (sub)group of G. 5 Here O 2 means the function composition O O. 5

6 Let x denote the position operator and δa denote infinitesimal change of a, so that (δa) n can be neglected for n 2. For any wave function ψ(x), Thus, On the other hand, e ioδa/ xe ioδa/ ψ(x) = e ioδa/ xψ(x δa) e ioδa/ xe ioδa/ = = (x + δa)ψ(x). e ioδa/ xe ioδa/ = x + δa. (8) ( 1 + iδa ) ( O x 1 iδa ) O = x iδa [x, O], where [x, O] = xo Ox is the canonical commutator. From (8) and (9), we obtain x + δa = x iδa [x, O]. This implies [x, O] = i. (10) Let a R. From (7) one obtains (9) ψ(x) 2 = ψ(x + a) 2. (11) So, one may consider the complex-valued function ψ(x) itself as a periodic function, and a simple candidate for ψ(x) satisfying (11) can be ψ(x) = e ikx. Note that k is the wave number k = λ, where λ is the wave length. Using the de Broglie s formula p = h λ, one obtains p = k or k = p. Hence, ψ(x) = e ipx/. (12) The wave function in (12) may be regarded as x p, i.e., ψ(x) = x p and ψ (x) = p x. Since ˆp p = p p, On the other hand, x ˆp p = p x p = pψ(x). (13) x ˆp p = xˆp I p = dx x ˆp x x p = dx ˆp x ψ(x ). (14) 6

7 From (13) and (14), one obtains dx x ˆp x e ipx / = pe ipx/. By Fourier transform 6, x ˆp x = This implies that = i dp / e ipx pe ipx/ dp eip(x x )/. = i δ(x x ). ψ ˆp ψ = ψ I ˆp I ψ = dx dx ψ x x ˆp x x ψ [ = dx dx ψ (x) i ] δ(x x ) ψ(x ) ( = dxψ (x) i ) dx δ(x x )ψ(x ) ( = dxψ (x) i ) ψ(x). Since ψ ˆp ψ = dxψ (x)ˆpψ(x), we see that ˆp = i. (15) Let us write the momentum operator ˆp simply as p. Then for any wave then 6 Recall that if φ(k) = 1 ψ(x) = 1 dxe ikx ψ(x), dke ikx φ(k) and vice versa. 7

8 function ψ(x), Hence, [x, p]ψ(x) = xpψ(x) pxψ(x) ( = x i ψ(x) ) + i ψ(x) = i ψ(x). [x, p] = i. (16) That is, the momentum operator p satisfies the commutation relation (10). Clearly, e ipa/ ψ(x) = e ipa/ e ipx/ = e ip(x+a)/ = ψ(x + a). Therefore, the momentum operator p = i is the desired operator O. 8

Physics 221A Fall 2010 Notes 1 The Mathematical Formalism of Quantum Mechanics

Physics 221A Fall 2010 Notes 1 The Mathematical Formalism of Quantum Mechanics Physics 221A Fall 2010 Notes 1 The Mathematical Formalism of Quantum Mechanics 1. Introduction The prerequisites for Physics 221A include a full year of undergraduate quantum mechanics. In this semester

More information

Continuous quantum states, Particle on a line and Uncertainty relations

Continuous quantum states, Particle on a line and Uncertainty relations Continuous quantum states, Particle on a line and Uncertainty relations So far we have considered k-level (discrete) quantum systems. Now we turn our attention to continuous quantum systems, such as a

More information

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 In Lecture 1 and 2, we have discussed how to represent the state of a quantum mechanical system based the superposition

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

1 Planck-Einstein Relation E = hν

1 Planck-Einstein Relation E = hν C/CS/Phys C191 Representations and Wavefunctions 09/30/08 Fall 2008 Lecture 8 1 Planck-Einstein Relation E = hν This is the equation relating energy to frequency. It was the earliest equation of quantum

More information

PLEASE LET ME KNOW IF YOU FIND TYPOS (send to

PLEASE LET ME KNOW IF YOU FIND TYPOS (send  to Teoretisk Fysik KTH Advanced QM (SI2380), Lecture 2 (Summary of concepts) 1 PLEASE LET ME KNOW IF YOU FIND TYPOS (send email to langmann@kth.se) The laws of QM 1. I now discuss the laws of QM and their

More information

Wave Mechanics Relevant sections in text: , 2.1

Wave Mechanics Relevant sections in text: , 2.1 Wave Mechanics Relevant sections in text: 1.1 1.6, 2.1 The wave function We will now create a model for the system that we call a particle in one dimension. To do this we should define states and observables.

More information

1 Position Representation of Quantum State Function

1 Position Representation of Quantum State Function C/CS/Phys C191 Quantum Mechanics in a Nutshell II 10/09/07 Fall 2007 Lecture 13 1 Position Representation of Quantum State Function We will motivate this using the framework of measurements. Consider first

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler March 8, 011 1 Lecture 19 1.1 Second Quantization Recall our results from simple harmonic oscillator. We know the Hamiltonian very well so no need to repeat here.

More information

Physics 221A Fall 2017 Notes 1 The Mathematical Formalism of Quantum Mechanics

Physics 221A Fall 2017 Notes 1 The Mathematical Formalism of Quantum Mechanics Copyright c 2017 by Robert G. Littlejohn Physics 221A Fall 2017 Notes 1 The Mathematical Formalism of Quantum Mechanics 1. Introduction The prerequisites for Physics 221A include a full year of undergraduate

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

Physics 215 Quantum Mechanics 1 Assignment 5

Physics 215 Quantum Mechanics 1 Assignment 5 Physics 15 Quantum Mechanics 1 Assignment 5 Logan A. Morrison February 10, 016 Problem 1 A particle of mass m is confined to a one-dimensional region 0 x a. At t 0 its normalized wave function is 8 πx

More information

Lecture Notes 2: Review of Quantum Mechanics

Lecture Notes 2: Review of Quantum Mechanics Quantum Field Theory for Leg Spinners 18/10/10 Lecture Notes 2: Review of Quantum Mechanics Lecturer: Prakash Panangaden Scribe: Jakub Závodný This lecture will briefly review some of the basic concepts

More information

8.04 Quantum Physics Lecture IV. ψ(x) = dkφ (k)e ikx 2π

8.04 Quantum Physics Lecture IV. ψ(x) = dkφ (k)e ikx 2π Last time Heisenberg uncertainty ΔxΔp x h as diffraction phenomenon Fourier decomposition ψ(x) = dkφ (k)e ikx π ipx/ h = dpφ(p)e (4-) πh φ(p) = φ (k) (4-) h Today how to calculate φ(k) interpretation of

More information

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current Prolem Set 5 Solutions 8.04 Spring 03 March, 03 Prolem. (0 points) The Proaility Current We wish to prove that dp a = J(a, t) J(, t). () dt Since P a (t) is the proaility of finding the particle in the

More information

Lecture 8. 1 Uncovering momentum space 1. 2 Expectation Values of Operators 4. 3 Time dependence of expectation values 6

Lecture 8. 1 Uncovering momentum space 1. 2 Expectation Values of Operators 4. 3 Time dependence of expectation values 6 Lecture 8 B. Zwiebach February 29, 206 Contents Uncovering momentum space 2 Expectation Values of Operators 4 Time dependence of expectation values 6 Uncovering momentum space We now begin a series of

More information

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017 Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics Properties of Vector Spaces Unit vectors ~xi form a basis which spans the space and which are orthonormal ( if i = j ~xi

More information

Linear Algebra in Hilbert Space

Linear Algebra in Hilbert Space Physics 342 Lecture 16 Linear Algebra in Hilbert Space Lecture 16 Physics 342 Quantum Mechanics I Monday, March 1st, 2010 We have seen the importance of the plane wave solutions to the potentialfree Schrödinger

More information

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Chemistry 432 Problem Set 4 Spring 2018 Solutions Chemistry 4 Problem Set 4 Spring 18 Solutions 1. V I II III a b c A one-dimensional particle of mass m is confined to move under the influence of the potential x a V V (x) = a < x b b x c elsewhere and

More information

Q U A N T U M M E C H A N I C S : L E C T U R E 5

Q U A N T U M M E C H A N I C S : L E C T U R E 5 Q U A N T U M M E C H A N I C S : L E C T U R E 5 salwa al saleh Abstract This lecture discusses the formal solution of Schrödinger s equation for a free particle. Including the separation of variables

More information

Review of the Formalism of Quantum Mechanics

Review of the Formalism of Quantum Mechanics Review of the Formalism of Quantum Mechanics The postulates of quantum mechanics are often stated in textbooks. There are two main properties of physics upon which these postulates are based: 1)the probability

More information

Notes on Quantum Mechanics

Notes on Quantum Mechanics Notes on Quantum Mechanics Kevin S. Huang Contents 1 The Wave Function 1 1.1 The Schrodinger Equation............................ 1 1. Probability.................................... 1.3 Normalization...................................

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

Quantum Mechanics: Postulates

Quantum Mechanics: Postulates Quantum Mechanics: Postulates 25th March 2008 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through

More information

Statistical Interpretation

Statistical Interpretation Physics 342 Lecture 15 Statistical Interpretation Lecture 15 Physics 342 Quantum Mechanics I Friday, February 29th, 2008 Quantum mechanics is a theory of probability densities given that we now have an

More information

Chemistry 532 Problem Set 7 Spring 2012 Solutions

Chemistry 532 Problem Set 7 Spring 2012 Solutions Chemistry 53 Problem Set 7 Spring 01 Solutions 1. The study of the time-independent Schrödinger equation for a one-dimensional particle subject to the potential function leads to the differential equation

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

MATH4104: Quantum nonlinear dynamics. Lecture Two. Review of quantum theory.

MATH4104: Quantum nonlinear dynamics. Lecture Two. Review of quantum theory. MATH4104: Quantum nonlinear dynamics. Lecture Two. Review of quantum theory. G J Milburn The University of Queensland S2, 2009 Two quantum principles. THE QUANTUM PRINCIPLE I. The physical universe is

More information

Can we derive Newton s F = ma from the SE?

Can we derive Newton s F = ma from the SE? 8.04 Quantum Physics Lecture XIII p = pˆ (13-1) ( ( ) ) = xψ Ψ (13-) ( ) = xψ Ψ (13-3) [ ] = x (ΨΨ ) Ψ Ψ (13-4) ( ) = xψ Ψ (13-5) = p, (13-6) where again we have use integration by parts an the fact that

More information

8.05, Quantum Physics II, Fall 2013 TEST Wednesday October 23, 12:30-2:00pm You have 90 minutes.

8.05, Quantum Physics II, Fall 2013 TEST Wednesday October 23, 12:30-2:00pm You have 90 minutes. 8.05, Quantum Physics II, Fall 03 TEST Wednesday October 3, :30-:00pm You have 90 minutes. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books). There

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/10//2017 Outline 1 One Particle Wave Function Space F 2 One Particle Wave Function Space F One Particle Wave Function Space F The set of square-integrable

More information

Physics 443, Solutions to PS 2

Physics 443, Solutions to PS 2 . Griffiths.. Physics 443, Solutions to PS The raising and lowering operators are a ± mω ( iˆp + mωˆx) where ˆp and ˆx are momentum and position operators. Then ˆx mω (a + + a ) mω ˆp i (a + a ) The expectation

More information

Physics 221A Fall 2010 Notes 4 Spatial Degrees of Freedom

Physics 221A Fall 2010 Notes 4 Spatial Degrees of Freedom Physics 221A Fall 2010 Notes 4 Spatial Degrees of Freedom 1. Introduction In these notes we develop the theory of wave functions in configuration space, building it up from the ket formalism and the postulates

More information

5.61 FIRST HOUR EXAM ANSWERS Fall, 2013

5.61 FIRST HOUR EXAM ANSWERS Fall, 2013 5.61 FIRST HOUR EXAM ANSWERS Fall, 013 I. A. Sketch ψ 5(x)ψ 5 (x) vs. x, where ψ 5 (x) is the n = 5 wavefunction of a particle in a box. Describe, in a few words, each of the essential qualitative features

More information

Quantum Mechanics I, Sheet 1, Spring 2015

Quantum Mechanics I, Sheet 1, Spring 2015 Quantum Mechanics I, Sheet 1, Spring 2015 February 18, 2015 (EP, Auditoire Stuckelberg) Prof. D. van der Marel (dirk.vandermarel@unige.ch) Tutorial: O. Peil (oleg.peil@unige.ch) I. PROBABILITY DISTRIBUTION

More information

PY 351 Modern Physics - Lecture notes, 3

PY 351 Modern Physics - Lecture notes, 3 PY 351 Modern Physics - Lecture notes, 3 Copyright by Claudio Rebbi, Boston University, October 2016. These notes cannot be duplicated and distributed without explicit permission of the author. Time dependence

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 10, 2018 10:00AM to 12:00PM Modern Physics Section 3. Quantum Mechanics Two hours are permitted for the completion of

More information

Basic Postulates of Quantum Mechanics

Basic Postulates of Quantum Mechanics Chapter 3 Basic Postulates of Quantum Mechanics 3. Basic Postulates of Quantum Mechanics We have introduced two concepts: (i the state of a particle or a quantum mechanical system is described by a wave

More information

PHYS-454 The position and momentum representations

PHYS-454 The position and momentum representations PHYS-454 The position and momentum representations 1 Τhe continuous spectrum-a n So far we have seen problems where the involved operators have a discrete spectrum of eigenfunctions and eigenvalues.! n

More information

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3 Contents Lecture 1: Solving the Time-Independent Schrödinger Equation B. Zwiebach March 14, 16 1 Stationary States 1 Solving for Energy Eigenstates 3 3 Free particle on a circle. 6 1 Stationary States

More information

Time dependent Schrodinger equation

Time dependent Schrodinger equation Lesson: Time dependent Schrodinger equation Lesson Developer: Dr. Monika Goyal, College/Department: Shyam Lal College (Day), University of Delhi Table of contents 1.1 Introduction 1. Dynamical evolution

More information

Lecture 7. More dimensions

Lecture 7. More dimensions Lecture 7 More dimensions 67 68 LECTURE 7. MORE DIMENSIONS 7.1 Introduction In this lecture we generalize the concepts introduced so far to systems that evolve in more than one spatial dimension. While

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

-state problems and an application to the free particle

-state problems and an application to the free particle -state problems and an application to the free particle Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 3 September, 2013 Outline 1 Outline 2 The Hilbert space 3 A free particle 4 Keywords

More information

Lecture 12. The harmonic oscillator

Lecture 12. The harmonic oscillator Lecture 12 The harmonic oscillator 107 108 LECTURE 12. THE HARMONIC OSCILLATOR 12.1 Introduction In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the time-independent

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 561 Fall 017 Lecture #5 page 1 Last time: Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 1-D Wave equation u x = 1 u v t * u(x,t): displacements as function of x,t * nd -order:

More information

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis: 5 Representations 5.3 Given a three-dimensional Hilbert space, consider the two observables ξ and η that, with respect to the basis 1, 2, 3, arerepresentedby the matrices: ξ ξ 1 0 0 0 ξ 1 0 0 0 ξ 3, ξ

More information

1 References 2. 2 Formalisms of classical and quantum mechanics Setup of classical mechanics... 2

1 References 2. 2 Formalisms of classical and quantum mechanics Setup of classical mechanics... 2 Notes on Quantum Mechanics Module of Refresher course conducted by Indian Academies of Sciences at Loyola College, Chennai, Tamil Nadu, May 11-3, 015 Govind S. Krishnaswami, Chennai Mathematical Institute

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

BASICS OF QUANTUM MECHANICS. Reading: QM Course packet Ch 5

BASICS OF QUANTUM MECHANICS. Reading: QM Course packet Ch 5 BASICS OF QUANTUM MECHANICS 1 Reading: QM Course packet Ch 5 Interesting things happen when electrons are confined to small regions of space (few nm). For one thing, they can behave as if they are in an

More information

Lecture 5 (Sep. 20, 2017)

Lecture 5 (Sep. 20, 2017) Lecture 5 8.321 Quantum Theory I, Fall 2017 22 Lecture 5 (Sep. 20, 2017) 5.1 The Position Operator In the last class, we talked about operators with a continuous spectrum. A prime eample is the position

More information

Formalism of Quantum Mechanics

Formalism of Quantum Mechanics Dirac Notation Formalism of Quantum Mechanics We can use a shorthand notation for the normalization integral I = "! (r,t) 2 dr = "! * (r,t)! (r,t) dr =!! The state! is called a ket. The complex conjugate

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

Lorentz Invariance and Second Quantization

Lorentz Invariance and Second Quantization Lorentz Invariance and Second Quantization By treating electromagnetic modes in a cavity as a simple harmonic oscillator, with the oscillator level corresponding to the number of photons in the system

More information

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree THE SCHRÖDINGER EQUATION (A REVIEW) We do not derive F = ma; we conclude F = ma by induction from a large series of observations. We use it as long as its predictions agree with our experiments. As with

More information

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev Problem The ionization potential tells us how much energy we need to use to remove an electron, so we know that any energy left afterwards will be the kinetic energy of the ejected electron. So first we

More information

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Page 684 Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Time Transformations Section 12.5 Symmetries: Time Transformations Page 685 Time Translation

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

1.1 Quantum mechanics of one particle

1.1 Quantum mechanics of one particle 1 Second quantization 1.1 Quantum mechanics of one particle In quantum mechanics the physical state of a particle is described in terms of a ket Ψ. This ket belongs to a Hilbert space which is nothing

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 2. Due Thursday Feb 21 at 11.00AM

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 2. Due Thursday Feb 21 at 11.00AM 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday Feb 2 Problem Set 2 Due Thursday Feb 2 at.00am Assigned Reading: E&R 3.(all) 5.(,3,4,6) Li. 2.(5-8) 3.(-3) Ga.

More information

( ) = 9φ 1, ( ) = 4φ 2.

( ) = 9φ 1, ( ) = 4φ 2. Chemistry 46 Dr Jean M Standard Homework Problem Set 6 Solutions The Hermitian operator A ˆ is associated with the physical observable A Two of the eigenfunctions of A ˆ are and These eigenfunctions are

More information

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

Quantum Physics (PHY-4215)

Quantum Physics (PHY-4215) Quantum Physics (PHY-4215) Gabriele Travaglini March 31, 2012 1 From classical physics to quantum physics 1.1 Brief introduction to the course The end of classical physics: 1. Planck s quantum hypothesis

More information

Exercises : Questions

Exercises : Questions Exercises 18.05.2017: Questions Problem 1 where Calculate the following commutators: a) [ Ĥ, ˆp ], b) [ Ĥ, ˆr ], Ĥ = 1 2m ˆp2 + V ˆr), 1) ˆp 2 = ˆp 2 x + ˆp 2 y + ˆp 2 z and V ˆr) = V ˆx, ŷ, ẑ) is an arbitrary

More information

Ch 125a Problem Set 1

Ch 125a Problem Set 1 Ch 5a Problem Set Due Monday, Oct 5, 05, am Problem : Bra-ket notation (Dirac notation) Bra-ket notation is a standard and convenient way to describe quantum state vectors For example, φ is an abstract

More information

PHYS Handout 6

PHYS Handout 6 PHYS 060 Handout 6 Handout Contents Golden Equations for Lectures 8 to Answers to examples on Handout 5 Tricks of the Quantum trade (revision hints) Golden Equations (Lectures 8 to ) ψ Â φ ψ (x)âφ(x)dxn

More information

Quantum Chemistry Exam 2 Solutions

Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 17 Dr. Jean M. Standard November 8, 17 Name KEY Quantum Chemistry Exam Solutions 1.) ( points) Answer the following questions by selecting the correct answer from the choices provided.

More information

Mathematical Introduction

Mathematical Introduction Chapter 1 Mathematical Introduction HW #1: 164, 165, 166, 181, 182, 183, 1811, 1812, 114 11 Linear Vector Spaces: Basics 111 Field A collection F of elements a,b etc (also called numbers or scalars) with

More information

Exam in TFY4205 Quantum Mechanics Saturday June 10, :00 13:00

Exam in TFY4205 Quantum Mechanics Saturday June 10, :00 13:00 NTNU Page 1 of 9 Institutt for fysikk Contact during the exam: Professor Arne Brataas Telephone: 7359367 Exam in TFY5 Quantum Mechanics Saturday June 1, 6 9: 13: Allowed help: Alternativ C Approved Calculator.

More information

Quantum Mechanics. L. Del Debbio, University of Edinburgh Version 0.9

Quantum Mechanics. L. Del Debbio, University of Edinburgh Version 0.9 Quantum Mechanics L. Del Debbio, University of Edinburgh Version 0.9 November 26, 2010 Contents 1 Quantum states 1 1.1 Introduction..................................... 2 1.1.1 Experiment with classical

More information

Quantum Mechanics is Linear Algebra. Noah Graham Middlebury College February 25, 2014

Quantum Mechanics is Linear Algebra. Noah Graham Middlebury College February 25, 2014 Quantum Mechanics is Linear Algebra Noah Graham Middlebury College February 25, 24 Linear Algebra Cheat Sheet Column vector quantum state: v = v v 2. Row vector dual state: w = w w 2... Inner product:

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2 Physics 443 Prelim # with solutions March 7, 8 Each problem is worth 34 points.. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator H p m + mω x (a Use dimensional analysis to

More information

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12 In this lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to this course. Topics

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

Chapter 2 Heisenberg s Matrix Mechanics

Chapter 2 Heisenberg s Matrix Mechanics Chapter 2 Heisenberg s Matrix Mechanics Abstract The quantum selection rule and its generalizations are capable of predicting energies of the stationary orbits; however they should be obtained in a more

More information

Quantum Physics 130A. April 1, 2006

Quantum Physics 130A. April 1, 2006 Quantum Physics 130A April 1, 2006 2 1 HOMEWORK 1: Due Friday, Apr. 14 1. A polished silver plate is hit by beams of photons of known energy. It is measured that the maximum electron energy is 3.1 ± 0.11

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

Physics 443, Solutions to PS 1 1

Physics 443, Solutions to PS 1 1 Physics 443, Solutions to PS. Griffiths.9 For Φ(x, t A exp[ a( mx + it], we need that + h Φ(x, t dx. Using the known result of a Gaussian intergral + exp[ ax ]dx /a, we find that: am A h. ( The Schrödinger

More information

Conventions for fields and scattering amplitudes

Conventions for fields and scattering amplitudes Conventions for fields and scattering amplitudes Thomas DeGrand 1 1 Department of Physics, University of Colorado, Boulder, CO 80309 USA (Dated: September 21, 2017) Abstract This is a discussion of conventions

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

Quantum dynamics with non-hermitian PT -symmetric operators: Models

Quantum dynamics with non-hermitian PT -symmetric operators: Models Hauptseminar Theoretische Physik 01 Quantum dynamics with non-hermitian PT -symmetric operators: Models Mario Schwartz 13.06.01 Mario Schwartz PT -Symmetric Operators: Models 1 / 36 Overview Hauptseminar

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Non-Relativistic Quantum Mechanics as a Gauge Theory

Non-Relativistic Quantum Mechanics as a Gauge Theory Non-Relativistic Quantum Mechanics as a Gauge Theory Sungwook Lee Department of Mathematics, University of Southern Mississippi LA/MS Section of MAA Meeting, March 1, 2013 Outline Lifted Quantum Mechanics

More information

1 The postulates of quantum mechanics

1 The postulates of quantum mechanics 1 The postulates of quantum mechanics The postulates of quantum mechanics were derived after a long process of trial and error. These postulates provide a connection between the physical world and the

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

3 Schroedinger Equation

3 Schroedinger Equation 3. Schroedinger Equation 1 3 Schroedinger Equation We have already faced the fact that objects in nature posses a particle-wave duality. Our mission now is to describe the dynamics of such objects. When

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

Lecture 4 (Sep. 18, 2017)

Lecture 4 (Sep. 18, 2017) Lecture 4 8.3 Quantum Theory I, Fall 07 Lecture 4 (Sep. 8, 07) 4. Measurement 4.. Spin- Systems Last time, we said that a general state in a spin- system can be written as ψ = c + + + c, (4.) where +,

More information

Simple one-dimensional potentials

Simple one-dimensional potentials Simple one-dimensional potentials Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 Ninth lecture Outline 1 Outline 2 Energy bands in periodic potentials 3 The harmonic oscillator 4 A charged particle

More information

Physics 143a - Quantum Mechanics I

Physics 143a - Quantum Mechanics I Physics 143a - Quantum Mechanics I Taught by Matthew Reece Notes by Dongryul Kim Spring 017 This course was taught by Matthew Reece, at TTh 10-11:30 in Jefferson 356. The textbook was A Modern Approach

More information

4. Supplementary Notes on Time and Space Evolution of a Neutrino Beam

4. Supplementary Notes on Time and Space Evolution of a Neutrino Beam Lecture Notes for Quantum Physics II & III 8.05 & 8.059 Academic Year 1996/1997 4. Supplementary Notes on Time and Space Evolution of a Neutrino Beam c D. Stelitano 1996 As an example of a two-state system

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information