Rotor reference axis

Size: px
Start display at page:

Download "Rotor reference axis"

Transcription

1 Rotor reference axis So far we have used the same reference axis: Z aligned with the rotor shaft Y perpendicular to Z and along the blade (in the rotor plane). X in the rotor plane and perpendicular do Y A person with this set of axis will see the blade flapping, lagging and feathering. Although complicated it has the advantage of being linked to a physical part of the aircraft Slide 1

2 Rotor reference axis We could choose other axis on which the movement are not so complex: Slide 2

3 Rotor reference axis We have therefore defined four planes: Hub Plane (HP) perpendicular to the shaft No Feathering Plane (NFP) along the airfoil chord Tip Path Plane (TPP) with the boundary described by the blade tips Control Plane (CP) parallel to the swashplate Slide 3

4 Rotor reference axis No Feathering Plane (NFP): An observer see no variation of the cyclic pitch, that is θ 1c and θ 1s are zero. There is still the flapping movement Used for performance analyses Slide 4

5 Rotor reference axis Tip Path Plane (TPP) An observer see no variation in flapping, that is β 1c and β 1s are zero. The observer will see: Feathering Lagging Used for aerodynamic analyses The thrust resultant aligns within a degree of the Tip Path Axis (note that the TPP is not strictly a plane) Slide 5

6 Rotor reference axis Control Plane (CP) The observer will see no pitch variation The observer will see blade flapping and dragging Slide 6

7 Rotor reference axis Relations between axis Looking along the advancing blade Slide 7

8 Rotor reference axis Relations between axis Looking from the rear of the disk Slide 8

9 Rotor Trimming Slide 9

10 Rotor Trimming T T W T D D W Slide 10 W

11 Rotor Trimming T T W T D D W Slide 11 W

12 Forces and momentums applied Longitudinal trim Slide 12

13 Forces and momentums applied Lateral trim Slide 13

14 Force Equilibrium The contributions for the force are : Weight (W) Main Rotor Thrust (T MR ) Fuselage Drag (D) Fuselage Side Force (Y F ) Main Rotor Hub Drag (H MR ) Main Rotor Side Force (Y MR ) Vertical Tail (F VT ) Horizontal Tail (F HT ) Tail Rotor Thrust (T TR ) Slide 14

15 Force Equilibrium For simplicity we will assume: There is no side slip angle (Y F =0) There is no contribution from the Vertical Tail (F VT =0) There is no contribution from the Horizontal Tail (F HT =0) Thrust is aligned with the rotor shaft Slide 15

16 Force Equilibrium The vertical component equation is: The longitudinal component equation is: The lateral component equation is: Slide 16

17 Moment Equilibrium The contributions for the moment are: From the main rotor (M MR ) From the fuselage (M F ) From the horizontal tail (M HT ) From the vertical tail (M VT ) From the tail rotor (M TR ) Other sources (M O ) Slide 17

18 Moment Equilibrium Taking the moments about the rotor hub: Pitching moment Rolling moment Torque equilibrium Slide 18

19 Equilibrium Equations Using small angle assumptions: Slide 19

20 Forces The rotor thrust: Number of blades times the average of one blade lift per revolution The thrust coefficient Slide 20

21 Forces We could introduce the assumptions already made previously: Linear twist θ tw =const. Uniform inflow λ(r,ψ)=const. Rectangular blade c=const. And analytically we can obtain Slide 21

22 Forces We can use a similar process to calculate the other forces, with the rotor drag force H MR or H-force The H-force coefficient Slide 22

23 Forces the rotor side force Y MR or Y-force Using the same principle we could get the Y-force coefficient Slide 23

24 Moment Rotor torque Rotor rolling moment Rotor Pitching moment Slide 24

25 Inflow If we want to determine the trim value for both the main rotor inflowλ MR and the tail rotor inflowλ TR then two extra equation are needed. Using simple momentum theory Slide 25

26 Inflow In the previous expressions: µ MR cos α MR =V/(Ω MR R MR ) α MR is the main rotor disk angle of attack (=α) µ TR cos α TR =V/(Ω TR R TR ) α TR is the tail rotor disk angle of attack (=0 if there is no side slip) Slide 26

27 Equilibrium The vehicle equilibrium equation (with the inflow equations) can be written in the form F(X)=0 wherexis a vector of rotor trim unknowns: Slide 27

GyroRotor program : user manual

GyroRotor program : user manual GyroRotor program : user manual Jean Fourcade January 18, 2016 1 1 Introduction This document is the user manual of the GyroRotor program and will provide you with description of

More information

Blade Element Momentum Theory

Blade Element Momentum Theory Blade Element Theory has a number of assumptions. The biggest (and worst) assumption is that the inflow is uniform. In reality, the inflow is non-uniform. It may be shown that uniform inflow yields the

More information

Lecture No. # 09. (Refer Slide Time: 01:00)

Lecture No. # 09. (Refer Slide Time: 01:00) Introduction to Helicopter Aerodynamics and Dynamics Prof. Dr. C. Venkatesan Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture No. # 09 Now, I just want to mention because

More information

Multidisciplinary Design Optimization Of A Helicopter Rotor Blade

Multidisciplinary Design Optimization Of A Helicopter Rotor Blade Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2010 Multidisciplinary Design Optimization Of A Helicopter Rotor Blade Michael G. Leahy Ryerson University Follow this and additional

More information

Extraction and Solution of the Gyroplane Trim Equations

Extraction and Solution of the Gyroplane Trim Equations 1 The Open Aerospace Engineering Journal, 29, 2, 1-18 Extraction and Solution of the Gyroplane Trim Equations A. Osaji *,1, and H. Farrokhfal 2 Open Access 1 Department of Aerospace Engineering, Sharif

More information

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow Lecture AC-1 Aircraft Dynamics Copy right 23 by Jon at h an H ow 1 Spring 23 16.61 AC 1 2 Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

θ α W Description of aero.m

θ α W Description of aero.m Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.

More information

Aircraft Design I Tail loads

Aircraft Design I Tail loads Horizontal tail loads Aircraft Design I Tail loads What is the source of loads? How to compute it? What cases should be taken under consideration? Tail small wing but strongly deflected Linearized pressure

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Robot Control Basics CS 685

Robot Control Basics CS 685 Robot Control Basics CS 685 Control basics Use some concepts from control theory to understand and learn how to control robots Control Theory general field studies control and understanding of behavior

More information

Propeller theories. Blade element theory

Propeller theories. Blade element theory 30 1 Propeller theories Blade element theory The blade elements are assumed to be made up of airfoil shapes of known lift, C l and drag, C d characteristics. In practice a large number of different airfoils

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

Lecture #AC 3. Aircraft Lateral Dynamics. Spiral, Roll, and Dutch Roll Modes

Lecture #AC 3. Aircraft Lateral Dynamics. Spiral, Roll, and Dutch Roll Modes Lecture #AC 3 Aircraft Lateral Dynamics Spiral, Roll, and Dutch Roll Modes Copy right 2003 by Jon at h an H ow 1 Spring 2003 16.61 AC 3 2 Aircraft Lateral Dynamics Using a procedure similar to the longitudinal

More information

MINISTRY O] SUPPLY. AERONAUTICAL RESEARCH COUNCqrL REPORTS AND MEMORANDA. L ~%.,-,SI ~V±S.~ tvd,k,q,.., ~,~ 4 "IVN I±~ ~ Crown Copyrigat Reseewed

MINISTRY O] SUPPLY. AERONAUTICAL RESEARCH COUNCqrL REPORTS AND MEMORANDA. L ~%.,-,SI ~V±S.~ tvd,k,q,.., ~,~ 4 IVN I±~ ~ Crown Copyrigat Reseewed Ao & ~[o ~Too 2755 (~a,sss) MINISTRY O] SUPPLY AERONAUTICAL RESEARCH COUNCqrL REPORTS AND MEMORANDA,]i "; 7orw rd 7iigRI s,.,.-~++ot-a{'a,gg.j0 ~.~ ~, v2,/2c, o at(52j 3 ~. g.,i ~ ~ d. at~:,:. ~-! I l,r

More information

OPTIMUM AND DESIGN TRENDS OF COMPOUND HELICOPTERS

OPTIMUM AND DESIGN TRENDS OF COMPOUND HELICOPTERS OPTIMUM AND DESIGN TRENDS OF COMPOUND HELICOPTERS Omri Rand, Vladimir Khromov Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel Keywords: Compound Helicopters,

More information

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) Homework #2 Due April 17, 2016 This homework focuses on developing a simplified analytical model of the longitudinal dynamics of an aircraft during

More information

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

More information

Mechanical Engineering for Renewable Energy Systems. Dr. Digby Symons. Wind Turbine Blade Design

Mechanical Engineering for Renewable Energy Systems. Dr. Digby Symons. Wind Turbine Blade Design ENGINEERING TRIPOS PART IB PAPER 8 ELECTIVE () Mechanical Engineering for Renewable Energy Systems Dr. Digby Symons Wind Turbine Blade Design Student Handout CONTENTS 1 Introduction... 3 Wind Turbine Blade

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT 1 Considering a positive cambered aerofoil, the pitching moment when Cl=0 is: A infinite B positive (nose-up). C negative (nose-down). D equal to zero. 2 The angle between the aeroplane longitudinal axis

More information

Module No. # 01 Lecture No. # 22

Module No. # 01 Lecture No. # 22 Introduction to Helicopter Aerodynamics and Dynamics Prof. Dr. C. Venkatesan Department of Aerospace Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 22 Lead lag dynamics

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

The Pennsylvania State University The Graduate School College of Engineering DEVELOPMENT OF MODELING AND SIMULATION TOOLS

The Pennsylvania State University The Graduate School College of Engineering DEVELOPMENT OF MODELING AND SIMULATION TOOLS The Pennsylvania State University The Graduate School College of Engineering DEVELOPMENT OF MODELING AND SIMULATION TOOLS FOR ANALYSIS OF DUCTED FAN AIRCRAFT A Thesis in Aerospace Engineering by Eric L.

More information

ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017

ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017 Question 1a. Values of forward speed, propeller thrust and torque measured during a propeller open water performance test are presented in the table below. The model propeller was 0.21 meters in diameter

More information

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9 April 15, 2011 Sample Quiz Exam Questions D. A. Caughey Page 1 of 9 These pages include virtually all Quiz, Midterm, Final Examination questions I have used in M&AE 5070 over the years. Note that some

More information

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1 Chapter 1 Lecture 2 Introduction 2 Topics 1.4 Equilibrium of airplane 1.5 Number of equations of motion for airplane in flight 1.5.1 Degrees of freedom 1.5.2 Degrees of freedom for a rigid airplane 1.6

More information

FINITE-STATE DYNAMIC WAKE INFLOW MODELLING FOR COAXIAL ROTORS

FINITE-STATE DYNAMIC WAKE INFLOW MODELLING FOR COAXIAL ROTORS FINITE-STATE DYNAMIC WAKE INFLOW MODELLING FOR COAXIAL ROTORS Felice Cardito, Riccardo Gori, Giovanni Bernardini, Jacopo Serafini, Massimo Gennaretti Department of Engineering, Roma Tre University, Rome,

More information

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS 54 CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS The baseline characteristics and analysis of NACA 4 series airfoils are presented in this chapter in detail. The correlations for coefficient of lift and

More information

Study of Preliminary Configuration Design of F-35 using simple CFD

Study of Preliminary Configuration Design of F-35 using simple CFD Study of Preliminary Configuration Design of F-35 using simple CFD http://www.aerospaceweb.org/aircraft/research/x35/pics.shtml David Hall Sangeon Chun David Andrews Center of Gravity Estimation.5873 Conventional

More information

The Pennsylvania State University. The Graduate School. Department of Aerospace Engineering REDUCING TRAILING EDGE FLAP DEFLECTION REQUIREMENTS IN

The Pennsylvania State University. The Graduate School. Department of Aerospace Engineering REDUCING TRAILING EDGE FLAP DEFLECTION REQUIREMENTS IN The Pennsylvania State University The Graduate School Department of Aerospace Engineering REDUCING TRAILING EDGE FLAP DEFLECTION REQUIREMENTS IN PRIMARY CONTROL THROUGH A MOVEABLE HORIZONTAL TAIL A Thesis

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

Mathematical Modeling of the Flow behind Propeller

Mathematical Modeling of the Flow behind Propeller Studies in Engineering and Technology Vol. 2, No. 1; August 2015 ISSN 2330-2038 E-ISSN 2330-2046 Published by Redfame Publishing URL: http://set.redfame.com Mathematical Modeling of the Flow behind Propeller

More information

PART ONE Parameters for Performance Calculations

PART ONE Parameters for Performance Calculations PART ONE Parameters for Performance Calculations As an amateur designer/builder of homebuilt aircraft, you are chief aerodynamicist, structural engineer, dynamicist, mechanic, artist and draftsman all

More information

Basic Information to Help Select the Correct Propeller

Basic Information to Help Select the Correct Propeller Propeller Performance Factors - Basic Information to Help Select the Correct Propeller The performance of a propeller in flight involves several complex subjects, and the high performance propellers we

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 6. Real Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant

More information

Lecture 4: Wind energy

Lecture 4: Wind energy ES427: The Natural Environment and Engineering Global warming and renewable energy Lecture 4: Wind energy Philip Davies Room A322 philip.davies@warwick.ac.uk 1 Overview of topic Wind resources Origin of

More information

Torsion of Solid Sections. Introduction

Torsion of Solid Sections. Introduction Introduction Torque is a common load in aircraft structures In torsion of circular sections, shear strain is a linear function of radial distance Plane sections are assumed to rotate as rigid bodies These

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

Some effects of large blade deflections on aeroelastic stability

Some effects of large blade deflections on aeroelastic stability 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 29, Orlando, Florida AIAA 29-839 Some effects of large blade deflections on aeroelastic stability

More information

Propellers and Ducted Fans

Propellers and Ducted Fans Propellers and Ducted Fans Session delivered by: Prof. Q. H. Nagpurwala 1 To help protect your privacy, PowerPoint prevented this external picture from being automatically downloaded. To download and display

More information

HIGH SPEED EDGEWISE ROTOR COMPUTATIONAL ANALYSIS AND OPTIMIZATION AT HIGH INFLOW VELOCITIES ACHIEVED THROUGH FORWARD MAST TILT CORY MICHAEL HITTE

HIGH SPEED EDGEWISE ROTOR COMPUTATIONAL ANALYSIS AND OPTIMIZATION AT HIGH INFLOW VELOCITIES ACHIEVED THROUGH FORWARD MAST TILT CORY MICHAEL HITTE HIGH SPEED EDGEWISE ROTOR COMPUTATIONAL ANALYSIS AND OPTIMIZATION AT HIGH INFLOW VELOCITIES ACHIEVED THROUGH FORWARD MAST TILT by CORY MICHAEL HITTE Presented to the Faculty of the Graduate School of The

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

Ornicopter Multidisciplinary Analyses and Conceptual Design Jia Wan

Ornicopter Multidisciplinary Analyses and Conceptual Design Jia Wan thesis 014/6/3 14:15 page i #1 Ornicopter Multidisciplinary Analyses and Conceptual Design Jia Wan thesis 014/6/3 14:15 page ii # Copyright c 014 by J. Wan. All rights reserved. thesis 014/6/3 14:15 page

More information

Comprehensive Nonlinear Modeling of a Miniature Unmanned Helicopter

Comprehensive Nonlinear Modeling of a Miniature Unmanned Helicopter JOURNAL OF THE AMERICAN HELICOPTER SOCIETY 57, 24 (22) Comprehensive Nonlinear Modeling of a Miniature Unmanned Helicopter Guowei Cai Ben M. Chen Tong H. Lee Kai-Yew Lum Research Scientist Professor Professor

More information

Theoretical Aerodynamic analysis of six airfoils for use on small wind turbines

Theoretical Aerodynamic analysis of six airfoils for use on small wind turbines Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation - ETEC Tehran, Tehran, Iran, 20-21 November 2011 Theoretical Aerodynamic analysis of six airfoils for use on small

More information

Design of Propeller Blades For High Altitude

Design of Propeller Blades For High Altitude Design of Propeller Blades For High Altitude Silvestre 1, M. A. R., Morgado 2 1,2 - Department of Aerospace Sciences University of Beira Interior MAAT 2nd Annual Meeting M24, 18-20 of September, Montreal,

More information

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 05 NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

More information

Spacecraft and Aircraft Dynamics

Spacecraft and Aircraft Dynamics Spacecraft and Aircraft Dynamics Matthew M. Peet Illinois Institute of Technology Lecture 4: Contributions to Longitudinal Stability Aircraft Dynamics Lecture 4 In this lecture, we will discuss Airfoils:

More information

Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 10.

Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 10. Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 1. D1 Nonlinear Flight-Mechanics Models and their Linearisation D1.1 Introduction

More information

APPENDIX A. CONVENTIONS, REFERENCE SYSTEMS AND NOTATIONS

APPENDIX A. CONVENTIONS, REFERENCE SYSTEMS AND NOTATIONS APPENDIX A. CONVENTIONS, REFERENCE SYSTEMS AND NOTATIONS A.1 Introduction This appendix describes the sign conventions, reference systems and notations to be used within the IEA Annex XIV Field Rotor Aerodynamics.

More information

Flight Dynamics and Control

Flight Dynamics and Control Flight Dynamics and Control Lecture 1: Introduction G. Dimitriadis University of Liege Reference material Lecture Notes Flight Dynamics Principles, M.V. Cook, Arnold, 1997 Fundamentals of Airplane Flight

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades the Aerodynamic Offshore Wind, Henning Schmitt, Jörg R. Seume The Science of Making Torque from Wind 2012 October 9-11, 2012 Oldenburg, Germany 1. Motivation and 2. 3. 4. 5. Conclusions and Slide 2 / 12

More information

PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW

PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW Jessica Yana, Omri Rand Graduate student, Professor Technion - Israel Institute of Technology yjessica@tx.technion.ac.il; omri@aerodyne.technion.ac.il;

More information

voith.com Precise and safe maneuvering Voith Schneider Propeller

voith.com Precise and safe maneuvering Voith Schneider Propeller voith.com Precise and safe maneuvering Voith Schneider Propeller 5 Voith Schneider Propeller. Voith Turbo offers tailor-made propulsion systems for a wide variety of applications for harbor assistance

More information

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008) Aerodynamics SYST 460/560 George Mason University Fall 2008 1 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH Copyright Lance Sherry (2008) Ambient & Static Pressure Ambient Pressure Static Pressure 2 Ambient

More information

Validation of Chaviaro Poulos and Hansen Stall Delay Model in the Case of Horizontal Axis Wind Turbine Operating in Yaw Conditions

Validation of Chaviaro Poulos and Hansen Stall Delay Model in the Case of Horizontal Axis Wind Turbine Operating in Yaw Conditions Energy and Power Engineering, 013, 5, 18-5 http://dx.doi.org/10.436/epe.013.51003 Published Online January 013 (http://www.scirp.org/journal/epe) Validation of Chaviaro Poulos and Hansen Stall Delay Model

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering 5. Aircraft Performance 5.1 Equilibrium Flight In order to discuss performance, stability, and control, we must first establish the concept of equilibrium flight.

More information

Multidisciplinary Design Optimization of a Heavy-Lift Helicopter Rotor in Hover

Multidisciplinary Design Optimization of a Heavy-Lift Helicopter Rotor in Hover Multidisciplinary Design Optimization of a Heavy-Lift Helicopter Rotor in Hover by Smith Thepvongs (Structural Optimization) Robert Wohlgemuth (Aerodynamic Optimization) 04-26-2004 Professor Panos Y. Papalambros

More information

A Numerical Study of Circulation Control on a Flapless UAV

A Numerical Study of Circulation Control on a Flapless UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-xxxx A Numerical Study of Circulation Control on a Flapless UAV Huaixun Ren 1, Weimin

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

Research on Propeller Characteristics of Tip Induced Loss

Research on Propeller Characteristics of Tip Induced Loss 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016) Research on Propeller Characteristics of Tip Induced Loss Yang Song1, a, Peng Shan2, b 1 School

More information

16.07 Dynamics Final Exam

16.07 Dynamics Final Exam Name:... Massachusetts Institute of Technology 16.07 Dynamics Final Exam Tuesday, December 20, 2005 Problem 1 (8) Problem 2 (8) Problem 3 (10) Problem 4 (10) Problem 5 (10) Problem 6 (10) Problem 7 (10)

More information

Rotor design and matching for horizontal axis wind turbines

Rotor design and matching for horizontal axis wind turbines Rotor design and matching for horizontal axis wind turbines report KD 35 ing. Adriaan Kragten 2 Rotor design and matching for horizontal axis wind turbines Report number KD 35 Published by: Engineering

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flig Dynamics MAE 33, 008 Separate solutions for nominal and perturbation flig paths Assume that nominal path is steady and in the vertical

More information

Dynamic Characteristics of Wind Turbine Blade

Dynamic Characteristics of Wind Turbine Blade Dynamic Characteristics of Wind Turbine Blade Nitasha B. Chaudhari PG Scholar, Mechanical Engineering Department, MES College Of Engineering,Pune,India. Abstract this paper presents a review on the dynamic

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Chapter 4 The Equations of Motion

Chapter 4 The Equations of Motion Chapter 4 The Equations of Motion Flight Mechanics and Control AEM 4303 Bérénice Mettler University of Minnesota Feb. 20-27, 2013 (v. 2/26/13) Bérénice Mettler (University of Minnesota) Chapter 4 The Equations

More information

Linköping University Department of Electrical Engineering in collaboration with. Saab Aerosystems Department of Aerodynamics and Flight mechanics

Linköping University Department of Electrical Engineering in collaboration with. Saab Aerosystems Department of Aerodynamics and Flight mechanics Linköping University Department of Electrical Engineering in collaboration with Saab Aerosystems Department of Aerodynamics and Flight mechanics Investigation of rotor downwash effects using CFD Master

More information

Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur

Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur Lecture- 05 Stability: Tail Contribution and Static Margin (Refer Slide Time: 00:15)

More information

MULTILEVEL DECOMPOSITION APPROACH TO INTEGRATED AERODYNAMIC/DYNAMIC/STRUCTURAL OPTIMIZATION OF HELICOPTER ROTOR BLADES. and

MULTILEVEL DECOMPOSITION APPROACH TO INTEGRATED AERODYNAMIC/DYNAMIC/STRUCTURAL OPTIMIZATION OF HELICOPTER ROTOR BLADES. and MULTILEVEL DECOMPOSITION APPROACH TO INTEGRATED AERODYNAMIC/DYNAMIC/STRUCTURAL OPTIMIZATION OF HELICOPTER ROTOR BLADES Joanne L. Walsh Katherine C. Young NASA Langley Research Center Hampton, Virginia

More information

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH 82 CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH The coefficient of lift, drag and power for wind turbine rotor is optimized using an iterative approach. The coefficient

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade HU Guo-yu, SUN Wen-lei, Dong Ping The School of Mechanical Engineering Xinjiang University Urumqi, Xinjiang,

More information

Multi Rotor Scalability

Multi Rotor Scalability Multi Rotor Scalability With the rapid growth in popularity of quad copters and drones in general, there has been a small group of enthusiasts who propose full scale quad copter designs (usable payload

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Calculation of Wind Turbine Geometrical Angles Using Unsteady Blade Element Momentum (BEM)

Calculation of Wind Turbine Geometrical Angles Using Unsteady Blade Element Momentum (BEM) Proceedings Conference IGCRE 2014 16 Calculation of Wind Turbine Geometrical Angles Using Unsteady Blade Element Momentum (BEM) Adel Heydarabadipour, FarschadTorabi Abstract Converting wind kinetic energy

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Study on the Mechanism of the Variable-Speed Rotor Affecting Rotor Aerodynamic Performance

Study on the Mechanism of the Variable-Speed Rotor Affecting Rotor Aerodynamic Performance applied sciences Article Study on the Mechanism of the Variable-Speed Rotor Affecting Rotor Aerodynamic Performance Jiayi Xie, Nanxiang Guan, Ming Zhou and Zhifeng Xie * Institute for Aero-Engine, School

More information

Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels

Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels O.Pires 1, X.Munduate 2, O.Ceyhan 3, M.Jacobs 4, J.Madsen 5 1 National Renewable Energy Centre

More information

IN recent years a new paradigm of flight has emerged

IN recent years a new paradigm of flight has emerged 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 WeA1.5 Control Model for Robotic Samara: Dynamics about a Coordinated Helical Turn Evan R. Ulrich, Imraan Faruque,

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

Determination of a Light Helicopter Flight Performance at the Preliminary Design Stage

Determination of a Light Helicopter Flight Performance at the Preliminary Design Stage Paper received: 0.01.2008 UDC:5.661:629.01 Paper accepted: 02.07.2010 Determination of a Light Helicopter Flight Performance at the Preliminary Design Stage Zlatko Petrović - Slobodan Stupar - Ivan Kostić

More information

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Take-home quizzes this week. See Elaine Schulte s email. HW

More information

POLITECNICO DI TORINO Repository ISTITUZIONALE

POLITECNICO DI TORINO Repository ISTITUZIONALE POLITECNICO DI TORINO Repository ISTITUZIONALE Low-order models and numerical techniques for the analysis of rotorcraft flight mechanics Original Low-order models and numerical techniques for the analysis

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12

Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12 Downloaded from orbit.dtu.dk on: Jan 29, 219 Steady State Comparisons v12.2 vs v2.12 Verelst, David Robert; Hansen, Morten Hartvig; Pirrung, Georg Publication date: 216 Document Version Publisher's PDF,

More information

A Free Wake Linear Inflow Model Extraction Procedure for Rotorcraft Analysis

A Free Wake Linear Inflow Model Extraction Procedure for Rotorcraft Analysis A Free Wake Linear Inflow Model Extraction Procedure for Rotorcraft Analysis Jeffrey D. Keller Senior Associate Robert M. McKillip, Jr. Senior Associate Continuum Dynamics, Inc. Ewing, NJ, USA Daniel A.

More information

STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR

STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR ECN-C--03-087 STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR DAMPBLADE project, task 3.4: Design application, sensitivity analysis and aeroelastic tailoring C. Lindenburg M.H. Hansen

More information

Aircraft Structures Design Example

Aircraft Structures Design Example University of Liège Aerospace & Mechanical Engineering Aircraft Structures Design Example Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/ Chemin des Chevreuils

More information

Calculation of Tilt Rotor Aeroacoustic Model (TRAM DNW) Performance, Airloads, and Structural Loads

Calculation of Tilt Rotor Aeroacoustic Model (TRAM DNW) Performance, Airloads, and Structural Loads Calculation of Tilt Rotor Aeroacoustic Model (TRAM DNW) Performance, Airloads, and Structural Loads Wayne Johnson Army/NASA Rotorcraft Division NASA Ames Research Center Moffett Field, California Comparisons

More information

A simplified model for a small propeller with different airfoils along the blade

A simplified model for a small propeller with different airfoils along the blade A simplified model for a small propeller with different airfoils along the blade Kamal A. R. Ismail 1) and *Célia V. A. G. Rosolen 2) 1), 2) State University of Campinas, Faculty of Mechanical Engineering,

More information

w'..1 *s» NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ORIGINALLY ISSUED July 19^6 as Memorandum Eeport L6G12

w'..1 *s» NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ORIGINALLY ISSUED July 19^6 as Memorandum Eeport L6G12 * - - if *s» w'..1»j*>s* # MR No. L6G12 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ' V-i t 7J^»tf& l frfr" " A "]T*' ORIGINALLY ISSUED July 19^6 as Memorandum Eeport L6G12 A PEELEMIKAia* THEORETICAL STUDY

More information

Modeling a Small-Scale Helicopter for Simulation and Control Development

Modeling a Small-Scale Helicopter for Simulation and Control Development Modeling a Small-Scale Helicopter for Simulation and Control Development Jared Kevin Cooper Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

FURTHER EXAMINATION OF THE VIBRATORY LOADS REDUCTION RESULTS FROM THE NASA/ARMY/MIT ACTIVE TWIST ROTOR TEST

FURTHER EXAMINATION OF THE VIBRATORY LOADS REDUCTION RESULTS FROM THE NASA/ARMY/MIT ACTIVE TWIST ROTOR TEST FURTHER EXAMINATION OF THE VIBRATORY LOADS REDUCTION RESULTS FROM THE NASA/ARMY/MIT ACTIVE TWIST ROTOR TEST Matthew L. Wilbur William T. Yeager, Jr. Martin K. Sekula m.l.wilbur@larc.nasa.gov w.t.yeager@larc.nasa.gov

More information

Computers and Mathematics with Applications. Fractal boundaries of basin of attraction of Newton Raphson method in helicopter trim

Computers and Mathematics with Applications. Fractal boundaries of basin of attraction of Newton Raphson method in helicopter trim Computers and Mathematics with Applications 60 (2010) 2834 2858 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Fractal

More information

The Pennsylvania State University The Graduate School College of Engineering AERODYNAMIC ANALYSIS OF HELICOPTER ROTORS USING

The Pennsylvania State University The Graduate School College of Engineering AERODYNAMIC ANALYSIS OF HELICOPTER ROTORS USING The Pennsylvania State University The Graduate School College of Engineering AERODYNAMIC ANALYSIS OF HELICOPTER ROTORS USING A HIGHER-ORDER, FREE-WAKE METHOD A Dissertation in Aerospace Engineering by

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information