SOLUTIONS OF RECURRENCES WITH VARIABLE COEFFICIENTS FOR SLIDE BEARING WEAR DETERMINATION

Size: px
Start display at page:

Download "SOLUTIONS OF RECURRENCES WITH VARIABLE COEFFICIENTS FOR SLIDE BEARING WEAR DETERMINATION"

Transcription

1 Jourl o KONE Powertri Trsport Vol. 0 No. 03 OLUTION OF REURRENE ITH VARIABLE OEFFIIENT FOR LIDE BEARING EAR DETERMINATION Krzyszto ierzcholsi Techicl Uiversity o Koszli Istitute o Techology Euctio iecich treet Koszli Pol tel.: x: e-mil: rzyszto.wierzcholsi@wp.pl Astrct The umerous methos o umericl clcultios occurrig i power-tri triology trsport cocerig wer erig etermitio prolems em the more more iormtio reerrig the slie erig wer ticiptio i succeeig yers o mchie opertios. Thereore this pper presets the methos o solutios o some speciic clss o oriry o-homogeeous recurrece equtios o seco higher orer with vrile coeiciets occurrig i hyroymic theory o erig wer prolems. otrry to lier recurrece equtios with costt coeiciets lier recurrece equtios with vrile coeiciets rrely hve lyticl solutios.. Numericl solutios o such equtios re lwys prcticle. I umerous lyticl methos o solutios o lier recurrece equtios with vrile coeiciets there re usully three reserch irectios. The irst o them epe upo the successive etermitio o the lier iepeet prticulr solutios o the cosiere recurrece equtio. The seco irectio to e chrcterize y the reuctio o the orer o recurrece equtio to oti lwys solve irst orer recurrece equtio. The thir irectio o solutios o recurrece equtios with vrile coeiciets cotis the methos o lyticl solutios y mes o summtio ctor. The mjority o the geerl methos o lyticl solutios o lier recurrece equtios with vrile coeiciets costitute pttio o the methos pplie i solutios o suitle ieretil equtios I il coclusios the pplictio o presete theory i this pper cotis the the exmples reerrig the wer vlues etermitio o HDD erig system i the iicte perio o opertig time. Keywors: wer ticiptio ter exploittio slie erigs recurrece equtio vrile coeiciets. Iitil iormtio out micro-erig wer progosis IN: e-in: DOI: / The presete pper escries the stochstic clcultio metho o wer ticiptio i HDD micro-erig tig ito ccout the ymic ehvior urig the opertig time. The wer progosis o two coopertig HDD micro-erig surces urig the opertio time hs very importt meig i cotemporry sotwre techologicl processes. olutio o presete prolem c e possile o the sis o recetly otie mesuremets o micro-erig wer urig the irst perios my e moth or yers o exploittio regrig the prmeters escriig the rom wer eects complete y the imesiol str evitio. Ater experimetl AFM mesuremets ollows tht iscrete wer vlues + o the sequece {} or = 3 i.e. the wer vlues icreses i mm 3 o HDD micro-erig jourl sleeve equl to sum P ++ Q o wer i two oregoig successive time uits my e moths where es re multiplie y imesioless vrile stochstic wer coeiciet P Q plus some imesiol vrile stochstic vlues uctio o mterils R. Vrile coeiciets P Q R epe o the otie i experimetl wy imesiol wer str evitio o micro-erig mteril the jourl gulr velocity the requecies o virtios. Vrile is umere y turl umers 3 The imesioless epeet i.e. vrile rom prmeters P Q eote y coeiciets which verge the wer i two succeeig oregoig time uits. tr evitio epeet

2 K. ierzcholsi term R verge term P ++ Q o two oregoig wers me up the sequece vlues o rel wer i succeeig time uit. I this cse wer o HDD micro-erig c e escrie y the ollowig recurrece equtio [5 7]: P Q R or Recurret equtio etermies lyticl ormul { } presetig sequece o wer vlues umere or = 3 time uits i we ow imesioless vlues P [] Q [] imesiol vlue R [mm 3 ]. To solve metioe prolem it is ecessry to the oury coitios. Hece we ssume tht i two irst time uits my e moth the wer y virtue o experimets ttis imesiol vlues [mm 3 ] [mm 3 ] <.. er etermitio i power tri triology y mes o the replcemet o vriles The metho presete i this itersectio relys o the ew vrile itrouctio which eles us to reuce the orer o the recurrece equtio. The exmple illustrtes the ove-metioe metho [ 4]. EXAMPLE Determie geerl solutio = 3 i.e. the wer or the ollowig recurrece equtio: 0 where positive costt vlues 0 re iepeet o. how the prticulr wer solutio or ow oury coitios i.e. wer vlues = = i two successive time uits = =. OLUTION OF EXAMPLE Equtio c e escrie i the ollowig orm: 0. 3 e ssume the ollowig ew vrile: y or hece rom the ormul 4 ollows: y. 5 Puttig epeeces 4 5 ito recurret equtio 3 we oti the ollowig lier homogeeous irst orer recurret equtio with vrile coeiciet: y y 0 y y 0. 6 Followig irst orer homogeeous recurrece equtio with vrile coeiciet A: hs the geerl solutio i the orm: y y A y 0 A or j j! y 8 48

3 olutios o Recurreces with Vrile oeiciets or lie Berig er Determitio where eotes the irst ritrry costt. olutio 8 i presete orm y is itrouce ito sustitutio 4 hece we oti the ollowig lier o-homogeeous irst orer recurrece equtio: B or ! Aovemetioe irst orer o-homogeeous recurrece equtio with ollowig vrile ree term B: B! or hs the geerl solutio i the orm: or! Ater terms orerig i Eq. we oti: or !. ymol eotes seco ritrry costt i the presete solutio o recurrece equtio 9. To etermie the prticulr solutio o recurrece equtio or oury coitios = = i plces = = we ought to ote tht ssumptio 4 or = y virtue o 8 we oti:. 3 y e put costt rom Eq. 3 ito Eq. the the prticulr solutio o recurrece Eq. hs the il prticulr wer vlue solutio i ollowig orm: or / 4!. 4 By virtue o 4 ollows tht or wer vlues = = i two irst time uits = = the wer vlues urig the ext time uits tti the ollowig vlues: 4!! 3 5 3!!!... 3!!...! urig the iiity time uits the wer tti the vlue: 5 49

4 K. ierzcholsi 0. e e e exp 5 The wer vlues process urig the prticulr time uits is coverget. The sum o wer vlues ter iite N < iiite or N time uits i.e. is iverget:. F N F F F N N N!! 4 3!! 0 6 The sums o wer FN FN+ FN+ lwys icrese ter successive N N+ N+ time uits. Now we show the proo tht geerl solutio stisies recurrece Eq.. PROOF e show the ollowig steps o the sequece presetig the geerl solutio : or! or!. 8 From ormule 7 8 the ollowig expressios re true:!!!!! 9.!!! 0 ustitutig the r.h.s. right h sie o Eq. 9 0 equlity ito recurrece equtio we oti:.!!!!! Ater term reuctio term orerig i expressio we oti illy: 0!!!. Hece recurrece equtio is stisie. This ct completes the PROOF. 430

5 olutios o Recurreces with Vrile oeiciets or lie Berig er Determitio 3. er process etermitio i power tri triology y mes o the summtio ctor The l.h.s. let h sie o the ollowig recurrece equtio with coeiciets A B ree term D: A B D P Q R 3 is the totl sum or the totl ieretil. I this cse we c choose such coeiciets L M tht the ollowig equlity is true: L M P Q R. 4 A o-homogeeous reuce equtio hs the orm: M R L 5 where is the ritrry summtio costt. I the equlity 4 is ot vli we c i the summtio ctor U or equtio 3. Ater multiplictio o oth sies o the equtio 3 y this ctor we c lwys i such coeiciets L tht y virtue o the totl sum the ollowig equlity is true: M M U UP L U Q U R. 6 A i this cse reuce o-homogeeous equtio hs the ollowig irst orer recurrece orm: M UR L. 7 ymol eotes reciprocl uiie opertor o summtio with the sis. Reciprocl UO regrig the uiie opertor o summtio occurrig i Eq.7 is eote y the ollowig escriptio:... 8 The reciprocl uiie opertor o summtio will e eie i the ollowig orm: x X ecuse X x 9 where X x re the uctios etermie or the turl umers = 3. Reciprocl uiie opertor o summtio is eote y the upper iex is ot lwys uivocl. EXAMPLE Determie geerl solutio = 3 i.e. the wer or the ollowig recurrece equtio: 30 where 0 eotes ritrry coeiciet iepeet o. how the prticulr wer solutio or ow oury coitios i.e. wer vlues = = i two successive time uits = =. OLUTION OF EXAMPLE L.h.s. o recurrece equtio 30 oes ot preset the totl sum. ymol is the summtio ctor ecuse y multiplyig y oth sies o equtio 30 we oti: 3 43

6 K. ierzcholsi the ollowig equlity is true:. 3 Hece equtio 3 c e writte i the ollowig orm:. 33 he reciprocl opertor is impose o the oth sies o equtio 33 we oti the ollowig:. 34 By virtue o reciprocl opertor properties we oti: J J J. 35 ymol eotes the irst summtio costt. Equtio 34 hs the orm:. 36 Diviig oth sies o Eq. 36 y we oti:. 37 The geerl solutio o recurrece equtio 37 hs the ollowig orm: 3... or s j s j ymol eotes the seco ritrry costt o summtio. Ater trsormtios o ormul 38 we oti: 3... or!! O solutio 39 we impose oury coitio = or = = i plce = hece we oti the ollowig summtio costts:. 40 I presete ormul 39 we c ow show lier comitio o two lier iepeet prticulr solutios o the homogeeous equtio plus the prticulr solutio o o-homogeeous recurrece ccorigly with Eq. 30. Aovemetioe lier comitio o prticulr solutios is writte i ollowig orm: 43

7 olutios o Recurreces with Vrile oeiciets or lie Berig er Determitio [] [] [ ] [] []! ! [] []! c! [ ]!! [ ] oclusios A The pplictio o the presete theory cotis the lyticl methos o solutios o seco orer recurret equtios with vrile coeiciets reerrig the wer vlues etermitio o erig system i the cosiere perio o the opertig time. B The recurreces equtios etermiig the wer vlues i power tri triology re solve y mes o the replcemet o vriles summtio ctor. Reereces [] Kci E. Prtil Dieretil Equtios i Physicl Techicl Prolems NT rsw 989. [] Kosm Z. Numericl Methos i Egieerig Applictios Politechi Roms 999. [3] Koiews I. Recurrece Equtios PN rszw 973. [4] Nowici A. Recurrece equeces ywictwo yszej Olsztysiej zoy Iormtyi i Zrzzi Olszty-Toru 00. [5] ierzcholsi K. ummtio Equtio Tools or lie Microerig ystems er Progosis Jourl o KONE Powertri Trsport Vol. 8 No. 3 pp [6] ierzcholsi K. Meg Algorithm or Prtil Recurrece Reyols Equtio XIV Itertiol oerece o ystem Moellig otrol pp [7] ierzcholsi K. ummtio Equtios Their Applictios i Mechics XIV Itertiol oerece o ystem Moellig otrol pp

8

SOLUTIONS OF RECURRENCE AND SUMMATION EQUATIONS AND THEIR APPLICATIONS IN SLIDE BEARING WEAR CALCULATIONS

SOLUTIONS OF RECURRENCE AND SUMMATION EQUATIONS AND THEIR APPLICATIONS IN SLIDE BEARING WEAR CALCULATIONS Jourl o KOES Powertri d Trsport Vol 9 o 0 SOLUTIOS OF EUEE A SUMMATIO EQUATIOS A THEI APPLIATIOS I SLIE BEAIG EA ALULATIOS Krzyszto ierzcholsi Techicl Uiversity o Koszli Istitute o Mechtroics otechology

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

WEAR CUMULATING PROCESS FOR FRICTION PAIR IMPLEMENTED BY FIRST ORDER RECURRENCES

WEAR CUMULATING PROCESS FOR FRICTION PAIR IMPLEMENTED BY FIRST ORDER RECURRENCES Joural o KOES Powertrai ad Trasport Vol o ER CUMULTIG PROCESS OR RICTIO PIR IMPLEMETED Y IRST ORDER RECURRECES Krzyszto ierzcholsi Techical Uiversity o Koszali Istitute o Techology ad Educatio iadecich

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Some Results on the Variation of Composite Function of Functions of Bounded d Variation

Some Results on the Variation of Composite Function of Functions of Bounded d Variation AMRICAN JOURNAL OF UNDRGRADUAT RSARCH OL. 6 NO. 4 Some Results o the ritio o Composite Fuctio o Fuctios o Boue ritio Mohse Soltir Deprtmet o Mthemtics Fculty o Sciece K.N. Toosi Uiversity o Techology P.O.

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

Package Inventorymodel

Package Inventorymodel Ecoig lti1 Title Ivetory Moels Versio 1.1.0 Dte 2017-12-06 Author Alejro Sver Nieves Pckge Ivetorymoel December 6, 2017 Mitier Alejro Sver Nieves Depes R(>= 2.15.0),e1071, GmeTheoryAlloctio

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Sigl Represettio d Bsed Processig Versio ECE IIT, Khrgpur Lesso 5 Orthogolity Versio ECE IIT, Khrgpur Ater redig this lesso, you will ler out Bsic cocept o orthogolity d orthoormlity; Strum -

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator Glol Jourl o Pure d Alied Mthetics. ISSN 973-768 Volue 4 Nuer 5 28. 733-74 Reserch Idi Pulictios htt://www.riulictio.co O New Suclss o Multivlt Fuctios eied y Al-Ooudi ieretil Oertor r.m.thirucher 2 T.Stli

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Reduction of Higher Order Linear Ordinary Differential Equations into the Second Order and Integral Evaluation of Exact Solutions

Reduction of Higher Order Linear Ordinary Differential Equations into the Second Order and Integral Evaluation of Exact Solutions Mthemtic Aeter, Vol. 4, 04, o., 75-89 Reductio o Higher Order Lier Ordiry Dieretil Equtios ito the Secod Order d Itegrl Evlutio o Ect Solutios Guw Nugroho* Deprtmet o Egieerig Physics, Istitut Tekologi

More information

Homework 2 solutions

Homework 2 solutions Sectio 2.1: Ex 1,3,6,11; AP 1 Sectio 2.2: Ex 3,4,9,12,14 Homework 2 solutios 1. Determie i ech uctio hs uique ixed poit o the speciied itervl. gx = 1 x 2 /4 o [0,1]. g x = -x/2, so g is cotiuous d decresig

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

Chapter 25 Sturm-Liouville problem (II)

Chapter 25 Sturm-Liouville problem (II) Chpter 5 Sturm-Liouville problem (II Speer: Lug-Sheg Chie Reerece: [] Veerle Ledou, Study o Specil Algorithms or solvig Sturm-Liouville d Schrodiger Equtios. [] 王信華教授, chpter 8, lecture ote o Ordiry Dieretil

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Laws of Integral Indices

Laws of Integral Indices A Lws of Itegrl Idices A. Positive Itegrl Idices I, is clled the se, is clled the idex lso clled the expoet. mes times.... Exmple Simplify 5 6 c Solutio 8 5 6 c 6 Exmple Simplify Solutio The results i

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R.

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R. MATHEMATICAL PRELIMINARIES Limit Cotiuity Coverget squece Series Dieretible uctios Itegrble uctios Summtio deiitio o itegrl Me vlue theorem Me vlue theorem or itegrls Tylor's theorem Computer represettio

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

b gb g L N b gb gb g Chapter 13 Problem Solutions Semiconductor Physics and Devices: Basic Principles, 3 rd edition Chapter

b gb g L N b gb gb g Chapter 13 Problem Solutions Semiconductor Physics and Devices: Basic Principles, 3 rd edition Chapter Semicouct hysics Devices: Bsic riciples, r eitio Chpter Solutios ul rolem Solutios Chpter rolem Solutios Sketch Sketch p-chel JE Silico 9 4 e 0 0 5 0 0 4 7 ( ) 8850 579 ow 8 500 0059 l 0 5 0 0884 so 579

More information

Completion of a Dislocated Metric Space

Completion of a Dislocated Metric Space 69 Chpter-3 Completio o Dislocte Metric Spce 3 Itrouctio: metric o X [] i We recll tht istce uctio o set X is si to be islocte i) y ) ii) 0 implies y iii) z) z or ll y z i X I is islocte metric o X the

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information

Mathematics for Engineers Part II (ISE) Version 1.1/

Mathematics for Engineers Part II (ISE) Version 1.1/ Mthemtics or Egieers Prt II (ISE Versio /4-6- Curves i Prmetric descriptio o curves We exted the theory o derivtives d itegrls to uctios whose rge re vectors i isted o rel umers Deiitio : A curve C i is

More information

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity.

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity. Numercy Itroductio to Logrithms Logrithms re commoly credited to Scottish mthemtici med Joh Npier who costructed tle of vlues tht llowed multiplictios to e performed y dditio of the vlues from the tle.

More information

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS Abstrct Mirce I Cîru We preset elemetry proofs to some formuls ive without proofs by K A West d J McClell i 99 B

More information

The limit comparison test

The limit comparison test Roerto s Notes o Ifiite Series Chpter : Covergece tests Sectio 4 The limit compriso test Wht you eed to kow lredy: Bsics of series d direct compriso test. Wht you c ler here: Aother compriso test tht does

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 SUTCLIFFE S NOTES: CALCULUS SWOKOWSKI S CHAPTER Ifiite Series.5 Altertig Series d Absolute Covergece Next, let us cosider series with both positive d egtive terms. The simplest d most useful is ltertig

More information

On New Bijective Convolution Operator Acting for Analytic Functions

On New Bijective Convolution Operator Acting for Analytic Functions Jourl o Mthetics d Sttistics 5 (: 77-87, 9 ISSN 549-3644 9 Sciece Pulictios O New Bijective Covolutio Opertor Actig or Alytic Fuctios Oqlh Al-Rei d Msli Drus School o Mtheticl Scieces, Fculty o Sciece

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

On The Homogeneous Quintic Equation with Five Unknowns

On The Homogeneous Quintic Equation with Five Unknowns IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-78,p-ISSN: 319-76X, Volume 7, Issue 3 (Jul. - Aug. 013), PP 7-76 www.iosrjourls.org O The Homogeeous Quitic Equtio with Five Ukows y y 3 3 ( y ) 3(( y)( z w

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Image Motion Analysis

Image Motion Analysis Deprtmet o Computer Egieerig Uiersit o Cliori t St Cru Imge Motio Alsis CME 64: Imge Alsis Computer Visio Hi o Imge sequece motio Deprtmet o Computer Egieerig Uiersit o Cliori t St Cru Imge sequece processig

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Toeplitz and Translation Operators on the q-fock Spaces *

Toeplitz and Translation Operators on the q-fock Spaces * Advces i Pure Mthemtics 35-333 doi:436/pm659 Published Olie November (http://wwwscirporg/jourl/pm) Toeplit d Trsltio Opertors o the -Foc Spces * Abstrct Fethi Solti Higher College o Techology d Iormtics

More information

Geometric Sequences. Geometric Sequence. Geometric sequences have a common ratio.

Geometric Sequences. Geometric Sequence. Geometric sequences have a common ratio. s A geometric sequece is sequece such tht ech successive term is obtied from the previous term by multiplyig by fixed umber clled commo rtio. Exmples, 6, 8,, 6,..., 0, 0, 0, 80,... Geometric sequeces hve

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials)

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Dt proie: Form Sheet MAS5 SCHOOL OF MATHEMATICS AND STATISTICS Mthemtics II (Mteris) Atm Semester -3 hors Mrks wi e wre or swers to qestios i Sectio A or or est THREE swers to qestios i Sectio. Sectio

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Lesson-2 PROGRESSIONS AND SERIES

Lesson-2 PROGRESSIONS AND SERIES Lesso- PROGRESSIONS AND SERIES Arithmetic Progressio: A sequece of terms is sid to be i rithmetic progressio (A.P) whe the differece betwee y term d its preceedig term is fixed costt. This costt is clled

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Orthogonal functions - Function Approximation

Orthogonal functions - Function Approximation Orthogol uctios - Fuctio Approimtio - he Problem - Fourier Series - Chebyshev Polyomils he Problem we re tryig to pproimte uctio by other uctio g which cosists o sum over orthogol uctios Φ weighted by

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Security of Nyberg-Rueppel digital signatures without message recovery

Security of Nyberg-Rueppel digital signatures without message recovery BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 62, No. 4, 2014 DOI: 10.2478/bpsts-2014-0090 Security of Nyberg-Rueppel igitl sigtures without messge recovery T. ADAMSKI 1 W. NOWAKOWSKI

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information