Numerical Integration by using Straight Line Interpolation Formula

Size: px
Start display at page:

Download "Numerical Integration by using Straight Line Interpolation Formula"

Transcription

1 Glol Jourl of Pure d Applied Mthemtics. ISSN Volume 13, Numer 6 (2017), pp Reserch Idi Pulictios Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh Chlpuri* d J Suchrith 1,2 Deprtmet of Mthemtics, Osmi Uiversity, Hyderd-07, Idi Astrct The prolems of umericl itegrtio is to fid pproximte vlue of the Defiite Itegrl. I this pper we fid pproximte vlue of the Defiite Itegrl y usig Stright lie Iterpoltio formul. This formuls useful for equl d uequl spce poits. Keywords:Numericl Itegrtio,Numericl methods,averge rule 1 INTRODUCTION With the dvet of the moder high speed electroic digitl computer, the Numericl Itegrtio hve ee successfully pplied to study prolems i Mthemtics, Egieerig, Computer Sciece d Physicl Sciece. Numericl itegrtio, lso clled Qudrture, is the study of how the umericl vlue of defiite itegrl c e foud. The purpose of this pper is to give ew method to fid pproximte clcultio of defiite itegrl (1) I = f(x)dx where f(x) is itegrle, i the Riem sese o [ ]. The limit of the itegrtio my e fiite or semi-fiite. The meig of the itegrtio (1) is the Are of fig. (1). It's ouded re y three stright lies y=0, x=, x= d oe curve f(x).

2 2124 Mhesh Chlpuri d J Suchrith Figure 1: Vlue of Defiite itegrl I this pper, we develop stright lie equtio y(x) = x such tht (2) I = f(x)dx y(x)dx The grphicl meig of ove itegrl is, there exist res A d B such tht A=B, see fig: 1 2 PRELIMINARIES Defitio2. 1: The Itegrtio (1) is pproximted y fiite lier comitio of vlue of f(x) i the form (3) I = f(x)dx = λ k f k k=0 where x k, k=0,1,..., re clled the scisss or odes distriuted withi the limits of itegrtio [ ] d λ k, k=0,1,..., re clled weight of the itegrtio rule of the qudrture formul. The error costet of (3) is give s (4) E = f(x)dx λ k f k k=0 Defitio2. 2: Order of ccurcy, or precisio, of Qudrture formul is the lrgest positive iteger such tht the formul is exct for x k, for ech k = 0,1,...,. Defitio2. 3: The smllest polyomil is lier polyomil, the stright lie. Lest squre stright lie pproximtios re extremely useful d commo pproximte fit. Give +1

3 Numericl Itegrtio y usig Stright Lie Iterpoltio Formul 2125 dt poits (x i, f i ),1,..., the the est stright lie through the set of dt poits is y = x, where 1 d 2 re stisfy the equtios (5) 1 ( + 1) + 2 x i = f(x i ), 1 x i + 2 x 2 i = x i f(x i ). The equtio (5) is clled orml-equtio of lest squre fit. They c solve for 1 d 2 y Guss Elimitio method. Theorem 1 y(x) is stright lie iterpoltio equtio of the cotiuous d itegrle fuctio f(x) o[,].the (6) y(x i ) f(x i ) where =, x = Proof. :-Let y(x) = x where 1, 2 re costts the y( ) = d y(x 1 ) = x 1 d so o y(x ) = x. ddig ll we get y(x i ) = ( + 1) pply Norml Equtio (4) we get x i y(x i ) f(x i ) Theorem 2 Let y(x) is iterpoltio polyomil equtio of the cotiuous d itegrle fuctio f(x) o[,] d y(x i ) f(x i ), where = >, x = < if d oly if x x ydx fdx. As, itegrtio of f o [ ] is pproch to itegrtio of y(x) o [ ]. Proof. Multiplyig with h d limit h 0 i (6), we get It gives theorem lim h h 0 =0 y(x ) = lim h 0 h =0 f(x ).

4 2126 Mhesh Chlpuri d J Suchrith 3 MAIN RESULTS The odes x i,,1,2..., re equispced with =, x = with spcig h=(-)/.we fit stright lie y(x) = x with +1 dt poits (, f 0 ), (x 1, f 1 ),..., (x, f ). But we kow x i = + x x = + + h h = ( + 1) + h( + 1), 2 x i 2 = ( + 1) + h( + 1)(2 + 1) /6 + h 2 2 ( + 1) 2 /4, x i f i = x o f i + h if i. Solve the Norml equtio for 1 d 2, we get 1 = f i x i 2 x i x i f i ( + 1) x i 2 ( x i) 2 2 = ( + 1) x i f i x i f i ( + 1) x i 2 ( x i) 2 Sustitutig ove vlues i 1, 2 we get 1 = 2 h( + 1)( + 2) [(3 + h( + 1)) f i 3( + x ) if i ] 2 = 6 h( + 1)( + 2) [2 if i i f i ] y = x is the est stright lie pproximte fit to f(x) o [ ]. (7) I = f(x)dx ydx = ( x)dx = 1 h + 2h( + ) 2 = 1 h + 2 h(2 + h)/2 sustitutig 1 d 2, we get umericl solutio of give itegrtio, (8) we lso write x f(x)dx = f(x)dx h + 1 f(x i ) x f(x)dx h(f i s verge)

5 Numericl Itegrtio y usig Stright Lie Iterpoltio Formul 2127 or f(x)dx ( )(f i s verge) I this pper ove formul is clled Averge rule of umericl itegrtio of f(x). This method is exct for polyomil of degree 1, hece is of order 1. Error estimte The error of the this rule is x E = x 2 dx (x ) + 1 ( 2 + x x x 2 ) = h 3 2 /6 there fore the (9) R = E 2! f" (ξ) = h3 2 ( )3 f"(ξ) = f"(ξ), where ξ [ ]. So we kow from (9), the error of (9) is iverse proportiol to umer of suitervls(i.e R 1/). Other proof of Averge rule,we fit lest squre stright lie y = l for the discrete dt (x i, f i ),,1,...,, where x i s re eed't e equispced poits, we hve i.e or so I = I(l) = (f i y i ) 2 = miimum x f(x)dx = di dl = 2(f i l).1 = 0 ( ) = + 1 f(x i ) l = f i. x f(x) x ydx = ldx = l(x ) Note:-This rule does ot depedig o h, so this rule c e use for uequispced odes x i s. The grphiclly meig of Averge rule is, suppose the crossig pits of f(x) d y re P[l 1, m 1 ] d Q[l 2, m 2 ]. See grph fig: 2 A,B d C re res of itegrtio (f(x) y) from limits to l 1, l 1 to l 2 d l 2 to respectively. The the vlues of B, A+C re pproximtely sme. i.e B A+C.

6 2128 Mhesh Chlpuri d J Suchrith Figure 2: Grph of Averge rule The ifiite series i=1 f(x i ) is covergece if x 1 f(x) is fiite. We hve Averge rule x f(x)dx x 1 Write d h=1 we get lim ( 1)h i=1 ( 1)h f(x i ). i=1 f(x i ) f(x)dx x 1 f(x i ) f(x)dx. i=1 x 1 This is sme s itegrl test of ifiite series. Hece the theorem. Note:-Let, (, + ), d or h 0 the f(x)dx = lim [ h + 1 f(x i )] = lim h 0 [h f(x i )]. 3.1 Composite Formule To void the use of higher order methods d still oti ccurte results, we use the composite itegrtio methods. We divide the itervl [, ] ito umer of suitervls d evlute the itegrl i ech suitervl y prticulr method. We c derive composite formule from Averge rule x f(x)dx = f(x)dx h + 1 f(x i )

7 Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Trpezoidl rule We divide the itervl [ ] ito suitervl, ech of legth h=(-)/. we deote the suitervl s (, x 1 ), (x 1, x 2 ),..., (x 1, x ) where =, x = d x i = + ih, i=1,2,...,. We write x f(x)dx f(x)dx x 1 x 1 x 2 I = f(x)dx = f(x)dx + x 1 write =1 i verge rule d pply to ech itegrtio we get (10) f(x)dx h 2 (f 0 + f + 2 f i ) i=1 this formul is clled composite Trpezoidl rule or 1/2 Averge rule /3-Averge rule I usig the 1/3 Averge rule, we eed three scisss. We divide the itervl [ ] i eve umer of suitervls of equl legth givig odd umer of scisss. If we divide the itervl [ ] ito 2N suitervl ech of legth h=(-)/(2n), the we get 2N+1 scisss, x 1,..., x 2N, x = + ih i=1,2...,2n-1.we write I = x f(x)dx = x 2 f(x)dx + x 4 f(x)dx x 2N f(x)dx. x 2 x 2N 2 We write =2 i Avrge we get I = x f(x)dx = 2h [(f f 1 + f 2 ) + (f 2 + f 3 + f 4 )+... +(f 2N 2 + f 2N 1 + f 2N )] (11) I = x f(x)dx 1 = 2h 3 (f 0 + f 1 + f 3 + f f 2N 1 + f 2N + 2(f 2 + f f 2N 2 )) This formul is clled 1/3-Averge rule Geerl form of 1/(m+1)-Averge rule I usig the 1/(m+1)-Averge rule, we eed mn+1 scisss. We divide the itervl [ ] i mn umer of suitervls of equl legth givig mn+1 umer of scisss. If we divide the itervl [ ] ito mn suitervl ech of legth h=(-)/(mn), the we get mn+1 scisss, x 1,..., x mn, x = + ih i=1,2...,mn-1.we write I = x f(x)dx = x m We write =m i Avrge we get f(x)dx + x 2m x m f(x)dx x mn x m(n 1) f(x)dx. I = x f(x)dx = mh x [(f 0 m f 1 + f f m ) + (f m + f m+1 + f m f 2m ) (f mn m + f mn (m 1) + f mn 1 + f 2N )]

8 2130 Mhesh Chlpuri d J Suchrith x (12) I = f(x)dx = mh m + 1 [2(f m + f 2m f m(n 1) ) + f 0 + f f m 1 + f m f mn ] this formul is clled 1/(m+1)-Averge rule. 4 PROBLEMS Prolem 1 Fid the pproximte vlue of 1 1 I = x dx, usig Averge rule with differet equl suitervls. Usig the exct solutio, fid the solute errors. Solutio:Results for the Averge rule to estimte the itegrl of f(x) = 1/(2 + x) from x = 0 to 1. The exct vlue is I exct = 1 1/(2 + x)dx = log(3) 0 log(2)= We hve I = f(x)dx = x f(x)dx h +1 f(x i ) I Error=I I exct This rule slowly covergece to exct vlue I d the error is hlf if is dle. So exct vlue come from =124 for four deciml plces. Prolem 2 Fid the pproximte vlue of 3 2 f(x)dx, usig tle x f(x)

9 Numericl Itegrtio y usig Stright Lie Iterpoltio Formul 2131 Solutio I this prolem h is ot equl to ll itervl, But we c pply Averge rule to this prolem.we hve I = 3 (3 2) f(x)dx = (f(x 2 0 ) + f(x 1 )+... +f(x 6 )) 7 = 1 ( ) 7 = = Prolem 3 Fid pproximte vlue of I = 3 1 si(x)ex dx fit stright lie y(x) such tht 3 y(x)dx = I. 1 Solutio:Let f(x) = si(x)e x d y e the stright lie y fit +1 dt poits (x i, f(x i )),,1,2,..,. Now we divide the itervl [1 3] ito two equl suitervl, tht is = 2 or h = 1. the 3 dt poits re (1, f(1)), (2, f(2)) d (3, f(3)). we fit stright lie y 2 y orml equtio (5) we get y 2 = 0.27x followig this we get y 4 = 0.78x y 8 = 1.17x y 16 = 1.39x y 32 = 1.51x d y 64 = 1.57x But we kow if the 3 y 1 (x)dx 3 f(x)dx. there fore I = 1 3 (1.57x )dx = the figure (3) shows tht the covergece of y (x) Figure 3: Covergece of y (x)

10 2132 Mhesh Chlpuri d J Suchrith 5 CONCLUSION We develop this ew method for esy to solve Defiite Itegrl of fiite itervl with equispced odes.if we hve ot equispced dt poit the we c use this Averge rule for itegrtio o give compct itervl (exmple 4.2 is exmple of this cocept). This method is esy to evlute of defiite itegrl. The Error is esy to derive. It's lier se cocept, we re developig this cocept to hight degree polyomils d defiite itegrl of this polyomil is sme s defiite itegrl of give fuctio o compct itervl [ ]. Also we develop this cocept to high dimesio. We re reserched out the odes, there re o fixed odes for give exct vlue of itegrtio for ll itegrle fuctios f(x). ACKNOWLEDGEMENTS We grtefully ckowledge the support of the UGC(Uiversity Grts Commissio) JRF d NET Fellowship,Idi. REFERENCES [1] M. Cocepcio Ausi, 2007, A Itroductio to Qudrture d Other Numericl Itegrtio Techiques, Ecyclopedi of Sttistics i Qulity d reliility. Chichester, Egld. [2] Gordo K. Smith, 2004, Numericl Itegrtio, Ecyclopedi of Biosttistics.2d editio, Vol-6 [3] Rjesh Kumr Sih, Rkesh Kumr,2010, Numericl method for evlutig the itegrle fuctio o fiite itervl, Itertiol Jourl of Egieerig Sciece d Techology.Vol-2(6) [4] Gerry Sozio, 2009, Numericl Itegrtio, Austrli Seior Mthemtics Jourl, Vol-23(1) [5] J. Oliver, 1971, The evlutio of defiite itegrls usig high-order formule, The Computer Jourl, Vol-14(3) [6] S.S Sstry, 2007, Itroductory Method of Numericl Alysis, Fourth Editio, Pretice-hll of Idi Privte Limited. [7] Richrd L. Burde, 2007, Numericl Alysis, Seve Editio, Itertiol Thomso Pulishig Compy. [8] Joh H. Mthew, 2000, Numericl Method for Mthemtics, Sciece d Egieerig, Secod Editio, Pretice Hll of Idi Privte Limited. [9] Dvid Kicid, Wrd Cheey, Numericl Alysis Mthemtics of Scietific Computig, Idi Editio, Americ Mthemticl Society, Third editio, 2010 pge o [10] M.K Ji, S.R.K. Iyegr, R.K. Ji, Numericl Methods for Scietists d Egieers Computtio.2005, pge d [11] Steve C. Chpr.Applied Numericl Methods with MATLABÂ for Egieers d Scietists, Third Editio.2012, pge o

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Numerical Integration - (4.3)

Numerical Integration - (4.3) Numericl Itegrtio - (.). Te Degree of Accurcy of Qudrture Formul: Te degree of ccurcy of qudrture formul Qf is te lrgest positive iteger suc tt x k dx Qx k, k,,,...,. Exmple fxdx 9 f f,,. Fid te degree

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

f ( x) ( ) dx =

f ( x) ( ) dx = Defiite Itegrls & Numeric Itegrtio Show ll work. Clcultor permitted o, 6,, d Multiple Choice. (Clcultor Permitted) If the midpoits of equl-width rectgles is used to pproximte the re eclosed etwee the x-xis

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations Itertiol Jourl of Mthemtics d Sttistics Ivetio (IJMSI) E-ISSN: 31 767 P-ISSN: 31-759 Volume Issue 8 August. 01 PP-01-06 Some New Itertive Methods Bsed o Composite Trpezoidl Rule for Solvig Nolier Equtios

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Math1242 Project I (TI 84) Name:

Math1242 Project I (TI 84) Name: Mth4 Project I (TI 84) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

the midpoint of the ith subinterval, and n is even for

the midpoint of the ith subinterval, and n is even for Mth4 Project I (TI 89) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Error Analysis of the High Order Newton Cotes Formulas

Error Analysis of the High Order Newton Cotes Formulas Itertiol Jourl of Scietific d Reserch Pulictios, Volume 5, Issue, April 5 ISSN 5-353 Error Alysis of the High Order Newto Cotes Formuls Omr A. AL-Smmrrie*, Mohmmed Ali Bshir** * Omdurm Islmic Uiversity

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA itli jourl of pure d pplied mthemtics. 5 015 (11 18) 11 COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA Weijig Zho 1 College of Air Trffic Mgemet Civil

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Quadrature Methods for Numerical Integration

Quadrature Methods for Numerical Integration Qudrture Methods for Numericl Itegrtio Toy Sd Istitute for Cle d Secure Eergy Uiversity of Uth April 11, 2011 1 The Need for Numericl Itegrtio Nuemricl itegrtio ims t pproximtig defiite itegrls usig umericl

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

On The Homogeneous Quintic Equation with Five Unknowns

On The Homogeneous Quintic Equation with Five Unknowns IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-78,p-ISSN: 319-76X, Volume 7, Issue 3 (Jul. - Aug. 013), PP 7-76 www.iosrjourls.org O The Homogeeous Quitic Equtio with Five Ukows y y 3 3 ( y ) 3(( y)( z w

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists. ANALYSIS HW 3 CLAY SHONKWILER () Fid ll smooth fuctios f : R R with the property f(x + y) = f(x) + f(y) for ll rel x, y. Demostrtio: Let f be such fuctio. Sice f is smooth, f exists. The The f f(x + h)

More information

ENGINEERING PROBABILITY AND STATISTICS

ENGINEERING PROBABILITY AND STATISTICS ENGINEERING PROBABILITY AND STATISTICS DISPERSION, MEAN, MEDIAN, AND MODE VALUES If X, X,, X represet the vlues of rdom smple of items or oservtios, the rithmetic me of these items or oservtios, deoted

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Orthogonal functions - Function Approximation

Orthogonal functions - Function Approximation Orthogol uctios - Fuctio Approimtio - he Problem - Fourier Series - Chebyshev Polyomils he Problem we re tryig to pproimte uctio by other uctio g which cosists o sum over orthogol uctios Φ weighted by

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 SUTCLIFFE S NOTES: CALCULUS SWOKOWSKI S CHAPTER Ifiite Series.5 Altertig Series d Absolute Covergece Next, let us cosider series with both positive d egtive terms. The simplest d most useful is ltertig

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information