Self-organized patchiness and catastrophic shifts in ecosystems; The hypothesis

Size: px
Start display at page:

Download "Self-organized patchiness and catastrophic shifts in ecosystems; The hypothesis"

Transcription

1 Self-organized patchiness and catastrophic shifts in ecosystems; The hypothesis Max Rietkerk Copernicus Institute Dept Environmental Sciences Faculty Geosciences Utrecht University

2 Outline lecture 1 The hypothesis Catastrophic shifts Self-organized patchiness Linked by resource concentration Scale-dependent positive feedback

3 Outline lecture 2 Ongoing research and perspectives Local positive feedback (facilitation) and global negative feedback (competition) in arid ecosystems Type I, II and III positive feedback in peatland ecosystems Negative feedback and species coexistence

4

5 (Semi-)arid ecosystems Yearly potential evaporation exceeds yearly rainfall Plant growth water limited 40% land surface Main land-use is grazing

6 World distribution arid systems Valentin et al 1999

7

8 Desertification Desertification is land degradation in (semi-)arid and dry subhumid areas resulting mainly from adverse human impact (UNCOD 1992) The reduction or spatial reorganization of net primary production in (semi-)arid lands Most desertification happens as runaway phenomena which are irreversible on human time scales Once desertification starts it is hard to stop and almost impossible to remediate in an area

9 Changing environment Increased grazing by domestic lifestock (f.i. Sahelian countries livestock numbers increased 3 fold from 40 million to 120 million between 1950 and 1990) Decreased rainfall (f.i. Sahelian areas from 750 mm/yr in 1950s to 600 mm/yr in 1990s, and severe drought periods in 1970s and 1980s)

10 Infiltration rate increases with vegetation cover Infiltration rate (ml min -1 ) Rietkerk et al 2000 Vegetation cover

11

12

13 A simple model of positive feedback I Losses (e.g. grazing) Plants Rainfall Uptake/ growth + Infiltration Soil water

14 Non-spatial model I P( t) t = [ growth] [ loss] W ( t) t = [ infiltration] [ uptake ] [ evaporation]

15 dp dt dw dt = gw ( ) P ( d+ bp ) = Win( P) c( W) P rww W gw ( ) = g max W k cw ( ) = c max + 1 W W k + 1 W P PPT P + in( )= k W P+ k2 2 0 Rietkerk & Van de Koppel Oikos 1997; Rietkerk et al Oikos 1997

16 A simple model of positive feedback II Losses (e.g. grazing) Plants Nutrient input Uptake/ growth Recycling - Soil nutrients Losses

17 Non-spatial model II P( t) t = [ growth] [ recycling+ loss] N( t) t = [ input] [ uptake recycling ] [ losses]

18 P b d P N g dt dp ) ( ) ( + = N P r P N c N dt dn N in ) ( ) ( = 1 max ) ( k N N g N g + = max max 1 max ) ( g c d k N N c N c + = P k k r P r N N + = 2 2,max ) ( Rietkerk & Van de Koppel Oikos 1997; Rietkerk et al Oikos 1997

19 Catastrophic shifts Equilibrium plant standing crop Rainfall/Nutrient input Rietkerk & Van de Koppel Oikos 1997; Rietkerk et al Oikos 1997

20

21

22 Scheffer et al Nature 2001

23 Catastrophic shifts Are associated with bistability (in the ecological literature this is often called alternative stable states or multiple stable states), Are sometimes called discontinuous transitions (as opposed to continuous transitions), or regime shifts, And in the math literature they are called subcritical bifurcations (as opposed to supercritical bifurcations).

24 Catastrophic shifts Are sudden, abrupt, as compared to gradual environmental change, Show hysteretic loops (difficult to reverse), Have different threshold values associated with this. There are no early warning signals! Result from positive feedback. Challenge Max! Did you ever see one?

25 Until now I have Spatial scale ignored Spatial heterogeneity ignored Spatial processes like run-off ignored What happens if we introduce space?

26 A simple spatial model Losses (e.g. grazing) Plants Rainfall Surface water Uptake + Infiltration Soil water

27 Spatial model O( x r, t) t = [ rainfall ] [ infiltration] ± [ overland flow] W ( x v, t) t = [ infiltration] [ uptake ] [ evaporation] ± [ water movement] P( x,t r ) t = [ growth] [ loss] ± [ dispersal]

28 P D p P d P k W W g c t P + + = 1 max W D w W r w P k W W g k P W k P O t W = 1 max α O D o k P W k P O R t O = α Hillerislambers et al Ecology 2001; Rietkerk et al AmNat 2002

29 Grid approach x-direction y-direction

30 Model simulations Increased grazing or decreased rainfall gaps labyrints spots 400 m grid size = 2 x 2 m Rietkerk et al AmNat 2002

31 Self-organized patchiness! Outcome of internal dynamics only, starting from random initialization As a result of plant-soil characteristics Concentration of soil water under vegetated patches This is due to the fact that higher biomass leads to higher infiltration rates outbalancing higher transpiration rates Can you see this? Yes!

32 Aerial pictures Increased grazing or decreased rainfall? 800 m 650 m Courtesy S Prince Univ of Maryland

33 Self-organized patchiness at multiple scales 1 m Northern Negev (Israel) (200 mm annual rainfall) Soil water transport due to differences in evapotranspiration (Von Hardenberg et al 2001) 650 m Niger ( mm annual rainfall) Surface water movement due to differences in infiltration (Rietkerk et al 2002)

34 from: Aguiar & Sala

35

36

37 Model simulation Slope (top on right hand side) grid size = 2 x 2 m 400 m Rietkerk et al AmNat 2002

38 This is of course all very nice (isn t it?), but Where are the catastrophic shifts? For this: one-dimensional numerical analysis in the next slides

39 Spatial bifurcation plant density (g m -2 ) herbivory (d -1 )

40 Productivity plant density (g m -2 ) homogeneous mean field spatial maximum spatial average herbivory (d -1 )

41 Region of spatial patterns spots (hysteresis) Extinction herbivory (d -1 ) gaps labyrints Homogeneous plant cover rainfall (mm d -1 )

42 So, what do we have here? 1) Turing patterns! (No homogeneous solutions possible). 2) Non-Turing patterns, associated with bistability, and either homogeneous or patterned outcome dependent on initial conditions. 3) Certain patterning arising depending on direction of change. Are there more ecosystems behaving in similar ways?

43 Rietkerk et al AmNat 2004 Northern peatlands

44 db/dt = growth mortality +/- dispersal dh/dt = rainfall transpiration evaporation +/- ground water flow dn/dt = nutrient input uptake + recycling loss +/- movement through ground water flow +/- diffusion

45 ) ( )) ( ( ] [ y B x B B D bb db H h Bf N g t B + + = )} ( ) ( { f(h(h)) f(h(h)) y H H y x H H x k e tv B p t H + Θ + Θ Θ Θ = )} ] ([ ) ] ([ { ) 2 ] [ 2 2 ] [ 2 ( ] [ f(h(h)) ] [ ] [ y H N y x H N x k y N x N N D H t H N rn B g u d B N u in N t N + Θ Θ Θ + =

46 Peatland patterns Peatland patterns can be explained by spatial exchange of nutrients Rietkerk et al AmNat 2004

47 Spatial bifurcation 1000 LP 1 B (gb m -2 ) LP 2 LP 1 LP N in (g N m -2 y -1 ) T

48 Nutrient-limited savannas m Lejeune et al Phys Rev E 2002

49 Equilibrium density of ecosystem engineer Catastrophic shift from selforganized patchy to homogeneous state Catastrophic shift from homogeneous to self-organized patchy state Resource input Rietkerk et al Science 2004 Region of global bistability

50 So what I suggest is that All ecosystems with self-organised patchiness resulting from a resource concentration mechanism also exhibit catastrophic shifts.

51 This is because Ecosystem engineers at low densities may be unable to harvest resources from their surroundings. The positive feedback does not operate!

52 Scale-dependent feedback Feedback effect + - distance Rietkerk et al Science 2004

53 Mussel beds Patterns in mussel beds Courtesy N Dankers Van de Koppel et al AmNat 2005

54 Coral reefs Mistr and Bercovici Ecosystems 2003

55 Tidal flats Van de Koppel et al Ecology 2001

56 Sea grass Courtesy HHT Prins Just a vague idea...

57 Acknowledgements Maarten Boerlijst (neat simulations!) (UvA) Andre de Roos (UvA) Stefan Dekker (UU) Johan van de Koppel (NIOO)... And many others! (from all over)

58

Plant responses to climate change in the Negev

Plant responses to climate change in the Negev Ben-Gurion University of the Negev Plant responses to climate change in the Negev 300 200 150? Dr. Bertrand Boeken Dry Rangeland Ecology and Management Lab The Wyler Dept. of Dryland Agriculture Jacob

More information

Do Local Interactions or the Landscape Determine Spatial Selforganization

Do Local Interactions or the Landscape Determine Spatial Selforganization Do Local Interactions or the Landscape Determine Spatial Selforganization in Wetland Ecosystems? Johan van de Koppel Tjeerd Bouma Peter Herman Royal Netherlands Institute for Sea Research (NIOZ) Yerseke,

More information

ARTICLE IN PRESS Ecological Modelling xxx (2011) xxx xxx

ARTICLE IN PRESS Ecological Modelling xxx (2011) xxx xxx Ecological Modelling xxx (2011) xxx xxx Contents lists available at ScienceDirect Ecological Modelling jo ur n al homep ag e: www.elsevier.com/locate/ecolmodel Pattern-formation approach to modelling spatially

More information

OSTWALD RIPENING IN DRYLAND VEGETATION. Assaf Y. Kletter. Jost von Hardenberg. Ehud Meron. (Communicated by the associate editor name)

OSTWALD RIPENING IN DRYLAND VEGETATION. Assaf Y. Kletter. Jost von Hardenberg. Ehud Meron. (Communicated by the associate editor name) Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX OSTWALD RIPENING IN DRYLAND VEGETATION Assaf Y. Kletter Department of Physics Ben-Gurion University,

More information

Winter school Patterns of vegetation in water controlled ecosystems

Winter school Patterns of vegetation in water controlled ecosystems Via F. Marzolo, 9 - I 35131 Padova tel +39 049 8275424 fax +39 049 8275446 C.F 80006480281 - P.IVA 00742430283 Winter school Patterns of vegetation in water controlled ecosystems Lectures content: Dan

More information

Multiple stable points, tipping points, and warning signs in ecological systems

Multiple stable points, tipping points, and warning signs in ecological systems Multiple stable points, tipping points, and warning signs in ecological systems Alan Hastings Dept of Environmental Science and Policy UC Davis Acknowledge: US NSF Collaborators: Carl Boettiger, Derin

More information

The role of soil moisture in influencing climate and terrestrial ecosystem processes

The role of soil moisture in influencing climate and terrestrial ecosystem processes 1of 18 The role of soil moisture in influencing climate and terrestrial ecosystem processes Vivek Arora Canadian Centre for Climate Modelling and Analysis Meteorological Service of Canada Outline 2of 18

More information

Earth s Major Terrerstrial Biomes. *Wetlands (found all over Earth)

Earth s Major Terrerstrial Biomes. *Wetlands (found all over Earth) Biomes Biome: the major types of terrestrial ecosystems determined primarily by climate 2 main factors: Depends on ; proximity to ocean; and air and ocean circulation patterns Similar traits of plants

More information

Exam 3. Principles of Ecology. April 14, Name

Exam 3. Principles of Ecology. April 14, Name Exam 3. Principles of Ecology. April 14, 2010. Name Directions: Perform beyond your abilities. There are 100 possible points (+ 9 extra credit pts) t N t = N o N t = N o e rt N t+1 = N t + r o N t (1-N

More information

Lecture 3A: Interception

Lecture 3A: Interception 3-1 GEOG415 Lecture 3A: Interception What is interception? Canopy interception (C) Litter interception (L) Interception ( I = C + L ) Precipitation (P) Throughfall (T) Stemflow (S) Net precipitation (R)

More information

Commonly Used Designs

Commonly Used Designs Commonly Used Designs Partial Additive Replacement Series Additive Complete Additive The Complete Additive Design replacement series design partial additive design Provides information across a range of

More information

Dynamics and spatial organization of plant. communities in water limited systems

Dynamics and spatial organization of plant. communities in water limited systems Dynamics and spatial organization of plant communities in water limited systems E. Gilad a,b, M. Shachak c, E. Meron b,a, a Department of Physics, Ben-Gurion University, Beer Sheva, 84105, Israel b Department

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

Spatial Heterogeneity and Irreversible Vegetation Change in Semiarid Grazing Systems

Spatial Heterogeneity and Irreversible Vegetation Change in Semiarid Grazing Systems vol. 159, no. 2 the american naturalist february 2002 Spatial Heterogeneity and Irreversible Vegetation Change in Semiarid Grazing Systems Johan van de Koppel, 1,2,* Max Rietkerk, 1,3,4, Frank van Langevelde,

More information

Fukien Secondary School Monthly Vocabulary/Expression List for EMI Subjects Secondary Two. Subject: Geography

Fukien Secondary School Monthly Vocabulary/Expression List for EMI Subjects Secondary Two. Subject: Geography Focus: General Specific : Section Two : Unit One 1 Landslide 2 Downslope movement 3 Rock 4 Soil 5 Gravity 6 Natural hazard 7 Rainwater 8 Friction 9 Hilly relief 10 Unstable 11 Season 12 Saturated 13 Construction

More information

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Reinder A.Feddes Jos van Dam Joop Kroes Angel Utset, Main processes Rain fall / irrigation Transpiration Soil evaporation

More information

Ruimtelijke ecologie van veen-ecosystemen ruimtelijke zelforganisatie en abrupte omslagen in hoogvenen

Ruimtelijke ecologie van veen-ecosystemen ruimtelijke zelforganisatie en abrupte omslagen in hoogvenen Spatial ecology of peatland ecosystems: Spatial self-organization and catastrophic shifts in bogs Ruimtelijke ecologie van veen-ecosystemen ruimtelijke zelforganisatie en abrupte omslagen in hoogvenen

More information

NOTES ON CHAOS. Chaotic dynamics stem from deterministic mechanisms, but they look very similar to random fluctuations in appearance.

NOTES ON CHAOS. Chaotic dynamics stem from deterministic mechanisms, but they look very similar to random fluctuations in appearance. NOTES ON CHAOS. SOME CONCEPTS Definition: The simplest and most intuitive definition of chaos is the extreme sensitivity of system dynamics to its initial conditions (Hastings et al. 99). Chaotic dynamics

More information

Effect of competition on the distribution of Marram Grass within a sand dune system Introduction

Effect of competition on the distribution of Marram Grass within a sand dune system Introduction » sjhoward.co.uk Effect of competition on the distribution of Marram Grass within a sand dune system Introduction Sand dunes provide a classic example of the progression of ecological succession, with

More information

Critical success factors for revegetation of heavily polluted sites.

Critical success factors for revegetation of heavily polluted sites. Critical success factors for revegetation of heavily polluted sites. A cost-benefit analysis tool. Jan Japenga, Paul Römkens, Luc Bonten Soil Science Centre ALTERRA Green World Research, Wageningen University

More information

What is competition? Competition among individuals. Competition: Neutral Theory vs. the Niche

What is competition? Competition among individuals. Competition: Neutral Theory vs. the Niche Competition: Neutral Theory vs. the Niche Reading assignment: Ch. 10, GSF (especially p. 237-249) Optional: Clark 2009 9/21/09 1 What is competition? A reduction in fitness due to shared use of a limited

More information

Metacommunities Spatial Ecology of Communities

Metacommunities Spatial Ecology of Communities Spatial Ecology of Communities Four perspectives for multiple species Patch dynamics principles of metapopulation models (patchy pops, Levins) Mass effects principles of source-sink and rescue effects

More information

SUCCESSION Community & Ecosystem Change over time

SUCCESSION Community & Ecosystem Change over time Schueller NRE 509: Lecture 23 SUCCESSION Community & Ecosystem Change over time 1. Forest study revisited 2. Patterns in community change over time: 3 cases 3. What is changing? 4. What determines the

More information

Module 3. Basic Ecological Principles

Module 3. Basic Ecological Principles Module 3. Basic Ecological Principles Ecosystem Components Abiotic Biotic Species & Habitat The Biomes of North America Communities Energy & Matter Cycles in Ecosystems Primary Productivity Simple Ecosystem

More information

LECTURE #14: Extreme Heat & Desertification

LECTURE #14: Extreme Heat & Desertification GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #14: Extreme Heat & Desertification Date: 27 February 2018 (lecturer: Dr. Shawn Wright) I. Start of Part 2 of the Course weather-related disasters

More information

EKOLOGI BIOMA (BIOME) TEMA 10. Program Studi Tadris Biologi Fakultas Tarbiyah dan Ilmu Keguruan Institut Agama Islam Negeri Jember

EKOLOGI BIOMA (BIOME) TEMA 10. Program Studi Tadris Biologi Fakultas Tarbiyah dan Ilmu Keguruan Institut Agama Islam Negeri Jember EKOLOGI TEMA 10 BIOMA (BIOME) Program Studi Tadris Biologi Fakultas Tarbiyah dan Ilmu Keguruan Institut Agama Islam Negeri Jember What is difference of this picture????? Why are they different????? Have

More information

Trophic and community ecology

Trophic and community ecology Trophic and community ecology Top carnivore Trophic levels Carnivore Herbivore Plant Trophic ecology Trophic related to feeding Autotrophs: synthesize their food Heterotrophs: eat other organisms Trophic

More information

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often?

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often? 2. Irrigation Key words: right amount at right time What if it s too little too late? 2-1 Too much too often? To determine the timing and amount of irrigation, we need to calculate soil water balance.

More information

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts! Page 1 BIOLOGY 150 Final Exam Winter Quarter 2000 Before starting be sure to put your name and student number on the top of each page. MINUS 3 POINTS IF YOU DO NOT WRITE YOUR NAME ON EACH PAGE! You have

More information

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle Ecosystems 1. Population Interactions 2. Energy Flow 3. Material Cycle The deep sea was once thought to have few forms of life because of the darkness (no photosynthesis) and tremendous pressures. But

More information

Interspecific Competition

Interspecific Competition Interspecific Competition Intraspecific competition Classic logistic model Interspecific extension of densitydependence Individuals of other species may also have an effect on per capita birth & death

More information

FLOODING. Flood any relatively high stream flow overtopping the natural or artificial banks in a water system.

FLOODING. Flood any relatively high stream flow overtopping the natural or artificial banks in a water system. CATASTROPHIC EVENTS FLOODING Flood any relatively high stream flow overtopping the natural or artificial banks in a water system. Common Causes: Long-lasting rainfall over a broad area Locally intense

More information

The Global Scope of Climate. The Global Scope of Climate. Keys to Climate. Chapter 8

The Global Scope of Climate. The Global Scope of Climate. Keys to Climate. Chapter 8 The Global Scope of Climate Chapter 8 The Global Scope of Climate In its most general sense, climate is the average weather of a region, but except where conditions change very little during the course

More information

Simon Berkowicz. Biological Soil Crust Recovery in a Dryland Ecosystem. Arid Ecosystems Research Centre Hebrew University of Jerusalem

Simon Berkowicz. Biological Soil Crust Recovery in a Dryland Ecosystem. Arid Ecosystems Research Centre Hebrew University of Jerusalem Simon Berkowicz Biological Soil Crust Recovery in a Dryland Ecosystem Arid Ecosystems Research Centre Hebrew University of Jerusalem What are Biological Soil Crusts (BSC) -highly diverse natural communities

More information

Chapter 7 Part III: Biomes

Chapter 7 Part III: Biomes Chapter 7 Part III: Biomes Biomes Biome: the major types of terrestrial ecosystems determined primarily by climate 2 main factors: Temperature and precipitation Depends on latitude or altitude; proximity

More information

Vegetation pattern formation in semiarid systems without facilitative mechanisms

Vegetation pattern formation in semiarid systems without facilitative mechanisms GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 6143 6147, doi:10.1002/2013gl058797, 2013 Vegetation pattern formation in semiarid systems without facilitative mechanisms Ricardo Martínez-García, 1 Justin M. Calabrese,

More information

Gary G. Mittelbach Michigan State University

Gary G. Mittelbach Michigan State University Community Ecology Gary G. Mittelbach Michigan State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Table of Contents 1 Community Ecology s Roots 1 PART I The Big

More information

Evolution of migration in a changing world. Cervus elaphus (known as red deer, elk, or wapiti)

Evolution of migration in a changing world. Cervus elaphus (known as red deer, elk, or wapiti) Evolution of migration in a changing world Cervus elaphus (known as red deer, elk, or wapiti) 1 Rates of energy gain by red deer or elk are highest when feeding on young vegetation (2-4 weeks of growth)

More information

Field experiments on competition. Field experiments on competition. Field experiments on competition

Field experiments on competition. Field experiments on competition. Field experiments on competition INTERACTIONS BETWEEN SPECIES Type of interaction species 1 species 2 competition consumer-resource (pred, herb, para) mutualism detritivore-detritus (food is dead) Field experiments on competition Example

More information

Biogeographic Processes

Biogeographic Processes Biogeographic Processes Energy and Matter Flow in Ecosystems Ecological Biogeography Ecological Succession Historical Biogeography Biogeographic Processes Biogeography examines the distribution of plants

More information

Unit 8: Ecology Guided Reading Questions (60 pts total)

Unit 8: Ecology Guided Reading Questions (60 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Unit 8: Ecology Guided Reading Questions (60 pts total) Chapter 51 Animal

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Lecture 04 Soil Erosion - Mechanics Hello friends

More information

Ecosystem-Climate Interactions

Ecosystem-Climate Interactions Ecosystem-Climate Interactions Dennis Baldocchi UC Berkeley 2/1/2013 Topics Climate and Vegetation Correspondence Holdredge Classification Plant Functional Types Plant-Climate Interactions Canopy Microclimate

More information

Land and Water Study Guide

Land and Water Study Guide Land and Water Study Guide Answer Key Part 1 States of Matter 1. What are the three states of matter for water? Give several examples for each. Solid Ice cube (non water examples = candy bar and a log).

More information

POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN

POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, VOL. 5, no.2, 2011 POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN Gigliola Elena Ureche (Dobrin) 1

More information

Local facilitation, bistability and transitions in arid ecosystems

Local facilitation, bistability and transitions in arid ecosystems Theoretical Population Biology 71 (2007) 367 379 www.elsevier.com/locate/tpb Local facilitation, bistability and transitions in arid ecosystems Sonia Ke fi a,, Max Rietkerk a, Minus van Baalen b, Michel

More information

Unit 1 -Lesson 5. Population Patterns of the Eastern Hemisphere

Unit 1 -Lesson 5. Population Patterns of the Eastern Hemisphere Unit 1 -Lesson 5 Population Patterns of the Eastern Hemisphere Population Patterns of the Eastern Hemisphere Population Patterns of the Eastern Hemisphere Big Ideas of the Lesson Population distribution

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

Effect of rainfall interannual variability on the stability and resilience of dryland plant ecosystems

Effect of rainfall interannual variability on the stability and resilience of dryland plant ecosystems WATER RESOURCES RESEARCH, VOL. 43, W064, doi:0.029/2006wr00534, 2007 Effect of rainfall interannual variability on the stability and resilience of dryland plant ecosystems F. Borgogno, P. D Odorico, 2

More information

Catastrophic Events Impact on Ecosystems

Catastrophic Events Impact on Ecosystems Catastrophic Events Impact on Ecosystems Hurricanes Hurricanes An intense, rotating oceanic weather system with sustained winds of at least 74 mph and a welldefined eye Conditions for formation: Warm water

More information

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores:

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores: BIOS 3010: Ecology Lecture 20: Community Structure & Predation: Lecture summary: Effects of grazing herbivores. Effects of predators. Effects of parasites & disease. Variation in time. Disturbance & community

More information

Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1

Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1 Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1 Assignment #23 Reading Assignment: Please read the following: Industrial

More information

Understanding landscape metrics. The link between pattern and process.

Understanding landscape metrics. The link between pattern and process. Understanding landscape metrics The link between pattern and process. Roadmap Introduction Methodological considerations Spatial autocorrelation Stationarity Processes Abiotic Biotic Anthropogenic Disturbances

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 3: Intraspecific Competition. Lecture summary: Definition. Characteristics. Scramble & contest. Density dependence k-values

More information

BIOLOGY CELLS FIRST SEMESTER STUDY GUIDE. Define:

BIOLOGY CELLS FIRST SEMESTER STUDY GUIDE. Define: BIOLOGY FIRST SEMESTER STUDY GUIDE CELLS * SPI 3210.1.1 and 3210.1.2 Compare the structure and function of cellular organelles in both prokaryotic and eukaryotic cells. Define: What is Biology? eukaryotic

More information

Biogeography. Fig. 12-6a, p. 276

Biogeography. Fig. 12-6a, p. 276 Biogeography Fig. 12-6a, p. 276 Biogeographic Processes Energy and Matter Flow in Ecosystems Ecological Biogeography Ecological Succession Historical Biogeography Biogeographic Processes Biogeography examines

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

Essential Questions. What factors are most significant in structuring a community?

Essential Questions. What factors are most significant in structuring a community? Community Ecology Essential Questions What factors are most significant in structuring a community? What determines a communities species composition and the relative amount of species present? What is

More information

BIOS 230 Landscape Ecology. Lecture #32

BIOS 230 Landscape Ecology. Lecture #32 BIOS 230 Landscape Ecology Lecture #32 What is a Landscape? One definition: A large area, based on intuitive human scales and traditional geographical studies 10s of hectares to 100s of kilometers 2 (1

More information

CHANGES IN RAINFALL SEASONALITY ( ) AT GROOTFONTEIN, SOUTH AFRICA

CHANGES IN RAINFALL SEASONALITY ( ) AT GROOTFONTEIN, SOUTH AFRICA CHANGES IN RAINFALL SEASONALITY (1889-2015) AT GROOTFONTEIN, SOUTH AFRICA J.C.O. du Toit 1# and TG O Connor 2 1 Grootfontein Agricultural Development Institute, Private Bag, X529, Middelburg (EC), 5900

More information

Directions: Using the Succession Power Point, answer the following questions. 1. What did these events do to the earth? 2. How did the events do this?

Directions: Using the Succession Power Point, answer the following questions. 1. What did these events do to the earth? 2. How did the events do this? Name Period Date Assigned Date Due Date Returned Directions: Using the Succession Power Point, answer the following questions. 1. What did these events do to the earth? 2. How did the events do this? 3.

More information

1 (a) carbon dioxide / CO 2 ; (aerobic) respiration ; (simple) diffusion ; [3] A excretion I gas exchange

1 (a) carbon dioxide / CO 2 ; (aerobic) respiration ; (simple) diffusion ; [3] A excretion I gas exchange 1 (a) carbon dioxide / CO 2 ; (aerobic) respiration ; (simple) diffusion ; [] A excretion I gas exchange (b) water enters by osmosis ; down a water potential gradient / high(er) to low(er) water potential

More information

Using Weather and Climate Information for Landslide Prevention and Mitigation

Using Weather and Climate Information for Landslide Prevention and Mitigation Using Weather and Climate Information for Landslide Prevention and Mitigation Professor Roy C. Sidle Disaster Prevention Research Institute Kyoto University, Japan International Workshop on Climate and

More information

Predation. Predation & Herbivory. Lotka-Volterra. Predation rate. Total rate of predation. Predator population 10/23/2013. Review types of predation

Predation. Predation & Herbivory. Lotka-Volterra. Predation rate. Total rate of predation. Predator population 10/23/2013. Review types of predation Predation & Herbivory Chapter 14 Predation Review types of predation Carnivory Parasitism Parasitoidism Cannabalism Lotka-Volterra Predators control prey populations and prey control predator populations

More information

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 10. Population models 1: Lecture summary: Distribution and abundance

More information

Community Ecology. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

Community Ecology. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Chapter 54 Community Ecology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

RR#5 - Free Response

RR#5 - Free Response Base your answers to questions 1 through 3 on the data table below and on your knowledge of Earth Science. The table shows the area, in million square kilometers, of the Arctic Ocean covered by ice from

More information

Biomes, Populations, Communities and Ecosystems Review

Biomes, Populations, Communities and Ecosystems Review Multiple Choice Biomes, Populations, Communities and Ecosystems Review 1. The picture below is a school (group) of Jack fish. What type of distribution does this represent? A) Random B) Even C) Uniform

More information

Application of Cellular Automata in Conservation Biology and Environmental Management 1

Application of Cellular Automata in Conservation Biology and Environmental Management 1 Application of Cellular Automata in Conservation Biology and Environmental Management 1 Miklós Bulla, Éva V. P. Rácz Széchenyi István University, Department of Environmental Engineering, 9026 Győr Egyetem

More information

Student Name: Teacher: Date: District: London City. Assessment: 07 Science Science Test 4. Description: Life Science Final 1.

Student Name: Teacher: Date: District: London City. Assessment: 07 Science Science Test 4. Description: Life Science Final 1. Student Name: Teacher: Date: District: London City Assessment: 07 Science Science Test 4 Description: Life Science Final 1 Form: 301 1. A food chain is shown. Sunlight Grass Rabbit Snake What is the abiotic

More information

Soil Health Monitoring

Soil Health Monitoring M A N A A K I W H E N U A L A N D C A R E R E S E A R C H Soil Health Monitoring Today vs Tomorrow: Defining a More Comprehensive View of Soil Health Bryan Stevenson (and a host of others) J a n u a r

More information

Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns Sonia Kéfi 1 *., Vishwesha Guttal 2., William A. Brock 3,4, Stephen R. Carpenter 4,5, Aaron M. Ellison 6, Valerie N. Livina

More information

THREAT CATEGORIES Level 1 Level 1 Level 2 Level 2 Level 3 Level Residential development. Commercial and.

THREAT CATEGORIES Level 1 Level 1 Level 2 Level 2 Level 3 Level Residential development. Commercial and. NJ's 2015 SWAP Update THREAT CATEGORIES Level 1 Level 1 Focal Threat Assessment: MAMMALS 1. Residential commercial development 1.1 Housing urban areas 1.1.1 L conversion from nat'l habitat to urban & other

More information

1/20/2013. Introduction to Environmental Geology, 5e. Case History: Island of Hispaniola. Earth History. Earth s Place in Space

1/20/2013. Introduction to Environmental Geology, 5e. Case History: Island of Hispaniola. Earth History. Earth s Place in Space Introduction to Environmental Geology, 5e Edward A. Keller Chapter 1 Philosophy and Fundamental Concepts Intro to Geology: summary haiku Here's geology. It's the study of the Earth - complete entity. Lecture

More information

Chapter 16: Competition. It s all mine, stay away!

Chapter 16: Competition. It s all mine, stay away! Chapter 16: Competition It s all mine, stay away! Species Interactions +/+ +/- -/- Basic interaction -/- Pop growth rate of species 1 (dn 1 /dt) is decreased by interaction Pop growth rate of species 2

More information

Arctic Armageddon, More Mathematics

Arctic Armageddon, More Mathematics Mathematics Undergraduate Colloquium University of Utah 11/14/2012 Arctic Armageddon, More Mathematics Ivan Sudakov Doomsday 2012 2 Climate Change Past Future Credit: Barnosky, et al., 2011 Credit: IPCC,

More information

Climate and the Atmosphere

Climate and the Atmosphere Climate and Biomes Climate Objectives: Understand how weather is affected by: 1. Variations in the amount of incoming solar radiation 2. The earth s annual path around the sun 3. The earth s daily rotation

More information

Stability, dispersal and ecological networks. François Massol

Stability, dispersal and ecological networks. François Massol Stability, dispersal and ecological networks François Massol June 1 st 2015 General theme Evolutionary ecology of fluxes o Evolution & ecology of dispersal o Spatial structure, networks of populations

More information

A GIS-based Study on Grassland Degradation and. Increase of Dust Storms in China

A GIS-based Study on Grassland Degradation and. Increase of Dust Storms in China 1 A GIS-based Study on Grassland Degradation and Increase of Dust Storms in China Qinxue WANG* and Kuninori OTSUBO* * National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506,

More information

Exchanging Materials in Plants

Exchanging Materials in Plants Exchanging Materials in Plants 1 of 23 Boardworks Ltd 2012 2 of 23 Boardworks Ltd 2012 3 of 23 Boardworks Ltd 2012 All living things need to exchange materials Plants need to obtain certain materials for

More information

D. Adaptive Radiation

D. Adaptive Radiation D. Adaptive Radiation One species new species: A new species: B new species: C new species: D Typically occurs when populations of a single species... invade a variety of new habitats, evolve under different

More information

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number, Spring 22 COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE SILOGINI THANARAJAH AND HAO WANG ABSTRACT. In many studies of

More information

Continue 59 Invasive. Yes. Place on invasive plant list, no further investigation needed. STOP. No. Continue on to question 2.

Continue 59 Invasive. Yes. Place on invasive plant list, no further investigation needed. STOP. No. Continue on to question 2. Ohio Plant Assessment Protocol Posted Date: 7/2/ Step II Outcome: Directions: Place an "" in the Score column next to the selected answer to each of the four questions.. Is this plant known to occur in

More information

Degradation in Southern Central Africa

Degradation in Southern Central Africa Degradation in Southern Central Africa Stephen D. Prince Nathan Morrow Martha Geores Jordan Borak Mingcui Cao Geography Department, University of Maryland http://www.inform.umd.edu/geog/lgrss/projects/

More information

6.E E Rock Cycle/Weathering/Soil

6.E E Rock Cycle/Weathering/Soil Name: Date: 1. A lake is surrounded by hills covered with trees and shrubs. Which statement correctly describes how a change to the plants in this area will affect this environment? A. Adding plants to

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology. Definition 1. Oikos, ology - the study of the house - the place we live. Etymology - origin and development of the the word 1. Earliest - Haeckel (1869) - comprehensive

More information

MET 3102-U01 PHYSICAL CLIMATOLOGY (ID 17901) Lecture 14

MET 3102-U01 PHYSICAL CLIMATOLOGY (ID 17901) Lecture 14 MET 3102-U01 PHYSICAL CLIMATOLOGY (ID 17901) Lecture 14 The hydrologic cycle evaporation vapor transport precipitation precipitation evaporation runoff Evaporation, precipitation, etc. in cm Vapor transported

More information

Spatio-temporal dynamics of the urban fringe landscapes

Spatio-temporal dynamics of the urban fringe landscapes Spatio-temporal dynamics of the urban fringe landscapes Yulia Grinblat 1, 2 1 The Porter School of Environmental Studies, Tel Aviv University 2 Department of Geography and Human Environment, Tel Aviv University

More information

Name period date assigned date due date returned. Texas Ecoregions

Name period date assigned date due date returned. Texas Ecoregions Name period date assigned date due date returned Directions: Go to the following website: https://www-k6.thinkcentral.com/epc/start.do Use the log in that is taped to the top of your laptop. If you are

More information

Data Analysis and Modeling with Stable Isotope Ratios. Chun-Ta Lai San Diego State University June 2008

Data Analysis and Modeling with Stable Isotope Ratios. Chun-Ta Lai San Diego State University June 2008 Data Analysis and Modeling with Stable Isotope Ratios Chun-Ta Lai San Diego State University June 2008 Leaf water is 18 O-enriched via transpiration δ 18 O vapor : -12 H 2 16 O H 2 18 O δ 18 O leaf : +8

More information

Name period date assigned date due date returned. Natural Disasters

Name period date assigned date due date returned. Natural Disasters Name period date assigned date due date returned Match the following natural disaster to its description. Write the capital letter of the definition in the blank in front of the natural disaster. 1. tornado

More information

Dynamic and Succession of Ecosystems

Dynamic and Succession of Ecosystems Dynamic and Succession of Ecosystems Kristin Heinz, Anja Nitzsche 10.05.06 Basics of Ecosystem Analysis Structure Ecosystem dynamics Basics Rhythms Fundamental model Ecosystem succession Basics Energy

More information

Evaluating Wildlife Habitats

Evaluating Wildlife Habitats Lesson C5 4 Evaluating Wildlife Habitats Unit C. Animal Wildlife Management Problem Area 5. Game Animals Management Lesson 4. Evaluating Wildlife Habitats New Mexico Content Standard: Pathway Strand: Natural

More information

IMPACT OF Chromolaena odorata INVASION ON RICHNESS AND DIVERSITY OF VEGETATION IN PASTURE AREA. Muhammad Rusdy ABSTRACT

IMPACT OF Chromolaena odorata INVASION ON RICHNESS AND DIVERSITY OF VEGETATION IN PASTURE AREA. Muhammad Rusdy ABSTRACT IMPACT OF Chromolaena odorata INVASION ON RICHNESS AND DIVERSITY OF VEGETATION IN PASTURE AREA Muhammad Rusdy 1 Laboratory of Forage Crops and Grassland Management Faculty of Animal Science Hasanuddin

More information

Analysis of soil failure modes using flume tests

Analysis of soil failure modes using flume tests Analysis of soil failure modes using flume tests A. Spickermann & J.-P. Malet Institute of Earth Physics, CNRS UMR 751, University of Strasbourg, Strasbourg, France Th.W.J. van Asch, M.C.G. van Maarseveen,

More information

UNIT 5: ECOLOGY Chapter 15: The Biosphere

UNIT 5: ECOLOGY Chapter 15: The Biosphere CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Lecture 24 Plant Ecology

Lecture 24 Plant Ecology Lecture 24 Plant Ecology Understanding the spatial pattern of plant diversity Ecology: interaction of organisms with their physical environment and with one another 1 Such interactions occur on multiple

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

Plant Water Stress Frequency and Periodicity in Western North Dakota

Plant Water Stress Frequency and Periodicity in Western North Dakota Plant Water Stress Frequency and Periodicity in Western North Dakota Llewellyn L. Manske PhD, Sheri Schneider, John A. Urban, and Jeffery J. Kubik Report DREC 10-1077 Range Research Program Staff North

More information