Reduction of Higher Order Linear Ordinary Differential Equations into the Second Order and Integral Evaluation of Exact Solutions

Size: px
Start display at page:

Download "Reduction of Higher Order Linear Ordinary Differential Equations into the Second Order and Integral Evaluation of Exact Solutions"

Transcription

1 Mthemtic Aeter, Vol. 4, 04, o., Reductio o Higher Order Lier Ordiry Dieretil Equtios ito the Secod Order d Itegrl Evlutio o Ect Solutios Guw Nugroho* Deprtmet o Egieerig Physics, Istitut Tekologi Sepuluh Nopember Jl Arie Rhm Hkim, Surby, Idoesi (0) Ahmd Zii Deprtmet o Egieerig Physics, Istitut Tekologi Sepuluh Nopember Jl Arie Rhm Hkim, Surby, Idoesi (0) Purwdi A. Drwito Deprtmet o Egieerig Physics, Istitut Tekologi Sepuluh Nopember Jl Arie Rhm Hkim, Surby, Idoesi (0) Abstrct Higher order lier dieretil equtios with rbitrry order d vrible coeiciets re reduced i this work. The method is bsed o the decompositio o their coeiciets d the pproch reduces the order util secod order equtio is produced. The method to id closedorm solutios to the secod order equtio is the developed. The solutio or the secod order ODE is produced by rerrgig its coeiciets. Ect itegrl evlutio is lso coducted to complete the solutios. Keywords: Higher order lier ordiry dieretil equtios, ect itegrl evlutio, reductio o order, decompositio o vrible coeiciets. MSC umber (00): 4A05, 4A5, 4A0.. Itroductio It is well-kow tht the well-posed problem or the lier dieretil equtios hs bee settled d completed by mes o uctiol lysis []. However, the cocepts will ot be very useul util the eplicit solutios re produced. They re cpble to describe the detil etures o the systems [,]. They my lso help to eted the eistece, uiqueess d regulrity properties o the solutios which re obtied rom qulittive lysis [4]. *Correspodig Author: guw@ep.its.c.id, guw@gmil.com, guwzz@yhoo.com

2 7 Guw Nugroho, Ahmd Zii d Purwdi A. Drwito Thereore, methods or solvig lier dieretil equtios with vrible coeiciets re importt rom both physicl d mthemticl poit o views [5]. Especilly or the secod order ordiry dieretil equtios, with ohomogeous physicl properties, such s i wves propgtio i o-uiorm medi d vibrtio wves with isotropic physicl properties. Sice tht speciic problem ttrcts my mthemticis d physicists, the methods to obti ect d pproimte solutios or secod order equtio re tckled systemticlly d some iterestig results re produced []. Oe cse is the method o dieretil trser mtri to hdle some physicl problems which is computtiolly milder th the previous lytic methods d the method is lso pplied to the higher order ODEs [7]. Also some pproimte methods c be eteded to hdle olier equtios [8,9]. Despite the cocetrted reserch d reports o the problem, the closed-orm solutios or the higher order d secod order ODEs with vrible coeiciets remi oe o the importt re o dieretil equtios [0]. Eve it is recetly climed tht the problem is ot solvble i geerl cse []. I this work, the method or obtiig ect solutios to the secod order equtios is coducted by rerrgig the coeiciets. The solutio o the secod order equtio will be implemeted s bsis or tcklig the higher order equtios. The coeiciets o the equtios re decomposed i order to reduce their order. The reductio is cotiued util the secod order equtio is produced d solved. The eplicit epressio the c be determied by the proposed ect itegrl evlutio i order to complete solutios. Filly, we give ilustrtios o itegrl evlutio by emples.. Solutios or Secod Order Dieretil Equtios Sice the secod order dieretil equtio c be trsormed ito the Riccti clss, we begi rom the ollowig sttemet, Theorem : Cosider the secod order lier ODE with vrible coeiciets, y y y 0 The coeiciets d c be split ito ew uctios,,,, 4, 5, d. By determiig the ew uctios,,, 4, 5, d, the closed-orm solutio is obtied s,

3 Reductio o Higher Order Lier Ordiry Dieretil Equtios 77 d y d C d e d C7 d C d e d C where d C4 C d e d C d C5 d. Proo: The bove equtio c be rewritte s, y y y 0 Suppose tht, c be rerrged s, 4 0 to produce, Ce d d (). The bove equtio (b) with, y, d. Equtio (b) c be rerrged s, (c) Set, to get, 4 0 (d) Let,, equtio (e) will become, 0 or 5 0 () with, 5 d. Repet the procedure (c d) to produce, 0 or (b)

4 78 Guw Nugroho, Ahmd Zii d Purwdi A. Drwito where the reltios, , 7 5, d re hold. Let,, the solutio or is, 4 5 (c) 4 d C Substitutig the bove equtio ito,, to get, d C d C 5 d C 5 Tke,, the solutio or 5 c be obtied s, 5 5 Recll the deiitio o 5 d, substitute 4 d equtig with (d) to orm, Let,, the bove equtio c be writte s, Suppose tht, 0 or, the solutio or d re the, d C e d C d d C4 C e d C d C 5 Note tht, 4, with d or (d) () (b) (c) 4 is epressed by (c).

5 Reductio o Higher Order Lier Ordiry Dieretil Equtios 79 Thereore, equtio (b) becomes, 7 0 or 5 0 The solutio or (4) is the, 5 d or C e d C 7 The solutio or y is deied s, (4) d (4b) C e d C d 7 7 y C e d C d d C d e d C7 where d C d e d C d C4 C d e d C d C5 (4c) d. This proves theorem.. Cses o Order Reductio Cosider o homogeous third order lier dieretil equtio with vrible coeiciets below, y y y y (5) 4 Lemm : Equtio (5) is reducible ito secod order equtio d hs closedorm ect solutios. Proo: Let, 5 b (5b) 5 The, the equtio c be rewritte i the ollowig orm, 5 Set, y b y y y 5 4 b b (5c) Thus, the ollowig reltio is obtied, b y y b y y 5 4 5

6 80 Guw Nugroho, Ahmd Zii d Purwdi A. Drwito Multiply by rbitrry uctio to geerte [8], b y y b y y (5d) Suppose tht the ollowig epressio is stisied, the, b Ce b d Let C, equtio (5d) is rewritte s, d b b y y b e y Suppose tht, d b e y u, d y ue d b Thereore equtio (5d) c be epded s, 4 d d d d d b b b b b b 5 ue u e u e ue u e 5 b b b b u (5e) (5) Dieretite the bove equtio oce gi d set the ollowig reltio, d d b b b 5 e e 5 b b 0 Now ssume tht b is give, the 5 b c be determied rom () s, () (b) b 5 Substitutig ito (5c) to give the epressio o b s uctio o 5. Perormig the resultig epressio ito (5b) to geerte 5. Thereore equtio (5) is reduced ito, u u u Let, u v, thus the bove equtio be trsormed to the secod order ODE, v v v (c) 7 8 9

7 Reductio o Higher Order Lier Ordiry Dieretil Equtios 8 The, by the pplictio o theorem, equtio (c) is solvble i closed-orm. The o homogeous prt is covered by tkig homogeous solutio o (c) s prticulr solutio i the ollowig orm, u (d) where is prticulr solutio rom equtio (c). The solutio or is stted s, 7d 7d e e 9d d (e) The combitio o (e) with () d (d) will produce the il solutio. This proves lemm. Lemm : The ourth order lier dieretil equtio, y y y y y 4 5 is reducible to third d secod order equtios d hs closed-orm solutios. Proo: Suppose tht, 5 b, b b 5 7 d b b (7) Thereore the equtio become, b b y y y b y y Multiplyig by rbitrry uctio to give, b b y y y b y y (7b) Let, 4 the, b Ce b 4 d Equtio (7c) is trsormed s, 4 d b b b y y y b e y Let us ssume tht, 4 d b e y u, d y ue 4 d b 7 (7c) (7d)

8 8 Guw Nugroho, Ahmd Zii d Purwdi A. Drwito Epdig equtio (7b) s, d d d d b 4 b 4 b 4 b 5 ue u e u e u e 5 b b b b d d d b 4 b 4 b 4 4 ue u e u e b d d b 4 b 7 ue u e b b 7 b b u 5 Perormig the ollowig reltio, d d d b b 4 b b 4 b 5 e e 7 e 5 b b 7 b 0 Suppose tht b d 7 re give, the 5 0 b 5 c be determied orm (8) s, (8) (8b) b 5 Substitutig (8b) ito the secod reltio o (7) to give b s uctio o. The et step is implemetig ito the irst reltio o (7) to produce 5. Thereore, the ourth order equtio is reduced ito, 5 u u u u Let, u v, thus the bove equtio c be trsormed to the third order equtio, v v v v (8c) The, by the pplictio o theorem d lemm, equtio (8c) will hve closed-orm solutios. This proves lemm. It is iterestig to ote tht, by iductio, the procedure c be pplied to y order higher th two d the cosidered equtios re trsormed ito the secod order equtios. Theorem : Higher order lier dieretil equtio is reducible ito the secod order equtio d hs closed-orm solutios.

9 Reductio o Higher Order Lier Ordiry Dieretil Equtios 8 4. Remrks o Itegrl Evlutio It is importt to ote tht the itegrls which pper i the ect solutios re usully pproimted i series orm []. The solutios cosequetly re o loger ect. I order to resolve the problem, ow the ollowig itegrl is cosidered, d B e d (9) By settig, d gd (9b) B e d R Q e Equtio (9b) c be dieretited oce to give, e R Q e R Q e R Q ge d gd gd gd Rerrgig the bove equtio s, R g R e Q g Q The solutio o R is the epressed by, gd R e e e Q g Q d C Let, (9c) gd gd gd (9d) gd e Q g Q 4 The, R is evluted i the ollowig, gd gd gd R e 4 d e 4 d ge d C Suppose tht rom equtio (9e), e gd C where C is lso costt. e C (9e) (9) The epressio or d e gd gd e Thus, equtio (9) will become, is writte s, (0)

10 84 Guw Nugroho, Ahmd Zii d Purwdi A. Drwito gd d d R e 4 d e 4 d e d C C (0b) d Without loss o geerlity, set 4d l e, d the epressio o 4 is obtied s, d 4 l e (0c) The solutio or Q is cosequetly obtied rom (9e) s i the ollowig reltio, gd Q e C 4 e gd d Substitutig (0) to get, 4 (0d) gd d Q e C e d C Equtios (9b), (0b) d (0d) will give the evlutio s, d gd d d 4 C C e d R Q e e C e d C (0e) where 4 is determied by (0c). Equtio (0e) c be dieretited oce d rerrged to be, d d e d e d 4 () Now suppose tht e d L rbitrry costt. The reltio o is the give by, e d Let, equtio (b) will the produce, d e Let d e d d 4 l e L, with is, the bove equtio will the become, (b) (c)

11 Reductio o Higher Order Lier Ordiry Dieretil Equtios 85 d d d e e e Equtio (d) c be rerrged s, d e d e The solutio or is d (d) e d (e) The solutio or is d e The step is ow peromig the itegrtio o () to give, () d d d e d L e l e () Rerrgig () d substitutig (), d e d d e d d e e d The polyomil equtio or e d is the, (b)

12 8 Guw Nugroho, Ahmd Zii d Purwdi A. Drwito d d d e d e e d d d e e d e e or K K K K K K with K. Without loss o geerlity let to get, d e 4 K K K K K K K K K 0 By usig the cubic ormul, (c) (d) 4 K K K K K M, (e) K K K 9 K K K 4 K K K K K K N K K K K K K K K K K 7 K K K 4 ()

13 Reductio o Higher Order Lier Ordiry Dieretil Equtios 87 With the reltios s N M N (d) is writte s, d s N M N K K K K K K K 4, the root o d e d s s (g) This will solve the itegrl i (9). Thereore, the ollowig theorem is just proved, Theorem : Cosider the ollowig itegrl equtio, d B e d There eists uctiol d which re deied by, d e d d such tht the itegrl B c be evluted s, d e K K K K d e d N M N N M N K K K 4 where K Emples; d e, M d N re deied by (e) d (). Now, the emples o the proposed itegrl evlutio tke rom the itegrl tble re give []. Cosider the itegrl, y e d e where ccordig to theorem the uctios d re d respectively. The compriso re show s i the ollowig,

14 88 Guw Nugroho, Ahmd Zii d Purwdi A. Drwito Figure. The comprio o the kow itegrl ormul gits the proposed itegrl evlutio Figure shows tht the computtios o the proposed itegrl evlutio or the spesiic itegrl equtio re very close to the kow result, eve coicide or certi costt coeiciet. 5. Coclusios The method o reductio o the higher order lier ordiry dieretil equtios is proposed i this rticle. The mi strtegy is to decompose the coeiciets d the process thus cotiued util secod order equtio is obtied d solved. The procedure or solvig secod order equtio d ect itegrl evlutio re lso coducted d developed to complete the solutios. The pper hve ilustrted the ew ide o coeiciet decomposititio to solve the geerl ODEs with vrible coeiciets. It is show tht the method c obti the solutios o rbitrry coeiciets d rbitrry order higher th oe i closedorm. Moreover, the ew ormultio o itegrl evlutio will mke the results re trctble or computer simultios. We pl to coduct the pplictios i our uture works. Reereces [] W. Zhuoqu, Y. Jigue d W. Chupeg, Elliptic d Prbolic Equtios, World Scietiic Publishig Co. Pte. Ltd., (Sigpore, 00). [] E.A. Coddigto, A Itroductio to Ordiry Dieretil Equtios, Dover Publictios Ic., (New York, 989).

15 Reductio o Higher Order Lier Ordiry Dieretil Equtios 89 [] H.I. Abdel-Gwd, O the Behvior o Solutios o Clss o Nolier Prtil Dieretil Equtios, Jourl o Sttisticl Physics, Vol. 97, Nos. ½, (999). [4] J.G. Heywood, W. Ngt d W. Xie, A Numericlly Bsed Eistece Theorem or the Nvier-Stokes Equtios, Jourl o Mthemticl Fluid Mechics, (999), 5. [5] V.A. Glktoov d A.R. Svirshchevskii, Ect Solutios d Ivrit Subspces o Nolier Prtil Dieretil Equtios i Mechics d Physics, Tylor & Frcis Group, (Boc Rto, 007). [] L. Bougo, O the Ect Solutios or Iitil Vlue Problems o Secod Order Dieretil Equtios, Applied Mthemtics Letters, (009), [7] S. Khorsi d A. Adibi, Alyticl Solutio o Lier Ordiry Dieretil Equtios by Dieretil Trser Mtri Method, Electroic Jourl o Dieretil Equtios, No., (00), 8. [8] G. Adomi, Solvig Frotier Problem o Physics: The Decompositio Method, Kluwer Acdemic Publishers, Dordrecht, (The Netherlds, 994). [9] Z. Zho, Ect Solutios o Clss o Secod Order Nolocl Boudry Vlue Problems d Applictios, Applied Mthemtics d Computtio 5, (009), 9 9. [0] L. Shi-D, F. Zu-To, I. Shi-Kuo, X. Guo-Ju, L. Fu-Mig d F. Bei-Ye, Solitry Wve i Lier ODE with Vrible Coeiciets, Commu. Theor. Phys. 9, (00), 4 4. [] S.V. Meleshko, S. Moyo, C. Muriel, J.L. Romero, P. Guh d A.G. Choudury, O First Itegrls o Secod Order Ordiry Dieretil Equtios, J. Eg. Mth., DOI 0.007/s , (0). [] R. Wog, Asymptotic Approimtios o Itegrls, Society or Idustril d Applied Mthemtics, (00). [] G. Petit Bois, Tbles o Ideiite Itegrls, Dover Publictio Ic., (New York, 9).

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Chapter 25 Sturm-Liouville problem (II)

Chapter 25 Sturm-Liouville problem (II) Chpter 5 Sturm-Liouville problem (II Speer: Lug-Sheg Chie Reerece: [] Veerle Ledou, Study o Specil Algorithms or solvig Sturm-Liouville d Schrodiger Equtios. [] 王信華教授, chpter 8, lecture ote o Ordiry Dieretil

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Toeplitz and Translation Operators on the q-fock Spaces *

Toeplitz and Translation Operators on the q-fock Spaces * Advces i Pure Mthemtics 35-333 doi:436/pm659 Published Olie November (http://wwwscirporg/jourl/pm) Toeplit d Trsltio Opertors o the -Foc Spces * Abstrct Fethi Solti Higher College o Techology d Iormtics

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method.

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method. SOLUTION OF SYSTEM OF LINEAR EQUATIONS Lecture 4: () Jcobi's method. method (geerl). (b) Guss Seidel method. Jcobi s Method: Crl Gustv Jcob Jcobi (804-85) gve idirect method for fidig the solutio of system

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Notes on Dirichlet L-functions

Notes on Dirichlet L-functions Notes o Dirichlet L-fuctios Joth Siegel Mrch 29, 24 Cotets Beroulli Numbers d Beroulli Polyomils 2 L-fuctios 5 2. Chrcters............................... 5 2.2 Diriclet Series.............................

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations Itertiol Jourl of Mthemtics d Sttistics Ivetio (IJMSI) E-ISSN: 31 767 P-ISSN: 31-759 Volume Issue 8 August. 01 PP-01-06 Some New Itertive Methods Bsed o Composite Trpezoidl Rule for Solvig Nolier Equtios

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Orthogonal functions - Function Approximation

Orthogonal functions - Function Approximation Orthogol uctios - Fuctio Approimtio - he Problem - Fourier Series - Chebyshev Polyomils he Problem we re tryig to pproimte uctio by other uctio g which cosists o sum over orthogol uctios Φ weighted by

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

INTEGRAL SOLUTIONS OF THE TERNARY CUBIC EQUATION

INTEGRAL SOLUTIONS OF THE TERNARY CUBIC EQUATION Itertiol Reserch Jourl of Egieerig d Techology IRJET) e-issn: 9-006 Volume: 04 Issue: Mr -017 www.irjet.et p-issn: 9-007 INTEGRL SOLUTIONS OF THE TERNRY CUBIC EQUTION y ) 4y y ) 97z G.Jki 1, C.Sry,* ssistt

More information

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1 Numericl Methods (CENG 00) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. Itroductio I this chpter, we will del with the cse of determiig the vlues of,,..., tht simulteously stisfy the set of equtios: f f...

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.0 Clculus Jso Strr Due by :00pm shrp Fll 005 Fridy, Dec., 005 Solutios to Problem Set 7 Lte homework policy. Lte work will be ccepted oly with medicl ote or for other Istitute pproved reso. Coopertio

More information

A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY

A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY Krgujevc Jourl o Mthemtics Volume 4() (7), Pges 33 38. A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY MOHAMMAD W. ALOMARI Abstrct. I literture the Hermite-Hdmrd iequlity ws eligible or my resos, oe

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R.

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R. MATHEMATICAL PRELIMINARIES Limit Cotiuity Coverget squece Series Dieretible uctios Itegrble uctios Summtio deiitio o itegrl Me vlue theorem Me vlue theorem or itegrls Tylor's theorem Computer represettio

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

9.5. Alternating series. Absolute convergence and conditional convergence

9.5. Alternating series. Absolute convergence and conditional convergence Chpter 9: Ifiite Series I this Chpter we will be studyig ifiite series, which is just other me for ifiite sums. You hve studied some of these i the pst whe you looked t ifiite geometric sums of the form:

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH Vol..Issue.1.14 BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH A eer Reviewed Itertiol Reserch Jourl http://www.bomsr.com RESEARCH ARTICLE INTEGRAL SOLUTIONS OF TERNARY QUADRATIC DIOHANTINE EQUATIONS

More information

A 4-Step Implicit Collocation Method for Solution of First and Second Order Odes

A 4-Step Implicit Collocation Method for Solution of First and Second Order Odes Itertiol Jourl o Sciece d Tecolog Volume No. November A -Step Implicit Colloctio Metod or Solutio o First d Secod Order Odes Z A. Adegboe I. Aliu Deprtmet o Mts/Stts/Computer Sciece Kdu Poltecic Kdu.Nigeri.

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Relation of BSTs to Quicksort, Analysis of Random BST. Lecture 9

Relation of BSTs to Quicksort, Analysis of Random BST. Lecture 9 Reltio o BSTs to Quicsort, Alysis o Rdom BST Lecture 9 Biry-serch-tree sort T Crete empty BST or i = to do TREE-INSERT(T, A[i]) Perorm iorder tree wl o T. Emple: 3 A = [3 8 2 6 7 5] 8 Tree-wl time = O(),

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD IJRRAS August THE SOLUTIO OF THE FRACTIOAL DIFFERETIAL EQUATIO WITH THE GEERALIZED TAYLOR COLLOCATI METHOD Slih Ylçıbş Ali Kourlp D. Dömez Demir 3* H. Hilmi Soru 4 34 Cell Byr Uiversity Fculty of Art &

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

denominator, think trig! Memorize the following two formulas; you will use them often!

denominator, think trig! Memorize the following two formulas; you will use them often! 7. Bsic Itegrtio Rules Some itegrls re esier to evlute th others. The three problems give i Emple, for istce, hve very similr itegrds. I fct, they oly differ by the power of i the umertor. Eve smll chges

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

lecture 24: Gaussian quadrature rules: fundamentals

lecture 24: Gaussian quadrature rules: fundamentals 133 lecture 24: Gussi qudrture rules: fudmetls 3.4 Gussi qudrture It is cler tht the trpezoid rule, b 2 f ()+ f (b), exctly itegrtes lier polyomils, but ot ll qudrtics. I fct, oe c show tht o qudrture

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EHU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes Ad

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1)

f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1) MATEMATIQKI VESNIK 68, 206, 45 57 Mrch 206 origili uqi rd reserch pper INTEGRAL INEQUALITIES OF JENSEN TYPE FOR λ-convex FUNCTIONS S. S. Drgomir Abstrct. Some itegrl iequlities o Jese type or λ-covex uctios

More information

International Journal of Advancements in Research & Technology, Volume 4, Issue 2, February ISSN

International Journal of Advancements in Research & Technology, Volume 4, Issue 2, February ISSN Itertiol Jourl of Advcemets i Reserch & Techology, Volume 4, Issue, Februry -0 4 ISSN 78-776 Stedy flows i pipes of equilterl trigulr cross sectio through porous medium with mgetic field Dr. Ad Swrup Shrm

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

UNISA NUMERICAL METHODS (COS 233-8) Solutions to October 2000 Final Exams

UNISA NUMERICAL METHODS (COS 233-8) Solutions to October 2000 Final Exams UNISA NUMERICAL METHODS COS -8 Solutios to October Fil Ems Questio Re: Tble 4. pge 47 o Gerld/Wetley [ d editio] Write dow te itertio scemes or i ii iii te bisectio metod; te metod o lse positio regul

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS Abstrct Mirce I Cîru We preset elemetry proofs to some formuls ive without proofs by K A West d J McClell i 99 B

More information

Quadrature Methods for Numerical Integration

Quadrature Methods for Numerical Integration Qudrture Methods for Numericl Itegrtio Toy Sd Istitute for Cle d Secure Eergy Uiversity of Uth April 11, 2011 1 The Need for Numericl Itegrtio Nuemricl itegrtio ims t pproximtig defiite itegrls usig umericl

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2. Clculus II d Alytic Geometry Sectio 8.: Sequeces. Limit Rules Give coverget sequeces f g; fb g with lim = A; lim b = B. Sum Rule: lim( + b ) = A + B, Dierece Rule: lim( b ) = A B, roduct Rule: lim b =

More information

REVISION SHEET FP1 (AQA) ALGEBRA. E.g., if 2x

REVISION SHEET FP1 (AQA) ALGEBRA. E.g., if 2x The mi ides re: The reltioships betwee roots d coefficiets i polyomil (qudrtic) equtios Fidig polyomil equtios with roots relted to tht of give oe the Further Mthemtics etwork wwwfmetworkorguk V 7 REVISION

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too.

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too. 12. No-stdrd lysis October 2, 2011 I this sectio we give brief itroductio to o-stdrd lysis. This is firly well-developed field of mthemtics bsed o model theory. It dels ot just with the rels, fuctios o

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information