Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Termodinamika FIZIKA PSS-GRAD 29. studenog 2017.

2 15.1 Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental laws that heat and work obey. The collection of objects on which attention is being focused is called the system, while everything else in the environment is called the surroundings. Walls that permit heat flow are called diathermal walls, while walls that do not permit heat flow are called adiabatic walls. To understand thermodynamics, it is necessary to describe the state of a system.

3 15.2 The Zeroth Law of Thermodynamics Two systems are said to be in thermal equilibrium if there is no heat flow between then when they are brought into contact. Temperature is the indicator of thermal equilibrium in the sense that there is no net flow of heat between two systems in thermal contact that have the same temperature.

4 15.2 The Zeroth Law of Thermodynamics THE ZEROTH LAW OF THERMODYNAMICS Two systems individually in thermal equilibrium with a third system are in thermal equilibrium with each other.

5 15.3 The First Law of Thermodynamics Suppose that a system gains heat Q and that is the only effect occurring. Consistent with the law of conservation of energy, the internal energy of the system changes: U U f U i Q Heat is positive when the system gains heat and negative when the system loses heat.

6 15.3 The First Law of Thermodynamics If a system does work W on its surroundings and there is no heat flow, conservation of energy indicates that the internal energy of the system will decrease: U U f U i W Work is positive when it is done by the system and negative when it is done on the system.

7 15.3 The First Law of Thermodynamics THE FIRST LAW OF THERMODYNAMICS The internal energy of a system changes due to heat and work: U U f U i Q W Heat is positive when the system gains heat and negative when the system loses heat. Work is positive when it is done by the system and negative when it is done on the system.

8 15.3 The First Law of Thermodynamics Example 1 Positive and Negative Work In part a of figure, the system gains 1500J of heat and 2200J of work is done by the system on its surroundings. In part b, the system also gains 1500J of heat, but 2200J of work is done on the system. In each case, determine the change in internal energy of the system.

9 15.3 The First Law of Thermodynamics (a) U Q W 1500 J 2200 J 700 J (b) U Q W 1500 J 2200 J 3700 J

10 15.3 The First Law of Thermodynamics Example 2 An Ideal Gas The temperature of three moles of a monatomic ideal gas is reduced from 540K to 350K as 5500J of heat flows into the gas. Find (a) the change in internal energy and (b) the work done by the gas. U U f U i Q W U 32 nrt

11 15.3 The First Law of Thermodynamics (a) U 32 nrt f 32 nrti mol 8.31 J mol K 350 K 540 K 7100 J (b) W Q U 5500 J 7100 J J

12 15.4 Thermal Processes A quasi-static process is one that occurs slowly enough that a uniform temperature and pressure exist throughout all regions of the system at all times. isobaric: constant pressure isochoric: constant volume isothermal: constant temperature adiabatic: no transfer of heat

13 15.4 Thermal Processes An isobaric process is one that occurs at constant pressure. W Fs P As P V Isobaric process: W P V P V f Vi

14 15.4 Thermal Processes Example 3 Isobaric Expansion of Water One gram of water is placed in the cylinder and the pressure is maintained at 2.0x105Pa. The temperature of the water is raised by 31oC. The water is in the liquid phase and expands by the small amount of 1.0x10-8m3. Find the work done and the change in internal energy.

15 15.4 Thermal Processes W P V Pa m J U Q W 130 J J 130 J Q mc T kg 4186 J kg C 31 C 130 J

16 15.4 Thermal Processes W P V P V f Vi

17 15.4 Thermal Processes isochoric: constant volume U Q W Q W 0

18 15.4 Thermal Processes Example 4 Work and the Area Under a Pressure-Volume Graph Determine the work for the process in which the pressure, volume, and temperature of a gas are changed along the straight line in the figure. The area under a pressure-volume graph is the work for any kind of process.

19 15.4 Thermal Processes Since the volume increases, the work is positive. Estimate that there are 8.9 colored squares in the drawing. W Pa m J

20 15.5 Thermal Processes Using an Ideal Gas ISOTHERMAL EXPANSION OR COMPRESSION Isothermal expansion or compression of an ideal gas Vf W nrt ln Vi

21 15.5 Thermal Processes Using and Ideal Gas Example 5 Isothermal Expansion of an Ideal Gas Two moles of the monatomic gas argon expand isothermally at 298K from an initial volume of 0.025m3 to a final volume of 0.050m3. Assuming that argon is an ideal gas, find (a) the work done by the gas, (b) the change in internal energy of the gas, and (c) the heat supplied to the gas.

22 15.5 Thermal Processes Using and Ideal Gas (a) Vf W nrt ln Vi m J 2.0 mol 8.31 J mol K 298 K ln m (b) (c) U 32 nrt f 32 nrti 0 U Q W Q W 3400 J

23 15.5 Thermal Processes Using and Ideal Gas ADIABATIC EXPANSION OR COMPRESSION Adiabatic expansion or compression of a monatomic ideal gas Adiabatic expansion or compression of a monatomic ideal gas W 32 nr Ti T f PiVi Pf V f cp cv

24 15.6 Specific Heat Capacities To relate heat and temperature change in solids and liquids, we used: Q mc T specific heat capacity The amount of a gas is conveniently expressed in moles, so we write the following analogous expression: Q Cn T molar specific heat capacity

25 15.6 Specific Heat Capacities For gases it is necessary to distinguish between the molar specific heat capacities which apply to the conditions of constant pressure and constant volume: CV, C P U 32 nrt Qconstant pressure U W 32 nr T f Ti nr T f Ti 52 nr T first law of thermodynamics constant pressure for a monatomic ideal gas W P V C P 52 R

26 15.6 Specific Heat Capacities U 32 nrt Qconstant volume U W 32 nr T f Ti 0 32 nr T first law of thermodynamics constant pressure for a monatomic ideal gas monatomic ideal gas any ideal gas CV 32 R C P 52 R 5 3 CV 2 R 3 C P CV R

27 15.7 The Second Law of Thermodynamics The second law is a statement about the natural tendency of heat to flow from hot to cold, whereas the first law deals with energy conservation and focuses on both heat and work. THE SECOND LAW OF THERMODYNAMICS: THE HEAT FLOW STATEMENT Heat flows spontaneously from a substance at a higher temperature to a substance at a lower temperature and does not flow spontaneously in the reverse direction.

28 15.8 Heat Engines A heat engine is any device that uses heat to perform work. It has three essential features. 1. Heat is supplied to the engine at a relatively high temperature from a place called the hot reservoir. 2. Part of the input heat is used to perform work by the working substance of the engine. 3. The remainder of the input heat is rejected to a place called the cold reservoir. QH magnitude of input heat QC magnitude of rejected heat W magnitude of the work done

29 15.8 Heat Engines The efficiency of a heat engine is defined as the ratio of the work done to the input heat: e W QH If there are no other losses, then QH W QC e 1 QC QH

30 15.8 Heat Engines Example 6 An Automobile Engine An automobile engine has an efficiency of 22.0% and produces 2510 J of work. How much heat is rejected by the engine? e W QH W QC QH QH W e

31 15.8 Heat Engines QH W QC QH W e QC QH W W 1 QC W W 1 e e J x103 J 0.220

32 15.9 Carnot s Principle and the Carnot Engine A reversible process is one in which both the system and the environment can be returned to exactly the states they were in before the process occurred. CARNOT S PRINCIPLE: AN ALTERNATIVE STATEMENT OF THE SECOND LAW OF THERMODYNAMICS No irreversible engine operating between two reservoirs at constant temperatures can have a greater efficiency than a reversible engine operating between the same temperatures. Furthermore, all reversible engines operating between the same temperatures have the same efficiency.

33 15.9 Carnot s Principle and the Carnot Engine The Carnot engine is useful as an idealized model. All of the heat input originates from a single temperature, and all the rejected heat goes into a cold reservoir at a single temperature. Since the efficiency can only depend on the reservoir temperatures, the ratio of heats can only depend on those temperatures. QC QH e 1 QC QH TC TH TC 1 TH

34 15.9 Carnot s Principle and the Carnot Engine Example 7 A Tropical Ocean as a Heat Engine Water near the surface of a tropical ocean has a temperature of K, whereas the water 700 meters beneath the surface has a temperature of K. It has been proposed that the warm water be used as the hot reservoir and the cool water as the cold reservoir of a heat engine. Find the maximum possible efficiency for such and engine. ecarnot 1 TC TH

35 15.9 Carnot s Principle and the Carnot Engine ecarnot TC K TH K

36 15.9 Carnot s Principle and the Carnot Engine Conceptual Example 8 Natural Limits on the Efficiency of a Heat Engine Consider a hypothetical engine that receives 1000 J of heat as input from a hot reservoir and delivers 1000J of work, rejecting no heat to a cold reservoir whose temperature is above 0 K. Decide whether this engine violates the first or second law of thermodynamics.

37 15.10 Refrigerators, Air Conditioners, and Heat Pumps Refrigerators, air conditioners, and heat pumps are devices that make heat flow from cold to hot. This is called the refrigeration process.

38 15.10 Refrigerators, Air Conditioners, and Heat Pumps

39 15.10 Refrigerators, Air Conditioners, and Heat Pumps Conceptual Example 9 You Can t Beat the Second Law of Thermodynamics Is it possible to cool your kitchen by leaving the refrigerator door open or to cool your room by putting a window air conditioner on the floor by the bed?

40 15.10 Refrigerators, Air Conditioners, and Heat Pumps Refrigerator or air conditioner Coefficient of performance QC W

41 15.10 Refrigerators, Air Conditioners, and Heat Pumps The heat pump uses work to make heat from the wintry outdoors flow into the house.

42 15.10 Refrigerators, Air Conditioners, and Heat Pumps Example 10 A Heat Pump An ideal, or Carnot, heat pump is used to heat a house at 294 K. How much work must the pump do to deliver 3350 J of heat into the house on a day when the outdoor temperature is 273 K? QC QH TC TH TC QC QH TH W QH QC TC W QH 1 TH

43 15.10 Refrigerators, Air Conditioners, and Heat Pumps TC 273 K 3350 J 1 W QH J 294 K TH heat pump Coefficient of performance QH W

44 15.11 Entropy In general, irreversible processes cause us to lose some, but not necessarily all, of the ability to do work. This partial loss can be expressed in terms of a concept called entropy. Carnotov stroj QC QH promjena entropije TC TH QC TC QH TH Q S T R reversible

45 15.11 Entropy Entropy, like internal energy, is a function of the state of the system. Q S T R Consider the entropy change of a Carnot engine. The entropy of the hot reservoir decreases and the entropy of the cold reservoir increases. S QC TC QH TH 0 Reversible processes do not alter the entropy of the universe.

46 15.11 Entropy What happens to the entropy change of the universe in an irreversible process is more complex.

47 15.11 Entropy Example 11 The Entropy of the Universe Increases The figure shows 1200 J of heat spontaneously flowing through a copper rod from a hot reservoir at 650 K to a cold reservoir at 350 K. Determine the amount by which this process changes the entropy of the universe.

48 15.11 Entropy S universe QC TC QH TH 1200 J 1200 J 1.6 J K 350 K 650 K

49 15.11 Entropy Any irreversible process increases the entropy of the universe. S universe 0 THE SECOND LAW OF THERMODYNAMICS STATED IN TERMS OF ENTROPY The total entropy of the universe does not change when a reversible process occurs and increases when an irreversible process occurs.

50 15.11 Entropy Example 12 Energy Unavailable for Doing Work Suppose that 1200 J of heat is used as input for an engine under two different conditions (as shown on the right). Determine the maximum amount of work that can be obtained for each case. ecarnot TC 1 TH e W QH

51 15.11 Entropy The maximum amount of work will be achieved when the engine is a Carnot Engine, where (a) ecarnot 1 TC 150 K TH 650 K W ecarnot QH J 920 J (b) ecarnot 1 TC 150 K TH 350 K W ecarnot QH J 680 J The irreversible process of heat through the copper rod causes some energy to become unavailable.

52 15.11 Entropy Wunavailable To S universe

53 15.12 The Third Law of Thermodynamics TREĆI ZAKON TERMODINAMIKE Temperaturu nekog sustava nije moguće spustiti na apsolutnu nulu u konačnom broju koraka.

54 ZADACI ZA VJEŽBU 1. Kad u motoru automobila sagori 1 L benzina oslobodi se 1, J unutrašnje energije. Pretpostavite da 1, J te energije, kao toplina, ode u okolinu (blok motora i ispušni sustav). Koliko kilometara automobil prođe s 1 L benzina ako je za 1 km potreban rad od 6,0 105 J? RJEŠENJE: 14 km 2. a) Iz grafa p-v odredite rad sustava za prijelaz iz stanja A, preko stanja B, u stanje C. b) Je li sustav obavio rad ili je rad obavljen nad sustavom? Je li rad pozitivan ili negativan? RJEŠENJE: 3,0 kj; sustav je obavio rad; rad je pozitivan

55 ZADACI ZA VJEŽBU 3. Sustav primi 1500 J topline, unutrašnja energija mu se poveća za 4500 J, a volumen smanji za 0,010 m3. Koliki je tlak ako je on stalan? RJEŠENJE: 3,0 105 Pa 4. Tijekom adijabatske kompresije tlak jednoatomnog idealnog plina (γ = 5/3) se udvostruči. Odredite omjer konačnog i početnog volumena. RJEŠENJE: 0,66 5. Temperatura 2,5 mola idealnog jednoatomnog plina je 350 K. Dodatkom topline unutrašnja se energija udvostruči. Koliko je topline dodano ako je: a) volumen bio stalan; b) tlak bio stalan? RJEŠENJE: 1,1 104 J; 1,8 104 J 6. Koliko topline treba da bi se, pri stalnom tlaku, temperatura 1,5 mola jednoatomnog idealnog plina promijenila za 77 K? RJEŠENJE: 2,4 kj

56 ZADACI ZA VJEŽBU 7. Grijačem snage 15 W zagrijava se jednoatomni idealni plin pri stalnm tlaku od 7, Pa. Tijekom tog procesa volumen plina poveća se 25% s obzirom na početnu vrijednost 1, m3. Kako je dugo grijač bio uključen? RJEŠENJE: 44,3 s 8. Hladnjak radi na temperaturama između 296 K i 275 K. Koji mu je najveći faktor učinkovitosti? RJEŠENJE: 13,1 9. Odredite promjenu entropije molekula vode kad se: a) tri kilograma leda, na temperuturi 273 K, pretvori u vodu; b) tri kilograma vode, na temperuturi 373 K, pretvori u paru. RJEŠENJE: 3, J/K; 1, J/K 10. Carnotova toplinska pumpa radi između vanjske temperature 265 K i unutrašnje temperature 298 K. Odredite njezin faktor učinkovitosti. RJEŠENJE: 9,03

57 PITANJA ZA PONAVLJANJE 1. Temperatura 2. Nulti zakon termodinamike 3. Prvi zakon termodinamike 4. Izobarni proces 5. Izohorni proces 6. Izotermni proces 7. Adijabatski proces 8. Entropija 9. Drugi zakon termodinamike 10. Treći zakon termodinamike PITANJA ZA PONAVLJANJE

### Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d

Quiz on Chapter 12 Quiz 10 1. C&J page 365 (top), Check Your Understanding #12: Consider an ob A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d Quiz 10 1. C&J page 365 (top), Check Your Understanding

### Handout 12: Thermodynamics. Zeroth law of thermodynamics

1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

### Handout 12: Thermodynamics. Zeroth law of thermodynamics

1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

### Kinetic Theory continued

Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

### Kinetic Theory continued

Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

### Survey of Thermodynamic Processes and First and Second Laws

Survey of Thermodynamic Processes and First and Second Laws Please select only one of the five choices, (a)-(e) for each of the 33 questions. All temperatures T are absolute temperatures. All experiments

### Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 18 Physics, 4 th Edition James S. Walker Chapter 18 The Laws of Thermodynamics Units of Chapter 18 The Zeroth Law of Thermodynamics The First Law of Thermodynamics Thermal Processes

### The First Law of Thermodynamics

Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

### Physics 202 Homework 5

Physics 202 Homework 5 Apr 29, 2013 1. A nuclear-fueled electric power plant utilizes a so-called boiling water reac- 5.8 C tor. In this type of reactor, nuclear energy causes water under pressure to boil

### Entropy & the Second Law of Thermodynamics

PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

### Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

### Heat What is heat? Work = 2. PdV 1

eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

### Chapter 12. The Laws of Thermodynamics

Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

### Irreversible Processes

Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

### Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

### University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1 Name: Date: 1. Let k be the Boltzmann constant. If the configuration of the molecules in a gas changes so that the multiplicity

### Chapter 12 Thermodynamics

Chapter 12 Thermodynamics 12.1 Thermodynamic Systems, States, and Processes System: definite quantity of matter with real or imaginary boundaries If heat transfer is impossible, the system is thermally

### Thermodynamic Systems, States, and Processes

Thermodynamics Thermodynamic Systems, States, and Processes A thermodynamic system is described by an equation of state, such as the ideal gas law. The location of the state can be plotted on a p V diagram,

### Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

### Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

### THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

### Irreversible Processes

Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

### Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

### The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

### Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

### CHAPTER - 12 THERMODYNAMICS

CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

### Reversibility, Irreversibility and Carnot cycle. Irreversible Processes. Reversible Processes. Carnot Cycle

Reversibility, Irreversibility and Carnot cycle The second law of thermodynamics distinguishes between reversible and irreversible processes. If a process can proceed in either direction without violating

### Chapter 19. Heat Engines

Chapter 19 Heat Engines Thermo Processes Eint = Q+ W Adiabatic No heat exchanged Q = 0 and E int = W Isobaric Constant pressure W = P (V f V i ) and E int = Q + W Isochoric Constant Volume W = 0 and E

### THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

### Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

### Chapter 16 Thermodynamics

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

### CH 15. Zeroth and First Law of Thermodynamics

CH 15 Zeroth and First Law of Thermodynamics THERMODYNAMICS Thermodynamics Branch of Physics that is built upon the fundamental laws that heat and work obey. Central Heating Objectives: After finishing

### Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall

Physics 231 Topic 14: Laws of Thermodynamics Alex Brown Dec 7-11 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept

Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

### AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

### UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

### Physics 150. Thermodynamics. Chapter 15

Physics 150 Thermodynamics Chapter 15 The First Law of Thermodynamics Let s consider an ideal gas confined in a chamber with a moveable piston If we press the piston è the gas in the chamber compresses

### S = S(f) S(i) dq rev /T. ds = dq rev /T

In 1855, Clausius proved the following (it is actually a corollary to Clausius Theorem ): If a system changes between two equilibrium states, i and f, the integral dq rev /T is the same for any reversible

### The laws of Thermodynamics. Work in thermodynamic processes

The laws of Thermodynamics ork in thermodynamic processes The work done on a gas in a cylinder is directly proportional to the force and the displacement. = F y = PA y It can be also expressed in terms

### ΔU = Q W. Tue Dec 1. Assign 13/14 Friday Final: Fri Dec 11 2:30PM WALTER 145. Thermodynamics 1st Law. 2 nd Law. Heat Engines and Refrigerators

Tue Dec 1 Thermodynamics 1st Law ΔU = Q W 2 nd Law SYS Heat Engines and Refrigerators Isobaric: W = PΔV Isochoric: W = 0 Isothermal: ΔU = 0 Adiabatic: Q = 0 Assign 13/14 Friday Final: Fri Dec 11 2:30PM

### A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

### Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics

Aljalal-Phys.102-27 March 2004-Ch21-page 1 Chapter 21 Entropy and the Second Law of hermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 2 21-1 Some One-Way Processes Egg Ok Irreversible process Egg

### Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

### 1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100

1985B4. A 0.020-kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 joules per second until the temperature increases to 60

### Classification following properties of the system in Intensive and Extensive

Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

### A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

### Thermodynamics continued

Chapter 15 Thermodynamics continued 15 Work The area under a pressure-volume graph is the work for any kind of process. B Pressure A W AB W AB is positive here volume increases Volume Clicker Question

### Temperatura i toplina

Temperatura i toplina FIZIKA PSS-GRAD 22. studenog 2017. 12.1 Common Temperature Scales Temperatures are reported in degrees Celsius or degrees Fahrenheit. Temperature changes, on the other hand, are reported

### THERMODYNAMICS. Chapter Twelve MCQ I

Chapter welve HERMODYNAMICS MCQ I. An ideal gas undergoes four different processes from the same initial state (Fig..). Four processes are adiabatic, isothermal, isobaric and isochoric. Out of,, and 4

### (prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

### Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

### Chapter 7. Thermodynamics

Chapter 7 Thermodynamics 7.0 Introduction Thermodynamics is a branch of physics, which deals with the energy and work of a system, was first studied in the 19 th century as scientists were first discovering

### THERMODYNAMICS CONCEPTUAL PROBLEMS

THERMODYNAMICS CONCEPTUAL PROBLEMS Q-01 Is the heat supplied to a system always equal to the increases in its internal energy? Ans Acc. to first law of thermo- dynamics If heat is supplied in such a manner

### Chapter 20 Entropy and the 2nd Law of Thermodynamics

Chapter 20 Entropy and the 2nd Law of Thermodynamics A one-way processes are processes that can occur only in a certain sequence and never in the reverse sequence, like time. these one-way processes are

### The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

### Lecture 26. Second law of thermodynamics. Heat engines and refrigerators.

ecture 26 Second law of thermodynamics. Heat engines and refrigerators. The Second aw of Thermodynamics Introduction The absence of the process illustrated above indicates that conservation of energy is

### CHAPTER 8 ENTROPY. Blank

CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

### CHEM 305 Solutions for assignment #4

CEM 05 Solutions for assignment #4 5. A heat engine based on a Carnot cycle does.50 kj of work per cycle and has an efficiency of 45.0%. What are q and q C for one cycle? Since the engine does work on

### 10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka)

10 Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 1 In this chapter we will discuss how heat devices work Heat devices convert heat into work or work into heat and include heat engines

### Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

### Physics 115. Specific heats revisited Entropy. General Physics II. Session 13

Physics 115 General Physics II Session 13 Specific heats revisited Entropy R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 4/22/14 Physics 115 1 Lecture Schedule

### Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

### Lecture 10: Heat Engines and Reversible Processes

Lecture 10: Heat Engines and Reversible Processes Last time we started discussing cyclic heat engines these are devices that convert heat energy into mechanical work We found that in general, heat engines

### Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0)

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Key Point: ΔS universe allows us to distinguish between reversible and irreversible

### Chapter 19. Heat Engines

Chapter 19 Heat Engines QuickCheck 19.11 The efficiency of this Carnot heat engine is A. Less than 0.5. B. 0.5. C. Between 0.5 and 1.0. D. 2.0. E. Can t say without knowing Q H. 2013 Pearson Education,

### Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

### Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

### Chapter 20 The Second Law of Thermodynamics

Chapter 20 The Second Law of Thermodynamics When we previously studied the first law of thermodynamics, we observed how conservation of energy provided us with a relationship between U, Q, and W, namely

### Phys 22: Homework 10 Solutions W A = 5W B Q IN QIN B QOUT A = 2Q OUT 2 QOUT B QIN B A = 3Q IN = QIN B QOUT. e A = W A e B W B A Q IN.

HRK 26.7 Summarizing the information given in the question One way of doing this is as follows. W A = 5W Q IN A = Q IN Q OU A = 2Q OU Use e A = W A Q IN = QIN A QOU Q IN A A A and e = W Q IN = QIN QOU

### Thermodynamic Processes and Thermochemistry

General Chemistry Thermodynamic Processes and Thermochemistry 박준원교수 ( 포항공과대학교화학과 ) 이번시간에는! Systems, states, and processes The first law of thermodynamics: internal energy, work, and heat Heat capacity,

### SECOND LAW OF THERMODYNAMICS

SECOND LAW OF THERMODYNAMICS 2 ND Law of Thermodynamics Puts a limitation on the conversion of some forms of energy Determines the scope of an energy conversion and if an energy conversion is possible

### Chapter 20 Second Law of Thermodynamics. Copyright 2009 Pearson Education, Inc.

Chapter 20 Second Law of Thermodynamics It is easy to produce thermal energy using work, but how does one produce work using thermal energy? This is a heat engine; mechanical energy can be obtained from

### Thermodynamics is the Science of Energy and Entropy

Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

### PHYS 1101 Practice problem set 6, Chapter 19: 7, 12, 19, 30, 37, 44, 53, 61, 69

PYS 0 Practice problem set 6, hapter 9: 7,, 9, 0, 7, 44,, 6, 69 9.7. Solve: (a) he heat extracted from the cold reservoir is calculated as follows: (b) he heat exhausted to the hot reservoir is K 4.0 00

### Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Chater 0: Exercises:, 7,,, 8, 4 EOC: 40, 4, 46, 8 E: A gasoline engine takes in.80 0 4 and delivers 800 of work er cycle. The heat is obtained by burning gasoline with a heat of combustion of 4.60 0 4.

### Class 22 - Second Law of Thermodynamics and Entropy

Class 22 - Second Law of Thermodynamics and Entropy The second law of thermodynamics The first law relates heat energy, work and the internal thermal energy of a system, and is essentially a statement

### Entropy in Macroscopic Systems

Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Review Entropy in Macroscopic Systems

### Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

### Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

### Chapters 19 & 20 Heat and the First Law of Thermodynamics

Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

### Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! (send me your net ID if

### Reading Assignment #13 :Ch.23: (23-3,5,6,7,8), Ch24: (24-1,2,4,5,6) )] = 450J. ) ( 3x10 5 Pa) ( 1x10 3 m 3

Ph70A Spring 004 Prof. Pui Lam SOLUTION Reading Assignment #3 :h.3: (3-3,5,6,7,8), h4: (4-,,4,5,6) Homework #3: First Law and Second of Thermodynamics Due: Monday 5/3/004.. A monatomic ideal gas is allowed

### Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics

CHAPTER 2 Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics Internal Energy and the First Law of Thermodynamics Internal Energy (U) Translational energy of molecules Potential

### Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CH. 19 PRACTICE Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When a fixed amount of ideal gas goes through an isobaric expansion, A) its

### Chapter 16 The Second Law of Thermodynamics

Chapter 16 The Second Law of Thermodynamics To examine the directions of thermodynamic processes. To study heat engines. To understand internal combustion engines and refrigerators. To learn and apply

### Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

### THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

### First Law of Thermodynamics

First Law of Thermodynamics E int = Q + W other state variables E int is a state variable, so only depends on condition (P, V, T, ) of system. Therefore, E int only depends on initial and final states

### How to please the rulers of NPL-213 the geese

http://www.walkingmountains. org/2015/03/reintroduction-ofthe-canada-goose/ How to please the rulers of NPL-213 the geese (Entropy and the 2 nd Law of Thermodynamics) Physics 116 2017 Tues. 3/21, Thurs

### Phys102 First Major-182 Zero Version Coordinator: A A Naqvi Thursday, February 14, 2019 Page: 1

Coordinator: A A Naqvi Thursday February 14 2019 Page: 1 Q1. Figure 1 shows a graph of a wave traveling to the left along a string at a speed of 34 m/s. At this instant what is the transverse velocity

### 4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper.

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS \1111~11\llllllllllllftllll~flrllllllllll\11111111111111111 >014407892 PHYS2060 THER1\1AL PHYSICS FINAL EXAMINATION SESSION 2 - NOVEMBER 2010 I. Time

### Heat Machines (Chapters 18.6, 19)

eat Machines (hapters 8.6, 9) eat machines eat engines eat pumps The Second Law of thermodynamics Entropy Ideal heat engines arnot cycle Other cycles: Brayton, Otto, Diesel eat Machines Description The

### Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

### Physics 121, April 29, The Second Law of Thermodynamics.

Physics 121, April 29, 2008. The Second Law of Thermodynamics. http://www.horizons.uc.edu/masterjuly1998/oncampus.htm Physics 121. April 29, 2008. Course Information Topics to be discussed today: The Second

### Lecture 5. PHYC 161 Fall 2016

Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is