Doppler boosting the CMB

Size: px
Start display at page:

Download "Doppler boosting the CMB"

Transcription

1 Doppler boosting the CMB Based on Planck 2013 Results. XXVII. Doppler boosting of the CMB Douglas Scott on behalf of the Planck Collaboration

2 Doppler boosting the CMB Based on Planck 2013 Results. XXVII. Doppler boosting of the CMB Eppur si mouve [And yet it moves] Douglas Scott on behalf of the Planck Collaboration

3 R H A P P Y E A S T E

4 R H A P P Y E A S T E

5 CMB dipole is well known 1991ApJ...371L...1S e.g. first COBE results Smoot et al. (1991)

6 Monopole and dipole from COBE FIRAS and DMR (Planck s dipole will come later)

7 Monopole: T₀=(2.7255±0.0006)K Monopole and dipole from COBE FIRAS and DMR (Planck s dipole will come later)

8 Monopole: T₀=(2.7255±0.0006)K CMB last-scattering surface defines a rest frame Monopole and dipole from COBE FIRAS and DMR (Planck s dipole will come later)

9 Monopole: T₀=(2.7255±0.0006)K CMB last-scattering surface defines a rest frame It s the frame with no observable dipole Monopole and dipole from COBE FIRAS and DMR (Planck s dipole will come later)

10 Monopole: T₀=(2.7255±0.0006)K CMB last-scattering surface defines a rest frame It s the frame with no observable dipole Relative to that frame we re moving at 370km/s Monopole and dipole from COBE FIRAS and DMR (Planck s dipole will come later)

11 Monopole: T₀=(2.7255±0.0006)K CMB last-scattering surface defines a rest frame It s the frame with no observable dipole Relative to that frame we re moving at 370km/s β= towards the constellation Crater Monopole and dipole from COBE FIRAS and DMR (Planck s dipole will come later)

12 Monopole: T₀=(2.7255±0.0006)K CMB last-scattering surface defines a rest frame It s the frame with no observable dipole Relative to that frame we re moving at 370km/s β= towards the constellation Crater And there are other effects... Monopole and dipole from COBE FIRAS and DMR (Planck s dipole will come later)

13

14

15 5 boosting effects Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002); Kamionkowski & Knox (2003); Burles & Rappaport (2006); Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

16 5 boosting effects Dipole-modulate monopole CMB dipole Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002); Kamionkowski & Knox (2003); Burles & Rappaport (2006); Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

17 5 boosting effects Dipole-modulate monopole CMB dipole Dipole-modulation of all other multipoles Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002); Kamionkowski & Knox (2003); Burles & Rappaport (2006); Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

18 5 boosting effects Dipole-modulate monopole CMB dipole Dipole-modulation of all other multipoles Aberration of anisotropies Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002); Kamionkowski & Knox (2003); Burles & Rappaport (2006); Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

19 5 boosting effects Dipole-modulate monopole CMB dipole Dipole-modulation of all other multipoles Aberration of anisotropies Increase in monopole by β²/6 Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002); Kamionkowski & Knox (2003); Burles & Rappaport (2006); Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

20 5 boosting effects Dipole-modulate monopole CMB dipole Dipole-modulation of all other multipoles Aberration of anisotropies Increase in monopole by β²/6 Generation of Ο(β²) quadrupole Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002); Kamionkowski & Knox (2003); Burles & Rappaport (2006); Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

21 5 boosting effects Dipole-modulate monopole CMB dipole Dipole-modulation of all other multipoles Aberration of anisotropies Increase in monopole by β²/6 Generation of Ο(β²) quadrupole Well known! This talk This talk Unmeasurable Too hard! Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002); Kamionkowski & Knox (2003); Burles & Rappaport (2006); Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

22 (a) T primordial Simulated CMB (b) T aberration Aberration for β=0.85 (c) T modulation Modulation for β=0.85

23

24 Aberration

25 Aberration

26 Aberration Modulation

27 Aberration Modulation

28 Boosting frames

29 Boosting frames Now T ( ˆn )= T ( ˆn ) γ(1 ˆn β)

30 Now observed frame T ( ˆn )= Boosting frames CMB frame T ( ˆn ) γ(1 ˆn β)

31 Boosting frames CMB frame Now observed frame T ( ˆn )= T ( ˆn ) γ(1 ˆn β) v/c

32 Boosting frames CMB frame Now observed frame T ( ˆn )= T ( ˆn ) γ(1 ˆn β) v/c with ˆn = ˆn + [ (γ 1) ˆn ˆv + γβ ] ˆv γ(1 + ˆn β)

33 Boosting frames CMB frame Now observed frame T ( ˆn )= T ( ˆn ) γ(1 ˆn β) v/c with ˆn = ˆn + [ (γ 1) ˆn ˆv + γβ ] ˆv γ(1 + ˆn β) To 1st order in T ( ˆn )=T ( ˆn ( ˆn β)) T 0 + δt ( ˆn ( ˆn β))

34 Boosting frames CMB frame Now observed frame T ( ˆn )= T ( ˆn ) γ(1 ˆn β) v/c with ˆn = ˆn + [ (γ 1) ˆn ˆv + γβ ] ˆv γ(1 + ˆn β) To 1st order in T ( ˆn )=T ( ˆn ( ˆn β)) T 0 + δt ( ˆn ( ˆn β)) So finally: δt( ˆn )=T 0 ˆn β + δt ( ˆn ( ˆn β))(1 + ˆn β)

35 Boosting frames CMB frame Now observed frame T ( ˆn )= T ( ˆn ) γ(1 ˆn β) v/c with ˆn = ˆn + [ (γ 1) ˆn ˆv + γβ ] ˆv γ(1 + ˆn β) To 1st order in T ( ˆn )=T ( ˆn ( ˆn β)) T 0 + δt ( ˆn ( ˆn β)) So finally: dipole δt( ˆn )=T 0 ˆn β + δt ( ˆn ( ˆn β))(1 + ˆn β)

36 Boosting frames CMB frame Now observed frame T ( ˆn )= T ( ˆn ) γ(1 ˆn β) v/c with ˆn = ˆn + [ (γ 1) ˆn ˆv + γβ ] ˆv γ(1 + ˆn β) To 1st order in T ( ˆn )=T ( ˆn ( ˆn β)) T 0 + δt ( ˆn ( ˆn β)) So finally: dipole deflections δt( ˆn )=T 0 ˆn β + δt ( ˆn ( ˆn β))(1 + ˆn β)

37 Boosting frames CMB frame Now observed frame T ( ˆn )= T ( ˆn ) γ(1 ˆn β) v/c with ˆn = ˆn + [ (γ 1) ˆn ˆv + γβ ] ˆv γ(1 + ˆn β) To 1st order in T ( ˆn )=T ( ˆn ( ˆn β)) T 0 + δt ( ˆn ( ˆn β)) So finally: dipole deflections modulation δt( ˆn )=T 0 ˆn β + δt ( ˆn ( ˆn β))(1 + ˆn β)

38 Boosting frames

39 Boosting frames With Planck we can try to measure both the aberration and boosting effects

40 Boosting frames With Planck we can try to measure both the aberration and boosting effects This could be done either in map space or harmonic space

41 Boosting frames With Planck we can try to measure both the aberration and boosting effects This could be done either in map space or harmonic space Harmonic space is more efficient and uses machinery of T₁T₂T₃T₄

42 Boosting frames

43 Boosting frames

44 Boosting frames

45 Boosting frames Angles squashed and anisotropies boosted in +ve direction

46 Boosting frames Angles squashed and anisotropies boosted in +ve direction

47 Boosting frames Angles stretched and anisotropies diminished in ve direction Angles squashed and anisotropies boosted in +ve direction

48 Boosting frames Angles stretched and anisotropies diminished in ve direction Angles squashed and anisotropies boosted in +ve direction Or can consider this as an effect which couples harmonics

49 Dipole modulation couples l with l ± Figure by Joel Hutchinson

50 Dipole modulation couples l with l ± Figure by Joel Hutchinson

51 Dipole modulation couples l with l ± Figure by Joel Hutchinson

52 Dipole modulation couples l with l ± Figure by Joel Hutchinson

53 Dipole modulation couples l with l ± Figure by Joel Hutchinson

54 Figure by Joel Hutchinson

55 Calculations See Hanson & Lewis (2009) and Planck Collaboration XXVII (2013)

56 Calculations We use quadratic estimators See Hanson & Lewis (2009) and Planck Collaboration XXVII (2013)

57 Calculations We use quadratic estimators Summing over covariance matrix See Hanson & Lewis (2009) and Planck Collaboration XXVII (2013)

58 Calculations We use quadratic estimators Summing over covariance matrix With weights designed for β See Hanson & Lewis (2009) and Planck Collaboration XXVII (2013)

59 Calculations We use quadratic estimators Summing over covariance matrix With weights designed for β And repeat for simulations (with and without velocity effects) See Hanson & Lewis (2009) and Planck Collaboration XXVII (2013)

60 Calculations We use quadratic estimators Summing over covariance matrix With weights designed for β And repeat for simulations (with and without velocity effects) For several data combinations from 143GHz and 217GHz (857 subtracted) See Hanson & Lewis (2009) and Planck Collaboration XXVII (2013)

61 : 143x143 : 217x217 : 143x217 + : Results

62 Results : 143x143 : 217x217 : 143x217 + : Hemispheric asymmetry anomaly dominates for lower multipoles (see Planck Collaboration XXIII)

63 Results Dipole direction : 143x143 : 217x217 : 143x217 + : Hemispheric asymmetry anomaly dominates for lower multipoles (see Planck Collaboration XXIII)

64

65 Total Aberration Modulation

66 Total Aberration Modulation Grey histogram: without Pink histogram: with β effects Vertical lines are different data combinations

67 Concluding remarks

68 Concluding remarks Velocity Measured at 4 5σ

69 Concluding remarks Velocity Measured at 4 5σ Complication with hemispheric asymmetry

70 Concluding remarks Velocity Measured at 4 5σ Complication with hemispheric asymmetry Note: spectrum of velocity-induced modulation

71 Concluding remarks Velocity Measured at 4 5σ Complication with hemispheric asymmetry Note: spectrum of velocity-induced modulation is d²b/dt² not db/dt

72 Concluding remarks Velocity Measured at 4 5σ Complication with hemispheric asymmetry Note: spectrum of velocity-induced modulation is d²b/dt² not db/dt Masking means velocity effects are 25% of θ error that s how well Planck constrains anisotropies

73 Concluding remarks Velocity Measured at 4 5σ Complication with hemispheric asymmetry Note: spectrum of velocity-induced modulation is d²b/dt² not db/dt Masking means velocity effects are 25% of θ error that s how well Planck constrains anisotropies Only possible to measure velocity with Planck!

74 The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada CITA ICAT UNIVERSITÀ DEGLI STUDI DI MILANO ABabcdfghiejkl 14 Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration http://cosmologist.info/ Outline Primordial modulations and power asymmetry τ NL trispectrum Kinematic

More information

BipoSH Representation: Modulation & Systematics

BipoSH Representation: Modulation & Systematics Isotropy of Planck map in C l L=0 BipoSH Representation: Modulation & Systematics Planck 2013 results. XXIII. Isotropy and statistics of the CMB L=10 Spherical harmonic l Planck unveils the Cosmic Microwave

More information

Planck constraints on neutrinos. Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration

Planck constraints on neutrinos. Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration Planck constraints on neutrinos Massimiliano Lattanzi Università di Ferrara on behalf of the Planck Collaboration The Cosmic Neutrino Background (CnB) The presence of a background of relic neutrinos is

More information

First Cosmology Results from Planck. Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration

First Cosmology Results from Planck. Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration First Cosmology Results from Planck Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration Planck Collaboration 300+ names Planck Core-Team (a fraction of it) Planck

More information

The microwave sky as seen by Planck

The microwave sky as seen by Planck The microwave sky as seen by Planck Ingunn Kathrine Wehus Jet Propulsion Laboratory California Institute of Technology on behalf of the Planck Collaboration Bayesian component separation We adopt a parametric

More information

Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December The Planck mission

Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December The Planck mission Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December 2014 The Planck mission Marco Bersanelli Dipartimento di Fisica, Università degli Studi di Milano Planck-LFI Deputy PI

More information

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence Antony Lewis http://cosmologist.info/ Evolution of the universe Opaque Transparent Hu & White, Sci. Am., 290 44 (2004) CMB temperature

More information

Anisotropy in the CMB

Anisotropy in the CMB Anisotropy in the CMB Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Hanson & Lewis: 0908.0963 Evolution of the universe Opaque Transparent Hu &

More information

Joel Meyers Canadian Institute for Theoretical Astrophysics

Joel Meyers Canadian Institute for Theoretical Astrophysics Cosmological Probes of Fundamental Physics Joel Meyers Canadian Institute for Theoretical Astrophysics SMU Physics Colloquium February 5, 2018 Image Credits: Planck, ANL The Cosmic Microwave Background

More information

Fondo Cosmico di Microonde: implicazioni delle moderne osservazioni, prospettive future

Fondo Cosmico di Microonde: implicazioni delle moderne osservazioni, prospettive future Fondo Cosmico di Microonde: implicazioni delle moderne osservazioni, prospettive future Carlo Baccigalupi SISSA, Trieste Societa Italiana di Fisica Italiana September 23, 2013 Outline CMB anisotropies

More information

PLANCK lately and beyond

PLANCK lately and beyond François R. Bouchet, Institut d Astrophysique de Paris PLANCK lately and beyond CORE/M5 TT, EE, BB 2016 status Only keeping points w. sufficiently small error bars, Fig. E Calabrese τ = 0.055±0.009 1 114

More information

Cosmic Microwave Background Anisotropy

Cosmic Microwave Background Anisotropy Cosmic Microwave Background Anisotropy Yin-Zhe Ma University of British Columbia, Vancouver CITA national fellow, Canada Testing CMB angular correlation function with WMAP Testing direction-dependent dependent

More information

THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe

THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe Rodrigo Leonardi Planck Science Office ESTEC/ESA OVERVIEW Planck observational objective & science.

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

The X-ray view of Planck SZ clusters

The X-ray view of Planck SZ clusters The X-ray view of Planck SZ clusters M. ARNAUD CEA- Service d Astrophysique On behalf of the Planck collaboradon With inputs from non- Planck sciendsts The Planck catalogue of SZ sources ESZ Planck Early

More information

Constraining Fundamental Physics with Planck. Graça Rocha JPL/Caltech On behalf of the Planck

Constraining Fundamental Physics with Planck. Graça Rocha JPL/Caltech On behalf of the Planck Constraining Fundamental Physics with Planck Graça Rocha JPL/Caltech On behalf of the Planck collabora@on Cosmology with the CMB and its Polarization, MN 15 th January 2015 Cosmological parameters Standard

More information

Gravitational Waves and the Microwave Background

Gravitational Waves and the Microwave Background Gravitational Waves and the Microwave Background Department of Physics and Astronomy University of Pittsburgh KICP Inaugural Symposium, December 11, 2005 Outline Tensor Perturbations and Microwave Polarization

More information

FOUR-YEAR COBE 1 DMR COSMIC MICROWAVE BACKGROUND OBSERVATIONS: MAPS AND BASIC RESULTS

FOUR-YEAR COBE 1 DMR COSMIC MICROWAVE BACKGROUND OBSERVATIONS: MAPS AND BASIC RESULTS THE ASTROPHYSICAL JOURNAL, 464 : L1 L4, 1996 June 10 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A. FOUR-YEAR COBE 1 DMR COSMIC MICROWAVE BACKGROUND OBSERVATIONS: MAPS

More information

Instrumental Systematics on Lensing Reconstruction and primordial CMB B-mode Diagnostics. Speaker: Meng Su. Harvard University

Instrumental Systematics on Lensing Reconstruction and primordial CMB B-mode Diagnostics. Speaker: Meng Su. Harvard University Instrumental Systematics on Lensing Reconstruction and primordial CMB B-mode Diagnostics Speaker: Meng Su Harvard University Collaborators: Amit P.S. Yadav, Matias Zaldarriaga Berkeley CMB Lensing workshop

More information

Mysteries of the large-angle microwave sky

Mysteries of the large-angle microwave sky Mysteries of the large-angle microwave sky Dragan Huterer Physics Department University of Michigan Collaborators: Craig Copi (CWRU), Dominik Schwarz (Bielefeld), Glenn Starkman (CWRU) Chris Gordon, Wayne

More information

Bianchi VII h cosmologies and Planck

Bianchi VII h cosmologies and Planck Bianchi VII h cosmologies and Planck XXVI. Background geometry and topology of the Universe Planck Collaboration Presented by Jason McEwen http://www.jasonmcewen.org/ University College London (UCL) The

More information

Dust Polarization. J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse

Dust Polarization. J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse Dust Polarization J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse 1 Layout - Dust polarization (Extinction) - Dust polarization (Emission) - Dust polarization observational

More information

CMB studies with Planck

CMB studies with Planck CMB studies with Planck Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Thanks to Anthony Challinor & Anthony Lasenby for a few slides (almost) uniform

More information

V. The Thermal Beginning of the Universe

V. The Thermal Beginning of the Universe V. The Thermal Beginning of the Universe I. Aretxaga Jan 2014 CMB discovery time-line -1947-1948 Gamow, Alpher and Hermans model of nucleosynthesis predicts relic millimeter radiation, but the models have

More information

Rayleigh scattering:

Rayleigh scattering: Rayleigh scattering: blue sky thinking for future CMB observations arxiv:1307.8148; previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Weak gravitational lensing of CMB

Weak gravitational lensing of CMB Weak gravitational lensing of CMB (Recent progress and future prospects) Toshiya Namikawa (YITP) Lunch meeting @YITP, May 08, 2013 Cosmic Microwave Background (CMB) Precise measurements of CMB fluctuations

More information

CMB. Suggested Reading: Ryden, Chapter 9

CMB. Suggested Reading: Ryden, Chapter 9 CMB Suggested Reading: Ryden, Chapter 9 1934, Richard Tolman, blackbody radiation in an expanding universe cools but retains its thermal distribution and remains a blackbody 1941, Andrew McKellar, excitation

More information

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron The international scenario Balloons, LiteBIRD, PIXIE, Millimetron Francesco Piacentini Sapienza Università di Roma, Dipartimento di Fisica on behalf of the Italian CMB community Overview International

More information

Polarization from Rayleigh scattering

Polarization from Rayleigh scattering Polarization from Rayleigh scattering Blue sky thinking for future CMB observations Previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 9, sections 9.4 and 9.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

CMB Polarization and Cosmology

CMB Polarization and Cosmology CMB Polarization and Cosmology Wayne Hu KIPAC, May 2004 Outline Reionization and its Applications Dark Energy The Quadrupole Gravitational Waves Acoustic Polarization and Initial Power Gravitational Lensing

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

arxiv:astro-ph/ v1 12 Jan 1996

arxiv:astro-ph/ v1 12 Jan 1996 COBE Preprint 96-01, Submitted To ApJ Letters 4-Year COBE 1 DMR Cosmic Microwave Background Observations: Maps and Basic Results arxiv:astro-ph/9601067v1 12 Jan 1996 C. L. Bennett 2,3, A. Banday 4, K.

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

arxiv: v1 [astro-ph.co] 16 Apr 2009

arxiv: v1 [astro-ph.co] 16 Apr 2009 Spectral variation of the WMAP 5-year degree scale anisotropy Bi-Zhu Jiang 1,2, Richard Lieu 2, and Shuang-Nan Zhang 1,2,3,4 arxiv:94.2513v1 [astro-ph.co] 16 Apr 29 ABSTRACT The black body nature of the

More information

An Estimator for statistical anisotropy from the CMB. CMB bispectrum

An Estimator for statistical anisotropy from the CMB. CMB bispectrum An Estimator for statistical anisotropy from the CMB bispectrum 09/29/2012 1 2 3 4 5 6 ...based on: N. Bartolo, E. D., M. Liguori, S. Matarrese, A. Riotto JCAP 1201:029 N. Bartolo, E. D., S. Matarrese,

More information

The first light in the universe

The first light in the universe The first light in the universe Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Photons in the early universe Early universe is a hot and dense expanding plasma 14 May 1964, 11:15

More information

Lecture 4. - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation

Lecture 4. - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation Lecture 4 - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation Planck Collaboration (2016) Let s understand the peak heights Silk+Landau Damping Sachs-Wolfe

More information

COSMOLOGY PHYS 30392 COSMIC MICROWAVE BACKGROUND RADIATION Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - April 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Looking Beyond the Cosmological Horizon

Looking Beyond the Cosmological Horizon Looking Beyond the Cosmological Horizon 175 µk 175 µk Observable Universe Adrienne Erickcek in collaboration with Sean Carroll and Marc Kamionkowski A Hemispherical Power Asymmetry from Inflation Phys.

More information

CMB polarization towards clusters as a probe of the integrated Sachs-Wolfe effect

CMB polarization towards clusters as a probe of the integrated Sachs-Wolfe effect CMB polarization towards clusters as a probe of the integrated Sachs-Wolfe effect Asantha Cooray* California Institute of Technology, Mail Code 130-33, Pasadena, California 91125 Daniel Baumann California

More information

Microwave Background Polarization: Theoretical Perspectives

Microwave Background Polarization: Theoretical Perspectives Microwave Background Polarization: Theoretical Perspectives Department of Physics and Astronomy University of Pittsburgh CMBpol Technology Workshop Outline Tensor Perturbations and Microwave Polarization

More information

PRIMORDIAL MAGNETIC FIELDS WITH BPOL

PRIMORDIAL MAGNETIC FIELDS WITH BPOL PRIMORDIAL MAGNETIC FIELDS WITH BPOL DANIELA PAOLETTI 1,2,3 & FABIO FINELLI 1,4 1 INAF/IASFBO Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna 2 Dipartimento di Fisica, Università degli Studi

More information

EVALUATING THE STANDARD MODEL OF COSMOLOGY IN LIGHT OF LARGE-SCALE ANOMALIES IN THE COSMIC MICROWAVE BACKGROUND. by Bingjie Wang

EVALUATING THE STANDARD MODEL OF COSMOLOGY IN LIGHT OF LARGE-SCALE ANOMALIES IN THE COSMIC MICROWAVE BACKGROUND. by Bingjie Wang EVALUATING THE STANDARD MODEL OF COSMOLOGY IN LIGHT OF LARGE-SCALE ANOMALIES IN THE COSMIC MICROWAVE BACKGROUND by Bingjie Wang Submitted to the University Honors College in partial fulfillment of the

More information

Lecture 3. - Cosmological parameter dependence of the temperature power spectrum. - Polarisation of the CMB

Lecture 3. - Cosmological parameter dependence of the temperature power spectrum. - Polarisation of the CMB Lecture 3 - Cosmological parameter dependence of the temperature power spectrum - Polarisation of the CMB Planck Collaboration (2016) Let s understand the peak heights Silk+Landau Damping Sachs-Wolfe Sound

More information

OVERVIEW OF NEW CMB RESULTS

OVERVIEW OF NEW CMB RESULTS OVERVIEW OF NEW CMB RESULTS C. R. Lawrence, JPL for the Planck Collaboration UCLA Dark Matter 2016 2016 February 17 Overview of new CMB results Lawrence 1 UCLA, 2016 February 17 Introduction Planck First

More information

After Planck: The road to observing 17 e-folds of inflation

After Planck: The road to observing 17 e-folds of inflation After Planck: The road to observing 17 e-folds of inflation Rishi Khatri with Rashid Sunyaev & Jens Chluba Silk damping: arxiv:1205.2871 Review: arxiv:1302.6553 Forecasts: arxiv:1303.7212 We have reached

More information

arxiv:astro-ph/ v1 5 Aug 2006

arxiv:astro-ph/ v1 5 Aug 2006 Draft version February 4, 2008 Preprint typeset using L A TEX style emulateapj v. 6/22/04 CLEANED THREE-YEAR WMAP CMB MAP: MAGNITUDE OF THE QUADRUPOLE AND ALIGNMENT OF LARGE SCALE MODES Chan-Gyung Park,

More information

Cosmic microwave background radiation

Cosmic microwave background radiation Cosmic microwave background radiation Lyman Page and David Wilkinson Physics Department, Princeton University, Princeton, New Jersey 08544 The cosmic microwave background radiation (CMBR) is widely interpreted

More information

CMB anomalies (in WMAP9 and Planck)

CMB anomalies (in WMAP9 and Planck) CMB anomalies (in WMAP9 and Planck) Dragan Huterer Physics Department University of Michigan Copi, Huterer, Schwarz & Starkman arxiv:1310.3831 (low power) arxiv:1311.4862 (alignments) review in Adv. Astro.,

More information

astro-ph/ Sep 1996

astro-ph/ Sep 1996 THE CMB DIPOLE: THE MOST RECENT MEASUREMENT AND SOME HISTORY Charles H. Lineweaver astro-ph/9609034 5 Sep 1996 Universite Louis Pasteur Observatoire Astronomique de Strasbourg 11 rue de l'universite, 67000

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

COSMIC MICROWAVE BACKGROUND Lecture I

COSMIC MICROWAVE BACKGROUND Lecture I COSMIC MICROWAVE BACKGROUND Lecture I Isabella Masina Univ. & INFN Ferrara, Italy CP3-Origins SDU, Denmark 18/10/2010 CP3-Origins SUGGESTED BIBLIOGRAPHY 1. W. Hu Lectures and animations http://background.uchicago.edu/~whu/physics/physics.html

More information

Hemispherical CMB power asymmetry: observation vs. models

Hemispherical CMB power asymmetry: observation vs. models Helsinki May 2014 Hemispherical CMB power asymmetry: observation vs. models EnqFest May 2014 Helsinki John McDonald, Dept. of Physics, University of Lancaster Outline 1. Observed Hemispherical Asymmetry

More information

LFI frequency maps: data analysis, results and future challenges

LFI frequency maps: data analysis, results and future challenges LFI frequency maps: data analysis, results and future challenges Davide Maino Università degli Studi di Milano, Dip. di Fisica New Light in Cosmology from the CMB 22 July - 2 August 2013, Trieste Davide

More information

The cosmic microwave background radiation

The cosmic microwave background radiation The cosmic microwave background radiation László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 May 18, 2018. Origin of the cosmic microwave radiation Photons in the plasma are

More information

PoS(MULTIF2017)017. Highlights of Planck results

PoS(MULTIF2017)017. Highlights of Planck results European Space Agency Scentific Support Office Keplerlaan 1 2201AZ Noordwijk The Netherlands E-mail: jtauber@cosmos.esa.int The aim of my presentation was to summarize the main cosmological results obtained

More information

The Spectrum of the CMB Anisotropy from the Combined COBE 1 FIRAS and DMR Observations

The Spectrum of the CMB Anisotropy from the Combined COBE 1 FIRAS and DMR Observations The Spectrum of the CMB Anisotropy from the Combined COBE 1 FIRAS and DMR Observations D.J. Fixsen 2,3, G. Hinshaw 4, C. L. Bennett 4, & J.C. Mather 4 ABSTRACT arxiv:astro-ph/9704176v1 17 Apr 1997 We analyze

More information

Consistency tests for Planck and WMAP in the low multipole domain

Consistency tests for Planck and WMAP in the low multipole domain PREPARED FOR SUBMISSION TO JCAP arxiv:1305.4033v1 [astro-ph.co] 17 May 2013 Consistency tests for Planck and WMAP in the low multipole domain A. Frejsel, M. Hansen and H. Liu Niels Bohr Institute and Discovery

More information

Cosmic Variance of the Three-Point Correlation Function of the Cosmic Microwave Background

Cosmic Variance of the Three-Point Correlation Function of the Cosmic Microwave Background CfPA 93 th 18 astro-ph/9306012 June 1993 REVISED arxiv:astro-ph/9306012v2 14 Jul 1993 Cosmic Variance of the Three-Point Correlation Function of the Cosmic Microwave Background Mark Srednicki* Center for

More information

Examining the Effect of the Map-Making Algorithm on Observed Power Asymmetry in WMAP Data

Examining the Effect of the Map-Making Algorithm on Observed Power Asymmetry in WMAP Data Examining the Effect of the Map-Making Algorithm on Observed Power Asymmetry in WMAP Data P. E. Freeman 1, C. R. Genovese 1, C. J. Miller 2, R. C. Nichol 3, & L. Wasserman 1 1 Department of Statistics

More information

CMB Polarization Experiments: Status and Prospects. Kuo Assistant Professor of Physics Stanford University, SLAC

CMB Polarization Experiments: Status and Prospects. Kuo Assistant Professor of Physics Stanford University, SLAC CMB Polarization Experiments: Status and Prospects Chao-Lin Kuo Assistant Professor of Physics Stanford University, SLAC Remaining questions in fundamental Cosmology Spectral index of the initial perturbations,

More information

CMB anisotropy & Large Scale Structure : Dark energy perspective

CMB anisotropy & Large Scale Structure : Dark energy perspective CMB anisotropy & Large Scale Structure : Dark energy perspective ICSW-07 IPM, Tehran (Jun 2-9, 2007) Tarun Souradeep I.U.C.A.A, Pune, India India I.U.C.A.A., Pune, India The Realm of Cosmology Basic unit:

More information

PLANCK SZ CLUSTERS. M. Douspis 1, 2

PLANCK SZ CLUSTERS. M. Douspis 1, 2 SF2A 2011 G. Alecian, K. Belkacem, R. Samadi and D. Valls-Gabaud (eds) PLANCK SZ CLUSTERS M. Douspis 1, 2 Abstract. We present here the first results on galaxy clusters detected by the Planck satellite

More information

Ringing in the New Cosmology

Ringing in the New Cosmology Ringing in the New Cosmology 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Acoustic Peaks in the CMB Wayne Hu Temperature Maps CMB Isotropy Actual Temperature Data COBE 1992 Dipole

More information

Constraints on inflationary models of the Universe based on CMB data

Constraints on inflationary models of the Universe based on CMB data Astrophysics Group Cavendish Laboratory Constraints on inflationary models of the Universe based on CMB data Andrés Curto Martín Enrique Martínez González 8 th RES User Conference, Santander, 23/Sept/2014

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

Physics Nobel Prize 2006

Physics Nobel Prize 2006 Physics Nobel Prize 2006 Ghanashyam Date The Institute of Mathematical Sciences, Chennai http://www.imsc.res.in shyam@imsc.res.in Nov 4, 2006. Organization of the Talk Organization of the Talk Nobel Laureates

More information

Constraining the topology of the Universe using CMB maps

Constraining the topology of the Universe using CMB maps Constraining the topology of the Universe using CMB maps P. Bielewicz, A.J. Banday K.M. Górski, JPL Outline topology of the Universe signatures of topology in the CMB maps search for signatures of topology

More information

CMB Theory, Observations and Interpretation

CMB Theory, Observations and Interpretation CMB Theory, Observations and Interpretation Danielle Wills Seminar on Astroparticle Physics 14 May 2010 Physikalisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn Outline of what will follow

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background Our probe of the birth of the universe Will Handley wh260@cam.ac.uk Astrophysics Department Cavendish Laboratory University of Cambridge 20 th March 2013 Overview Light

More information

CMB cosmology: current status and experimental trends

CMB cosmology: current status and experimental trends Mem. S.A.It. Suppl. Vol. 2, 32 c SAIt 2003 Memorie della Supplementi CMB cosmology: current status and experimental trends Paolo de Bernardis 1 and Silvia Masi 1 Dipartimento di Fisica, Universitá La Sapienza,

More information

arxiv: v3 [astro-ph.co] 5 May 2016

arxiv: v3 [astro-ph.co] 5 May 2016 Preferred axis in cosmology Wen Zhao, Larissa Santos CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy

More information

MICROWAVE EMISSION AT HIGH GALACTIC LATITUDES IN THE FOUR-YEAR DMR SKY MAPS

MICROWAVE EMISSION AT HIGH GALACTIC LATITUDES IN THE FOUR-YEAR DMR SKY MAPS THE ASTROPHYSICAL JOURNAL, 464 : L5 L9, 1996 June 10 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A. MICROWAVE EMISSION AT HIGH GALACTIC LATITUDES IN THE FOUR-YEAR DMR SKY

More information

arxiv: v2 [astro-ph.co] 5 Aug 2014

arxiv: v2 [astro-ph.co] 5 Aug 2014 Astronomy & Astrophysics manuscript no. sample c ESO 2017 December 19, 2017 Quadrant asymmetry in the angular distribution of cosmic microwave background in the Planck satellite data L. Santos 1, P. Cabella

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2)

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2) Compton Scattering Last time we talked about scattering in the limit where the photon energy is much smaller than the mass-energy of an electron. However, when X-rays and gamma-rays are considered, this

More information

CMB Episode II: Theory or Reality? Wayne Hu

CMB Episode II: Theory or Reality? Wayne Hu s p ac 10 1 CMB Episode II: θ (degrees) n n er p ac u ter 10 1 θ (degrees) 100 80 e 100 80 T (µk) 60 T (µk) 60 40 40 20 20 10 100 l (multipole) 10 100 l (multipole) Theory or Reality? Wayne Hu CMB Anisotropies

More information

Where is the COBE maps non-gaussianity?

Where is the COBE maps non-gaussianity? Where is the COBE maps non-gaussianity? João Magueijo 1, Pedro G. Ferreira 2,3 1, and Krzysztof M. Górski 4,5 arxiv:astro-ph/9903051v1 2 Mar 1999 1 Theoretical Physics, Imperial College, Prince Consort

More information

An examination of the CMB large-angle suppression

An examination of the CMB large-angle suppression University of Richmond UR Scholarship Repository Honors Theses Student Research 2016 An examination of the CMB large-angle suppression Ellis Herman Follow this and additional works at: http://scholarship.richmond.edu/honors-theses

More information

arxiv:astro-ph/ v1 25 Jun 1998

arxiv:astro-ph/ v1 25 Jun 1998 Science 280, 1397 (1998) The Case of the Curved Universe: Open, Closed, or Flat? Marc Kamionkowski Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 arxiv:astro-ph/9806347v1

More information

arxiv:astro-ph/ v2 23 May 1995

arxiv:astro-ph/ v2 23 May 1995 FERMILAB Pub 95/071-A astro-ph/9504071 CBR Anisotropy and the Running of the Scalar Spectral Index arxiv:astro-ph/9504071v2 23 May 1995 Arthur Kosowsky Harvard-Smithsonian Center for Astrophysics, 60 Garden

More information

Records from Primordial Gravitational Waves and Cosmic Acceleration in CMB polarization

Records from Primordial Gravitational Waves and Cosmic Acceleration in CMB polarization Records from Primordial Gravitational Waves and Cosmic Acceleration in CMB polarization Carlo Baccigalupi SISSA, Trieste VI Challenges of New Physics in Space, Campos de Jordao, Brazil, May 25-29, 2015

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Analysis of four-year COBE-DMR data

Analysis of four-year COBE-DMR data Project assignment AST2210 Analysis of four-year COBE-DMR data Hans Kristian Eriksen and Tone Melvær Ruud 1 Introduction We will in this project assignment repeat the analysis of the four-year COBE- DMR

More information

KIPMU Set 1: CMB Statistics. Wayne Hu

KIPMU Set 1: CMB Statistics. Wayne Hu KIPMU Set 1: CMB Statistics Wayne Hu CMB Blackbody COBE FIRAS spectral measurement. yellblackbody spectrum. T = 2.725K giving Ω γ h 2 = 2.471 10 5 12 GHz 200 400 600 10 B ν ( 10 5 ) 8 6 4 error 50 2 0

More information

Planck. Ken Ganga. APC/CNRS/ University of Paris-Diderot

Planck. Ken Ganga. APC/CNRS/ University of Paris-Diderot Planck Ken Ganga APC/CNRS/ University of Paris-Diderot A Brief History of the Cosmos The CMB was emitted when the Universe was about 3 10-5 of its current age. 2 Planck/HFI Timeline The HFI builds on the

More information

19. COSMIC BACKGROUND RADIATION

19. COSMIC BACKGROUND RADIATION 19. Cosmic background radiation 1 19. COSMIC BACKGROUND RADIATION Revised February 2000 by G.F. Smoot (LBNL) and D. Scott (University of British Columbia). 19.1. Introduction The observed cosmic microwave

More information

The CMB since WMAP

The CMB since WMAP ASTR509-23 The CMB since 1990 - WMAP D T Wilkinson 1935-2002 Cyrus Fogg Brackett Professor of Physics, Princeton 1965 with Peebles, Dicke, and Roll interpretation of the 3K radiation found by Penzias and

More information

The CMB in Italy. Marco Bersanelli Università degli Studi di Milano on behalf of the Italian CMB community

The CMB in Italy. Marco Bersanelli Università degli Studi di Milano on behalf of the Italian CMB community The CMB in Italy Marco Bersanelli Università degli Studi di Milano on behalf of the Italian CMB community The CMB and the era of precision Cosmology Special status of CMB for precision science: - Simple

More information

INTRODUCTION TO THE COSMIC MICROWAVE BACKGROUND (CMB)

INTRODUCTION TO THE COSMIC MICROWAVE BACKGROUND (CMB) INTRODUCTION TO THE COSMIC MICROWAVE BACKGROUND (CMB) JAMES G. O BRIEN Abstract. The goal of this short paper is to provide a working reference and brief introduction to the history, foundation and formulation

More information

THE PRIMORDIAL FIREBALL. Joe Silk (IAP, CEA, JHU)

THE PRIMORDIAL FIREBALL. Joe Silk (IAP, CEA, JHU) THE PRIMORDIAL FIREBALL Joe Silk (IAP, CEA, JHU) CONTENTS OF THE UNIVERSE Albert Einstein Georges Lemaitre Alexander Friedmann George Gamow Fred Hoyle 1930 Albert Einstein Edwin Hubble velocity 1929: Hubble

More information

B-mode Polarization of The Cosmic Microwave Background

B-mode Polarization of The Cosmic Microwave Background B-mode Polarization of The Cosmic Microwave Background Yuri Hayashida May 27, 2015 1 / 19 Index Reference Introduction Polarization Observation Summary 2 / 19 Reference [1] Baumann,D. (2012). TASI Lectures

More information

arxiv: v3 [astro-ph.co] 9 Aug 2017

arxiv: v3 [astro-ph.co] 9 Aug 2017 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 10 August 2017 (MN LATEX style file v2.2) High redshift radio galaxies and divergence from the CMB dipole arxiv:1703.09376v3 [astro-ph.co] 9 Aug 2017

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Magnetic field structure from Planck polarization observations of the diffuse Galactic ISM

Magnetic field structure from Planck polarization observations of the diffuse Galactic ISM Magnetic field structure from Planck polarization observations of the diffuse Galactic ISM François Boulanger Institut d Astrophysique Spatiale on behalf of the Planck Consortium Outline The Planck data

More information

9.2 The Universe. p. 368

9.2 The Universe. p. 368 9.2 The Universe p. 368 Cosmology the study of the universe, including its origin, how it is changing, and its future. The Hubble Space Telescope (HST) The American astronomer Edwin Hubble (1889-1953)

More information