SOLUTIONS OF RECURRENCE AND SUMMATION EQUATIONS AND THEIR APPLICATIONS IN SLIDE BEARING WEAR CALCULATIONS

Size: px
Start display at page:

Download "SOLUTIONS OF RECURRENCE AND SUMMATION EQUATIONS AND THEIR APPLICATIONS IN SLIDE BEARING WEAR CALCULATIONS"

Transcription

1 Jourl o KOES Powertri d Trsport Vol 9 o 0 SOLUTIOS OF EUEE A SUMMATIO EQUATIOS A THEI APPLIATIOS I SLIE BEAIG EA ALULATIOS Krzyszto ierzcholsi Techicl Uiversity o Koszli Istitute o Mechtroics otechology d Vcuum Techique idecich Street Koszli Pold tel: x: e-mil: rzysztowierzcholsi@wppl Astrct The ivestigtios uder the pper iclude derivtio o o-homogeous recurrece equtio o the secod d higher orders with vrile coeiciets whose prticulr solutios with the oudry coditios set d otied rom experimetl mesuremets will e the sequeces o the wer vlue o the erig i the successive yers o opertio Owig to these ivestigtios it will e possile to predict or exmple the wer vlues o slide erigs Moreover this pper presets the some prticulr pplictios o recurrece equtios with regrd to the clcultio progosis o micro-erig prmeters such s rictio orces rictio coeiciets d wer ecurrece equtios re preseted i orm o dierece equtios where the uow uctios occur s the mi terms o the sequece o iquired vlues I this pper the properties o the prticulr vlues o recurrece equtios re deied Possiility o modultio d cotrol o metioed prolem elog to the rtiicil itelligece o H microerig Preseted prolem descries ot cotiuous reltios hece determies the mthemticl d umericl solutios i discrete spces Properly i the cse o cotiuous uctios the metioed recurrece equtios hve the sme meig s dieretil equtios ecurret equtios or discrete uctio correspod to dieretil equtios or the cotiuous uctio I il coclusios the pplictio o preseted theory i this pper cotis the umericl solutios reerrig the wer vlues o H erig system i the idicted period o opertig time Keywords: wer progosis H micro-erigs recurrece o-homogeeous equtio Iitil iormtio out recurrece tools i triology The wer progosis o two coopertig surces durig the opertio time o vrious techicl devices hs very importt meig i cotemporry techologicl processes [ 6 7] Estimtio ticiptio d clcultio o the wer vlue o coopertig surces ter my moth or exploittio yers o the mchie or device deotes the very importt prmeter o mteril qulity I this pper is cosidered the determitio o wer vlue { } or successive yers = e ssume tht wer + o coopertig surces i + time uity ie moth or yer or =0 is the uctio G o wer vlues i oregoig yers To solve this prolem we must ow the wer vlues i = successive time uits ie Our uow prticulr solutio is the sequece o wer vlues { } ie or exmple the vlues o decrese i pm o H micro-erig jourl dimeter i successive = yers [4] Metioed prolem c e writte i the ollowig order o lier o-homogeeous recurrece equtio with vrile ree term: Geerl orm o recurrece equtio c e expressed i ollowig orm [ 5]: G () where G is the complex uctio o operds Symol is the uow wer uctio turl umer determies the order o the recurrece equtio or =

2 K ierzcholsi I G is the o lier uctio t lest o the oe o operds: + the recurrece equtio () is o lier I G is lier respect to the ll operds: + the recurrece equtio () is lier For exmple lier -order recurrece equtio with coeiciets hs the ollowig homogeeous d o-homogeeous (with ree term ) orm [ 5]: 0 0 () I ll coeiciets re costts ie re idepedet o the ormul () descries the recurrece equtio with costt coeiciets I whichever oe o coeiciets depeds o the ormule () () deote recurrece equtios with vrile coeiciets I ree term equls zero the ormul () descries the homogeeous recurrece equtios I ree term is dieret o zero the ormul () descries the o-homogeeous recurrece equtios Experimetl coeiciets: 0 deped o the surces mteril dymic coditios o the movle coopertig surces requecies o existig surce virtios evirometl coditios This sectio descries the methods o the determitio o the geerl d prticulr solutios i the iiite sequece orm or lier -order recurret equtios with costt coeiciets ecurrece equtios () () will e solved i we oud the ollowig depedece [ 5]: s s s s (4) where experimetl vlues: s s s s deote oudry wer vlues o serched solutio o recurrece equtios () i plces or = It is esy to see tht ormul (4) ie solutio o recurrece equtio () or () eles to clculte the vlues o the wer uctio or ritrry without o the ecessity o determiig o remiig succeedig wer vlues j or j= Lier homogeeous -order recurrece equtios () or =0 hs -lier idepedet prticulr solutios o wer cretig the ollowig udmetl system [7]: (5) Lier homogeeous recurrece equtios hs s my prticulr solutios s order o the equtios Upper idex i rcets preseted i uctios (5) idictes the umer o succeedig prticulr solutios sorti determit creted or prticulr solutios (5) c e preseted i ollowig orm []: det 0 or j ; (6) j Geerl wer solutio o the lier homogeeous recurrece equtios () or =0 is the lier comitio o -lier idepedet prticulr solutios o recurret equtio Hece the geerl solutio o wer o metioed recurret equtio hs the ollowig orm: 0 where = Geerl solutio (7) cotis ritrry costts: Geerl solutio o the homogeeous recurrece equtios hs s my costts s the order o equtios To determie the metioed costts we eed oudry coditios For exmple such oudry () () (7) 544

3 Solutios o ecurrece d Summtio Equtios d Their Applictios i Slide Berig er lcultios coditios re s ollows: or = we hve coditio =s (8) or = we hve coditio =s Symols s i prcticl pplictios deote cocrete wer vlue o looed prticulr solutio o homogeeous recurrece equtios i time uit = Imposig coditio (8) o geerl solutio (7) we oti the ollowig system o - lier o-homogeeous lgeric equtios [7]: s s The system o equtios (9) determies the ollowig uow costts: It is esy to see tht the sorti determit is the determit o the lgeric system (6) Becuse such determit is dieret o zero or lier idepedet prticulr solutios hece the system o lgeric equtios (9) determies o-zero costt vlues s solutios Solutio o recurrece equtios is sed o the prticulr d geerl wer solutio (7) determitio s lier comitio o prticulr wer solutios Ad ext i we ow oudry coditios ie i we hve experimetl otied wer vlues s the we loo to oti cocrete prticulr solutios Such solutio we oti puttig costts determied rom the lgeric system (9) ito geerl solutio (7) I my triologicl wer prolems [5] re occurrig very ote the ollowig lier prticulr cses o wer recurrece equtio (): 4 where = ; 0<< e hve experimetl dimesioless vlues [] [] d dimesiol experimetl wer vlues [pm] d dimesiol oudry vlues [pm] [pm] [pm] 4 [pm] or the irst Eq(0) ; [pm] [pm] [pm] or the secod Eq(0) ; d [pm] [pm] or third Eq(0) ll with steris I the ext sectios o this pper we re goig to the presettio o the methods o solutios o lier homogeeous d o-homogeeous recurrece equtios with costt coeiciets Moreover will e imposed oudry coditios o the vrious geerl wer solutios hece will e determied the vrious prticulr wer vlues Properly i the cse o the spce o cotiuous uctios the ovemetioed equtios hve the sme meig s dieretil equtios The mthemticl tools o solutios o recurrece equtios re ormulted d demostrted usig Lemms d Theorem To the est o the uthor s owledge ew chievemets tht relte to the uiied discrete orms o solutios re coveiet orms or umericl clcultios d the seprtio o the lier idepedet solutios er uctio descried y lier -order homogeeous recurret equtio with costt coeiciets ow exmples re preseted o geerl d prticulr solutios or vrious types o lier homogeeous recurret equtios d or rel d complex roots o chrcteristic equtios (9) (0) 545

4 K ierzcholsi Theorem I the lier homogeeous -order recurrece equtios with costt coeiciets 0 hs the ollowig orm [ 7]: 0 0 () where deotes the uow wer uctio the the geerl solutio o this equtio is s ollows: r s s s m 0 sm m () where sm ritrry costts = The symol s where s= r; r occurrig i the ormuls (c) descries the succeedig vrious roots o the ollowig chrcteristic equtio: p( ) 0 with multiplictio ctor s ordered to the roots s wheres the sum o multiplictio ctors o the roots is equl to the order o recurrece equtio mely: 0 () r + r = () ommettor or Theorem Successive roots o the chrcteristic equtios () with multiplictio ctor idicted y the rrows re s ollows []: r (4) r er process exmple etermie the wer ormul o the micro-erig jourl i wer process is descried y the recurrece equtio: 0 or (5) I irst succeedig three yers o exploittio the vlues o decrese i m o H microerig jourl dimeter equl to ollowig wer vlues s oudry coditios: =M m = m =P m P>M (6) Solutio o exmple For Eq(5) chrcteristic equtios () hve the ollowig orm d solutios: 0 e hve s doule root = d s sigle root = Hece we hve oly two vrious roots thus r= Geerl solutio () o the recurrece equtios (5) is s ollows: ( ) m0 m m ( ) m0 m m 0 0 ( ) (7) (8) 546

5 Solutios o ecurrece d Summtio Equtios d Their Applictios i Slide Berig er lcultios Formul (8) presets the geerl solutio o recurrece equtio (5) wheres 0 0 re the ritrry costts d = ow we go to the determitio o the cocrete prticulr wer solutio o the recurrece equtio (5) stisyig oudry coditios (6) To determie such prticulr solutio we impost oudry coditios (6) o the geerl solutio (8) Ad we get the ollowig vlues: 0 =5M P; =050P050M; 0 = 05M+05005P Isertig such vlues ito geerl solutio (8) we oti the cocrete prticulr solutio o recurrece equtio (5) ie ollowig wer vlues uctio: 0 50P 0 50M 0 5M P ( ) 5M P (9) i succeedig yers = For exmple i teth yers o exploittio the wer ttis vlue: P M P M (0) ow we ssume the prticulr cse where chrcteristic equtios o -degree () or -order recurrece equtios () hve =r/ pirs mutully cojugted complex roots with multiplictio ctor deoted y the symols i successio The metioed pirs we rrge i the ollowig orm [7]: multiplictio ctor mod Arg 4 orollry multiplictio ctor mod Arg I chrcteristic equtio () hs ot rel roots d ssumig oly the complex roots () the the geerl solutio o recurrece equtios teds to the ollowig orm []: s () s () () m s sm cos s sm si s () m 0 () () sm or s= ; m=0 s ; = where sm 5 emrs ritrry costts Becuse geerl solutio () vlid oly or pir o complex mutully cojugted roots o chrcteristic equtios where ech pir hs multiplictio ctor with ollowig successio d chrcteristic equtio () hs ot rel roots the: () I this cse symol deotes eve order o recurrece equtio It is worth otice tht i ll roots o chrcteristic equtios re rel umers ie i or ech s the mplitudes o complex umer s re equl zero the geerl solutio () teds to the orm o geerl solutio () wheres =r er uctio descried y lier -order o-homogeeous recurret equtio oclusio The lier o-homogeeous -order recurrece equtio with costt coeiciets d vrile expoetil ree term [ 5]: 547

6 K ierzcholsi j0 j j 0 (4) hs the ollowig geerl solutio: or q q! Q q where uctio deotes geerl solutio o the homogeeous -order recurrece equtio creted rom the o-homogeeous Eq (4) or =0 d moreover presets certi prticulr solutio o the o-homogeeous equtio wheres umer q is the multiplicity o the root = o chrcteristic equtio p()=0 see Eq() The ssocited polyomil is deied i ollowig orm [ 7]: p( ) Q( ) (6) q ( ) (5) 4 Applictio i triology 4 Prolem The sequece o wer vlues {} ie the vlues o decrese i pm o H microerig jourl dimeter equl to sum o wer i two oregoig successive moths multiplied y dimesioless verge coeiciet 0< plus some expoet dimesiol uctio oeiciets deped o the microerig mteril the jourl gulr velocity d the requecies o virtios I the two irst moths the wer ttis dimesiol vlues i pm etermie the uow lyticl ormul {} or sequece o wer vlues umered or = moth i we ow dimesioless vlues [] [] d dimesiol vlues [pm] [pm] [pm] 4 Geerl solutio o the prolem The prolem is deied y the ollowig dierece equtio: ( ) or From ormule () (5) it ollows tht the geerl solutio o recurrece equtio (7) or two ritrry costts hs the ollowig orm: (7) (8) hrcteristic equtio () or = d recurrece equtio (7) hs the ollowig rel roots: 5/ or 0 (9) 4 By imposig the oudry coditios system: o the geerl solutio (8) we oti (0) 548

7 Solutios o ecurrece d Summtio Equtios d Their Applictios i Slide Berig er lcultios System o Eqs(0) determies ollowig uow costts : () 4 Prticulr cse o solutio e ssume ollowig ssumptios: ie 0 4 () By virtue o (5) () the o-homogeeous solutio o Eq(7) hs the orm: or () The sum o solutio (8) ie sum o wer vlues i the time uits hs the ollowig orm: (4) where ; = For dditiolly ssumptios: 0 (5) the or iiitely my time uits wer (4) teds to the ollowig limit vlue: 0 (6) 44 Prticulr clcultio exmple I two irst successive time uits H micro-erig jourl ttis dimeter decreses d m etermie the wer ter iiite time uits usig mesuremets d stochstic dt preseted y []=/6 []=/ or ritrry [m] From ormule (9) we oti ollowig exploittio prmeters: (7) Puttig dt (7) i ormul (6) the wer tti the ollowig orm: (8) 549

8 K ierzcholsi 5 oclusios A) The preseted exmple descries o-cotiuous reltios hece it determies the mthemticl d umericl solutios i discrete spces ecurret equtios or the discrete uctio correspod to dieretil equtios or the cotiuous uctio B) The pplictio o the preseted theory i metioed exmples cotis the umericl solutios reerrig the wer vlues o H erig system i the cosidered period o the opertig time ) Uiied lgorithm preseted costitutes useul tool or the solutio o recurrece equtios pplied or the wer progosis o H micro-erigs [5 7] eereces [] Kci E Prtil ieretil Equtios i Physicl d Techicl Prolems T rsw 989 [] Kosm Z umericl Methods I Egieerig Applictios Politechi doms 999 [] Koiews I ecurrece Equtios P rszw 97 [4] owici A ecurrece Sequeces ydwictwo yszej Olsztysiej Szoy Iormtyi i Zrzdzi Olszty-Toru 00 [5] ierzcholsi K Summtio equtio tools or slide microerig systems wer progosis Jourl o KOES Powertri d Trsport Vol 8 o pp rsw 0 [6] ierzcholsi K Meg lgorithm or prtil recurrece eyolds equtio XIV Itertiol oerece System Modellig d otrol pp -8 [7] ierzcholsi K Summtio equtios d their pplictios i mechics XIV Itertiol oerece System Modellig d otrol pp - 550

SOLUTIONS OF RECURRENCES WITH VARIABLE COEFFICIENTS FOR SLIDE BEARING WEAR DETERMINATION

SOLUTIONS OF RECURRENCES WITH VARIABLE COEFFICIENTS FOR SLIDE BEARING WEAR DETERMINATION Jourl o KONE Powertri Trsport Vol. 0 No. 03 OLUTION OF REURRENE ITH VARIABLE OEFFIIENT FOR LIDE BEARING EAR DETERMINATION Krzyszto ierzcholsi Techicl Uiversity o Koszli Istitute o Techology Euctio iecich

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Sigl Represettio d Bsed Processig Versio ECE IIT, Khrgpur Lesso 5 Orthogolity Versio ECE IIT, Khrgpur Ater redig this lesso, you will ler out Bsic cocept o orthogolity d orthoormlity; Strum -

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

WEAR CUMULATING PROCESS FOR FRICTION PAIR IMPLEMENTED BY FIRST ORDER RECURRENCES

WEAR CUMULATING PROCESS FOR FRICTION PAIR IMPLEMENTED BY FIRST ORDER RECURRENCES Joural o KOES Powertrai ad Trasport Vol o ER CUMULTIG PROCESS OR RICTIO PIR IMPLEMETED Y IRST ORDER RECURRECES Krzyszto ierzcholsi Techical Uiversity o Koszali Istitute o Techology ad Educatio iadecich

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Orthogonal functions - Function Approximation

Orthogonal functions - Function Approximation Orthogol uctios - Fuctio Approimtio - he Problem - Fourier Series - Chebyshev Polyomils he Problem we re tryig to pproimte uctio by other uctio g which cosists o sum over orthogol uctios Φ weighted by

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS Abstrct Mirce I Cîru We preset elemetry proofs to some formuls ive without proofs by K A West d J McClell i 99 B

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer Presettio for use with the textook, Algorithm Desig d Applictios, y M. T. Goodrich d R. Tmssi, Wiley, 25 Divide-d-Coquer Divide-d-Coquer Divide-d coquer is geerl lgorithm desig prdigm: Divide: divide the

More information

Supplemental Handout #1. Orthogonal Functions & Expansions

Supplemental Handout #1. Orthogonal Functions & Expansions UIUC Physics 435 EM Fields & Sources I Fll Semester, 27 Supp HO # 1 Prof. Steve Errede Supplemetl Hdout #1 Orthogol Fuctios & Epsios Cosider fuctio f ( ) which is defied o the itervl. The fuctio f ( )

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Chapter 25 Sturm-Liouville problem (II)

Chapter 25 Sturm-Liouville problem (II) Chpter 5 Sturm-Liouville problem (II Speer: Lug-Sheg Chie Reerece: [] Veerle Ledou, Study o Specil Algorithms or solvig Sturm-Liouville d Schrodiger Equtios. [] 王信華教授, chpter 8, lecture ote o Ordiry Dieretil

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Homework 2 solutions

Homework 2 solutions Sectio 2.1: Ex 1,3,6,11; AP 1 Sectio 2.2: Ex 3,4,9,12,14 Homework 2 solutios 1. Determie i ech uctio hs uique ixed poit o the speciied itervl. gx = 1 x 2 /4 o [0,1]. g x = -x/2, so g is cotiuous d decresig

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals: and

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals: and 128 Sect 10.3 - Simplifyig Rdicl Expressios Cocept #1 Multiplictio d Divisio Properties of Rdicls We c use our properties of expoets to estlish two properties of rdicls: () 1/ 1/ 1/ & ( Multiplictio d

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Laws of Integral Indices

Laws of Integral Indices A Lws of Itegrl Idices A. Positive Itegrl Idices I, is clled the se, is clled the idex lso clled the expoet. mes times.... Exmple Simplify 5 6 c Solutio 8 5 6 c 6 Exmple Simplify Solutio The results i

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Here and further the following reduction of record is applied.

Here and further the following reduction of record is applied. MODL OF SRSSD-SRAIND SA OF MULILAYR MASSS WIH RGARD FOR NON-IDAL CONAC OF LAYRS V.G.Piskuov, A.V.Mrchuk We cosider lyered desig i rectgulr crtesi system o coordites. o xes o coordites x, y, there corresod

More information

Reduction of Higher Order Linear Ordinary Differential Equations into the Second Order and Integral Evaluation of Exact Solutions

Reduction of Higher Order Linear Ordinary Differential Equations into the Second Order and Integral Evaluation of Exact Solutions Mthemtic Aeter, Vol. 4, 04, o., 75-89 Reductio o Higher Order Lier Ordiry Dieretil Equtios ito the Secod Order d Itegrl Evlutio o Ect Solutios Guw Nugroho* Deprtmet o Egieerig Physics, Istitut Tekologi

More information

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r Z-Trsforms. INTRODUCTION TO Z-TRANSFORM The Z-trsform is coveiet d vluble tool for represetig, lyig d desigig discrete-time sigls d systems. It plys similr role i discrete-time systems to tht which Lplce

More information

Mathematics for Engineers Part II (ISE) Version 1.1/

Mathematics for Engineers Part II (ISE) Version 1.1/ Mthemtics or Egieers Prt II (ISE Versio /4-6- Curves i Prmetric descriptio o curves We exted the theory o derivtives d itegrls to uctios whose rge re vectors i isted o rel umers Deiitio : A curve C i is

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

The Discrete-Time Fourier Transform (DTFT)

The Discrete-Time Fourier Transform (DTFT) EEL: Discrete-Time Sigals ad Systems The Discrete-Time Fourier Trasorm (DTFT) The Discrete-Time Fourier Trasorm (DTFT). Itroductio I these otes, we itroduce the discrete-time Fourier trasorm (DTFT) ad

More information

CHAPTER 6d. NUMERICAL INTERPOLATION

CHAPTER 6d. NUMERICAL INTERPOLATION CHAPER 6d. NUMERICAL INERPOLAION A. J. Clark School o Egieerig Departmet o Civil ad Evirometal Egieerig by Dr. Ibrahim A. Assakka Sprig ENCE - Computatio Methods i Civil Egieerig II Departmet o Civil ad

More information

On The Homogeneous Quintic Equation with Five Unknowns

On The Homogeneous Quintic Equation with Five Unknowns IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-78,p-ISSN: 319-76X, Volume 7, Issue 3 (Jul. - Aug. 013), PP 7-76 www.iosrjourls.org O The Homogeeous Quitic Equtio with Five Ukows y y 3 3 ( y ) 3(( y)( z w

More information

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise Prticle i Box We must hve me where = 1,,3 Solvig for E, π h E = = where = 1,,3, m 8m d the stte fuctio is x A si for 0 x, d 0 otherwise x ˆ d KE V. m dx I this cse, the Hermiti opertor 0iside the box The

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Toeplitz and Translation Operators on the q-fock Spaces *

Toeplitz and Translation Operators on the q-fock Spaces * Advces i Pure Mthemtics 35-333 doi:436/pm659 Published Olie November (http://wwwscirporg/jourl/pm) Toeplit d Trsltio Opertors o the -Foc Spces * Abstrct Fethi Solti Higher College o Techology d Iormtics

More information

ACTIVE CONTROL OF FREE BEAM VIBRATIONS UTILIZING ACTUATOR OPTIMIZATION. Ayman El-Badawy 1

ACTIVE CONTROL OF FREE BEAM VIBRATIONS UTILIZING ACTUATOR OPTIMIZATION. Ayman El-Badawy 1 ICSV4 Cirs Austrli 9- July, 7 ACIVE CONROL OF FREE EAM VIRAIONS UILIZING ACUAOR OPIMIZAION Aym El-dwy Deprtmet o Egieerig Mechics, he Germ Uiversity o Ciro New Ciro City, Al-gmo Al-Khmes, Egypt ym.eldwy@guc.edu.eg

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R.

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R. MATHEMATICAL PRELIMINARIES Limit Cotiuity Coverget squece Series Dieretible uctios Itegrble uctios Summtio deiitio o itegrl Me vlue theorem Me vlue theorem or itegrls Tylor's theorem Computer represettio

More information

The limit comparison test

The limit comparison test Roerto s Notes o Ifiite Series Chpter : Covergece tests Sectio 4 The limit compriso test Wht you eed to kow lredy: Bsics of series d direct compriso test. Wht you c ler here: Aother compriso test tht does

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 SUTCLIFFE S NOTES: CALCULUS SWOKOWSKI S CHAPTER Ifiite Series.5 Altertig Series d Absolute Covergece Next, let us cosider series with both positive d egtive terms. The simplest d most useful is ltertig

More information