Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires

Size: px
Start display at page:

Download "Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires"

Transcription

1 Supplementary Information Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires Xuepeng Qiu 1, Praveen Deorani 1, Kulothungasagaran Narayanapillai 1, Ki-Seung ee,3, Kyung- Jin ee,3,4, yun-woo ee 5 & yunsoo Yang 1 1 Department of Electrical and Computer Engineering, National University of Singapore, , Singapore Department of Materials Science and Engineering, Korea University, Seoul , Korea 3 Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul , Korea 4 KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul , Korea 5 PCTP and Department of Physics, Pohang University of Science and Technology, Kyungbuk , Korea S1. Second harmonic component V ƒ of the all voltage V With an ac current with a frequency ƒ applied through the nanowire, the magnetization oscillation can be decomposed and characterized by and. Considering both anomalous and planar all effects (AE and PE, respectively), the all voltage V can be written as 1

2 V V V I sintr sin( sin t) AE PE ac AE I tr t t ac sin PE cos sin sin sin where f...., one can get By using Taylor expansion, f x δ f x fx fx sin( sin t) sin cossin t.... Therefore, V AE can be written as V I sintr sin( sin t) I sin tr (sin cossin t) AE ac AE ac AE IacRAE sinsint IacRAE cos sin t IacRAE cos IRAE cos IacRAE sin sint cos t The second harmonic term of V AE is. V f, AE IacRAE cos (S1.1) get When magnetic field is applied in x-z plane ( ), by using Taylor expansion, one can sin t cos sintcos sinsintcos.... sin sint sin sint sin sint cos sint sint Therefore, V PE can be written as V I tr t t PE ac sin PE cos sin sin(sin ) sin t Iac sintrpe cos sinsint cos... sint. I R cos sin t I R I R t ac PE ac PE cos ac PE cos cos In this geometry with, the second harmonic term of V PE is

3 V f, PE IacRPE cos (S1.) When magnetic field is applied in y-z plane ( 9), by using Taylor expansion, one can get sin t cos sintcos sinsintcos... sin sin sin 9 sin cos 9 sin t t t sin sintcos sint sint Therefore, V PE can be written as V I tr t t PE ac sin PE cos sin sin((9sin )) sin t Iac sintrpe cos sinsint cos... sint. I R cos sin t I R I R t ac PE ac PE cos ac PE cos cos In this geometry with 9, the second harmonic term of V PE is V f, PE IacRPE cos (S1.3) Combining equations of S1.1 ~ S1.3, with inclusion of contributions from anomalous and planar all effects, the second harmonic term V of V f can be expressed as V I R cos I R x-z and ac AE f,// ac PE cos ( in plane, ) I R cos V I R y-z ac AE f, ac PE cos ( in plane, 9 ) (S1.4) S. Relation between the magnetization direction and current induced spin-orbit effective fields With the ac current induced effective fields, equations of magnetization direction and current induced effective fields are derived by solving the force balance equation along the xˆ mˆ and yˆ mˆ directions. 3

4 First, with the coordinate system as defined in Fig. 1(b), the magnetization direction can be expressed as mˆ (cos cos,cossin,sin ), xˆ mˆ, and yˆ mˆ, where i j k ˆ ˆ xm 1, sin,cossin coscos cossin sin i j k ˆ ˆ ym 1 sin,, coscos. coscos cossin sin Then, the anisotropy field and current induced effective fields can be expressed as ˆ (,,sin ) an an ˆ yˆ mˆ sin,, coscos y ˆ m ˆ sin cos cos ˆ,1, T T (1) When magnetic field is applied in the x-z plane In this geometry, ˆ (cos,,sin ). The force balance equations along xˆ mˆ and yˆ mˆ are ˆ ˆ ˆ ˆ ˆ ˆ T an xm sin cossin cos sincos sin cos cos T sin sincossin an (S.1) 4

5 ˆ ˆ ˆ ˆ ˆ ˆ T an ym cos sin cos cos sin sin cos cos an cossincos (S.) () When magnetic field is applied in the y-z plane In this geometry, ˆ (,cos,sin ). The force balance equations along xˆ mˆ and yˆ mˆ are ˆ ˆ ˆ ˆ ˆ ˆ T an xm cos sin cossinsin cos sincos sin cos cos T sin sincossin an (S.3) ˆ ˆ ˆ ˆ ˆ ˆ T an ym cos cos sin sin cos cos ancos sin cos. (S.4) From experimental harmonic all voltage measurements, V f,//, V f,, I ac, θ, θ, R AE, and R PE are known. By solving the equations S1.4 and S.1 ~ S.4,, T,, Δθ, and can be obtained. The detailed procedures are listed in the following section S3. S3. Measurements of R AE & R PE and procedures to evaluate & T The value of R PE is obtained by measuring the in-plane angular dependence of all voltage. With a magnetic field of 6 T applied in the film plane to fully saturate the magnetization along the field direction, the all voltage was recorded as a function of θ I-M (the angle between the current and the magnetization) and its angular variation purely arises from the planar all effect. The representative R vs. θ I-M is shown in Fig. S1(a). We measured R PE at different 5

6 temperatures for the temperature dependence of current induced effective fields as shown in Fig. S1(b). By measuring out-of-plane anomalous all voltage loops, R AE is obtained at different temperatures. The temperature dependence of R AE is shown in Fig. S1(c). The ratio between R PE and R AE shows non-monotonic relationship with temperature. a.5 b.7 R (). -.5 R PE R PE () I-M (deg) Temperature (K) c 1 d 6.1 R AE () Temperature (K) R PE /R AE (%) Temperature (K) Fig. S1. (a) Example of R vs. θ I-M for extracting R PE. Temperature dependence of R PE (b), R AE (c), and R AE /R AE (d). With R PE and R AE obtained above and the equations developed in sections S1 ~ S, we are able to evaluate and T. Two approaches are performed. The first one is by assuming constant effective field values as shown in Fig. (e, f). The second one is calculating the 6

7 effective field values at each magnetic field. The detailed procedures of these two approaches are as follows. (1) Fitting the V and f,// V f, curves by assuming constant values of and T (a) Obtain θ at each applied magnetic field by using the first harmonic all voltage data. (The first harmonic all voltage loop does not depend on the measurement scheme, either longitudinal or transverse scheme, as concluded from the comparison at different temperatures) (b) With an external magnetic field applied at and the fitting parameters of, T, and an, we can obtain //, I, //, I,, I,, I, //, I, //, I,, I,and, I by solving equations (S.1 ~ S.4) (maximal positive and negative ac current need to be considered for each equation). The subscript of other parameters indicates the measurement scheme and the current direction, for example, //, I is the value in the longitudinal scheme with maximal positive ac current applied. (c) Obtain R PE and R AE as describe earlier. (d) Calculate V and f,// V f, by using equation (S1.4): IacRAE cos ( //, I //, I ) ( //, I //, I ) V f,//( ) IacRPE cos 4 and IacRAE cos (, I, I ) (, I, I ) V f, ( ) IacRPE cos 4 Thus we can obtain the fitting curves of V and f,// V f,. (e) The fitting parameters of, T, and an are chosen for the best fitting to the amplitude and position of the peak in the experimental V and f,// V f, curves. 7

8 () Calculation of angular dependent and T (a) Convert the field dependence of V f,// and V f, curves into a dependence using the first harmonic experimental data. (b) At each θ, one has the values of, V, f,// V f,, an,, I ac, R AE, and R PE. an is, obtained from the above assuming constant effective field values fitting. (c) By solving equations of (S.1 ~ S.4) (maximal positive and negative ac current need to be considered for each equation) and (S1.4), one can obtain //, I, //, I,, I,, I, //, I, //, I,, I,, I as well as and T. Thus angular ( ) dependences of and T are obtained. S4. inear correlation between current induced effective fields and I ac armonic loops are measured at 3 K to evaluate the current induced effective fields with different I ac. and T are obtained by using the method as in Fig. (e, f). As shown in Fig. S, both and T show a linear relationship with I ac. The current (8.3 μa) used for the measurements in the main text is within the linear region where Joule heating is not playing a role. a b (Oe) I ac (A) T (Oe) I ac (A) Fig. S. Current induced effective fields vs. I ac. (a) and T (b) vs. I ac at 3 K at θ = 1 from another device. 8

9 S5. Comparison of current induced effective fields in Ta/CoFeB/MgO and Pt/CoFeB/MgO Current induced effective fields are compared between Ta/CoFeB/MgO and Pt/CoFeB/MgO nanowires (both of 6 nm width) by measuring current induced switching and harmonic anomalous all loops. Figure S3(a, b) show the current induced switching in Ta and Pt nanowires at 3 K, respectively. With a 4 Oe external magnetic field applied along the current direction, R can be changed between a high and a low resistance state by an in-plane current, indicating the magnetization switching of the CoFeB layer between the M z > and M z <. For the Pt nanowire, the switching occurs at ~ 1.3 ma, corresponding to a current density of A/cm assuming the current is flowing uniformly throughout the Pt/CoFeB layer. For the Ta nanowire, the switching current is ~.11 ma which corresponds to a current density of A/cm. In addition to the different switching current density for a Pt and Ta nanowire, the switching sequences are in the opposite sense for the Pt and Ta case indicated by the arrows in Fig. S3(a) and S3(b). The above observation suggests that the current induced effective fields responsible for the switching are opposite in Pt/CoFeB/MgO and Ta/CoFeB/MgO, as consistent with the opposite sign of the spin all angles in Pt and Ta. To further confirm the opposite directions of effective field of and T in Ta and Pt nanowires, we have performed the second harmonic anomalous all loop measurements in two geometries, as illustrated in Fig. (a) and (b) with = 1. The V ƒ loops measured in the longitudinal geometry with currents collinear with fields for Pt and Ta nanowires are shown in Fig. S3(c) and S3(d), respectively. With field sweeps along the current flow direction, V ƒ shows a positive (negative) peak at a positive (negative) magnetic field for a Pt nanowire, while it shows a negative (positive) peak at a positive (negative) magnetic field for a Ta nanowire, which 9

10 indicates the sign of in the Pt case is opposite to that of a Ta nanowire. For the transverse component measurements, the magnetic field is applied perpendicular to the current flow, as shown in Fig. (b). In this case V ƒ shows a positive peak at both polarities of magnetic fields from a Pt nanowire, while it shows negative peaks for a Ta nanowire, as shown in Fig. S3(e) and (f), indicating that the direction of T is opposite in the Pt and Ta case. a 1 6 Ta b 4 Pt R () c V f, // (V) Ta I I (ma) R () d V f, // (V) Pt I I (ma) e V f, (V) (Oe) 3 Ta I (Oe) V f, (V) f (Oe). Pt I (Oe) Fig. S3. Comparison of current induced switching and V f AE loops in Ta and Pt nanowires. R vs. I for Ta (a) and Pt (b) nanowires. V ƒ AE loops with I ac = 8.3 μa for Ta (c, e) and with I ac = 7.7 μa for Pt (d, f) nanowires. 1

11 S6. Transport property Ta/CoFeB/MgO The transport property of the device was studied by measuring the channel resistance (R channel ) and all resistance (R ) with a 1 T magnetic field to saturate the magnetization out-offilm plane at different temperatures. Figure S4 shows R channel and R versus temperature. Both R and R channel show nonlinear behaviors with temperature. It should be noted that R channel mostly represents the property of the nm Ta layer, since another metal layer CoFeB is only.8 nm thick R channel () Temperature (K) R () Fig. S4. Temperature dependence of R channel and R. S7. Influence of PE on evaluation of current induced effective fields The influence of PE on current induced effective fields at 3 K has been evaluated. In both approaches, either assuming the magnetization direction independent effective fields (Fig. S5(a)) or solving the effective fields at each magnetization direction (Fig. S5(b, c)), and T are underestimated without consideration of PE. 11

12 a With PE correction Without PE correction T 7.4 Oe ( 44 Oe per 1 8 A/cm ) 3.7 Oe ( 194 Oeper 1 8 A/cm ) 6.4 Oe ( 381 Oe per 1 8 A/cm ) 3.1 Oe ( 197 Oeper 1 8 A/cm ) b c (deg) -5-1 With PE correction Without PE correction (deg) T (deg) - -4 With PE correction Without PE correction (deg) Fig. S5. Influence of PE on evaluation of current induced effective fields at 3 K. (a) and T by assuming independent effective fields on the magnetization direction, without and with consideration of PE. (b) Angular dependence of and T without and with consideration of PE. S8. Anomalous Nernst effect Anomalous Nernst effect (ANE) also has contribution to the second harmonic voltage: R sin V V V ANE f f ANE ANE RAE We have measured the ANE contribution at different temperatures with field sweeping along the out-of-plane direction as shown in Fig. S6(a-d). The difference in V f at positive and negative saturated magnetic field is originated from the ANE, as current induced effective fields and Oersted field induced V f are symmetric to the out-of-plane field and thus their 1

13 contributions are excluded. By comparing V ANE, V f,//, and V f,, one can see that ANE contribution is very small. a. V ANE = -.8 V b 1..5 V f (V) V f (V) V K K c (Oe) d (Oe). -.1 V V V f (V) -.5 V f (V) -.5 e 1 K (Oe) V ANE / (μv) 1 K Minimal V ƒ, ǁ (μv) (Oe) Minimal V ƒ, (μv) 3 K K K K Fig. S6. ANE at different temperatures. (a, b, c, d) V f loops at out-of-plane direction at different temperatures. A 8.3 μa ac current is used for the measurements. (e) Comparison of V ANE, V f,//, and V f, at different temperatures. 13

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced Supplementary Information Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced Co-Ni multilayers Jiawei Yu, Xuepeng Qiu, Yang Wu, Jungbum Yoon, Praveen Deorani, Jean Mourad Besbas,

More information

voltage measurement for spin-orbit torques"

voltage measurement for spin-orbit torques SUPPLEMENTARY for article "Accurate analysis for harmonic Hall voltage measurement for spin-orbit torques" Seok Jin Yun, 1 Eun-Sang Park, 2 Kyung-Jin Lee, 1,2 and Sang Ho Lim 1,* 1 Department of Materials

More information

Analytical expression for the harmonic Hall voltages in evaluating spin orbit torques

Analytical expression for the harmonic Hall voltages in evaluating spin orbit torques Analytical expression for the harmonic all voltages in evaluating spin orbit torques Masamitsu ayashi National Institute for Materials Science, Tsukuba 35-47, Japan Solid understanding of current induced

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS147 Supplementary Materials for Bias voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions Se-Chung Oh 1,

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure Yabin Fan, 1,,* Pramey Upadhyaya, 1, Xufeng Kou, 1, Murong Lang, 1 So Takei, 2 Zhenxing

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS98 Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer Takayuki Nozaki 1,*, 3, Yoichi Shiota 1, Shinji Miwa 1,

More information

Supplementary Notes of spin-wave propagation in cubic anisotropy materials

Supplementary Notes of spin-wave propagation in cubic anisotropy materials Supplementary Notes of spin-wave propagation in cubic anisotropy materials Koji Sekiguchi, 1, 2, Seo-Won Lee, 3, Hiroaki Sukegawa, 4 Nana Sato, 1 Se-Hyeok Oh, 5 R. D. McMichael, 6 and Kyung-Jin Lee3, 5,

More information

Quantitative characterization of the spin orbit torque using harmonic Hall voltage measurements

Quantitative characterization of the spin orbit torque using harmonic Hall voltage measurements Quantitative characterization of the spin orbit torque using harmonic all voltage measurements Masamitsu ayashi and Junyeon Kim National Institute for Materials Science, Tsukuba 35-47, Japan Michihiko

More information

Current-induced switching in a magnetic insulator

Current-induced switching in a magnetic insulator In the format provided by the authors and unedited. DOI: 10.1038/NMAT4812 Current-induced switching in a magnetic insulator Can Onur Avci, Andy Quindeau, Chi-Feng Pai 1, Maxwell Mann, Lucas Caretta, Astera

More information

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Hyunsoo Yang Electrical and Computer Engineering, National University of Singapore eleyang@nus.edu.sg Outline Spin-orbit torque (SOT) engineering

More information

Supplementary Information

Supplementary Information Supplementary Information Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers Kyeong-Dong Lee 1, Dong-Jun Kim 1, Hae Yeon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2013.145 Symmetry magnitude of spin-orbit torques in ferromagnetic heterostructures Kevin Garello, Ioan Mihai Miron, Can Onur Avci, Frank Freimuth, Yuriy Mokrousov,

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Spin Hall effect clocking of nanomagnetic logic without a magnetic field

Spin Hall effect clocking of nanomagnetic logic without a magnetic field SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2013.241 Spin Hall effect clocking of nanomagnetic logic without a magnetic field (Debanjan Bhowmik *, Long You *, Sayeef Salahuddin) Supplementary Section

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spin-orbit torque magnetization switching controlled by geometry C.K.Safeer, Emilie Jué, Alexandre Lopez, Liliana Buda-Prejbeanu, Stéphane Auffret, Stefania Pizzini, Olivier Boulle, Ioan Mihai Miron, Gilles

More information

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices Meiyin Yang 1, Kaiming Cai 1, Hailang Ju 2, Kevin William Edmonds 3, Guang Yang 4, Shuai Liu 2, Baohe Li 2, Bao Zhang 1, Yu Sheng 1, ShouguoWang 4, Yang

More information

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field 1 Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha

More information

Heat-driven spin transport in a ferromagnetic metal. and Jing Shi Department of Physics & Astronomy, University of California, Riverside, CA

Heat-driven spin transport in a ferromagnetic metal. and Jing Shi Department of Physics & Astronomy, University of California, Riverside, CA Heat-driven spin transport in a ferromagnetic metal Yadong Xu 1, Bowen Yang 1, Chi Tang 1, Zilong Jiang 1, Michael Schneider 2, Renu Whig 2, and Jing Shi 1 1. Department of Physics & Astronomy, University

More information

Chapter 6. Magnetostatic Fields in Matter

Chapter 6. Magnetostatic Fields in Matter Chapter 6. Magnetostatic Fields in Matter 6.1. Magnetization Any macroscopic object consists of many atoms or molecules, each having electric charges in motion. With each electron in an atom or molecule

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state acquired at a given out-ofplane magnetic field. Bright and

More information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Enhanced spin orbit torques by oxygen incorporation in tungsten films Enhanced spin orbit torques by oxygen incorporation in tungsten films Timothy Phung IBM Almaden Research Center, San Jose, California, USA 1 Motivation: Memory devices based on spin currents Spin Transfer

More information

Simple Harmonic Motion Concept Questions

Simple Harmonic Motion Concept Questions Simple Harmonic Motion Concept Questions Question 1 Which of the following functions x(t) has a second derivative which is proportional to the negative of the function d x! " x? dt 1 1. x( t ) = at. x(

More information

Spin wave assisted current induced magnetic. domain wall motion

Spin wave assisted current induced magnetic. domain wall motion Spin wave assisted current induced magnetic domain wall motion Mahdi Jamali, 1 Hyunsoo Yang, 1,a) and Kyung-Jin Lee 2 1 Department of Electrical and Computer Engineering, National University of Singapore,

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

Theory of Spin Diode Effect

Theory of Spin Diode Effect Theory of Spin Diode Effect Piotr Ogrodnik Warsaw University of Technology and Institute of Molecular Physics Polish Academy of Sciences NANOSPIN Summarizing Meeting, Kraków, 11-12th July 216 Outline:

More information

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853 Magnetic oscillations driven by the spin Hall ect in 3-terminal magnetic tunnel junction devices Luqiao Liu 1, Chi-Feng Pai 1, D. C. Ralph 1,2, R. A. Buhrman 1 1 Cornell University, Ithaca, NY 14853 2

More information

FIG. 1: (Supplementary Figure 1: Large-field Hall data) (a) AHE (blue) and longitudinal

FIG. 1: (Supplementary Figure 1: Large-field Hall data) (a) AHE (blue) and longitudinal FIG. 1: (Supplementary Figure 1: Large-field Hall data) (a) AHE (blue) and longitudinal MR (red) of device A at T =2 K and V G - V G 0 = 100 V. Bold blue line is linear fit to large field Hall data (larger

More information

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France SUPPLEMENTARY INFORMATION Vertical-current-induced Supplementary material for : Spindomain-wall transfer induced domain motion wallin MgO-based motion in MgO-based magnetic magnetic tunnel tunneljunctions

More information

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Accelerator Physics NMI and Synchrotron Radiation G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Graduate Accelerator Physics Fall 17 Oscillation Frequency nq I n i Z c E Re Z 1 mode has

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of the spin-dependent Peltier effect J. Flipse, F. L. Bakker, A. Slachter, F. K. Dejene & B. J. van Wees A. Calculation of the temperature gradient We first derive an expression for

More information

Microwave Assisted Magnetic Recording

Microwave Assisted Magnetic Recording Microwave Assisted Magnetic Recording, Xiaochun Zhu, and Yuhui Tang Data Storage Systems Center Dept. of Electrical and Computer Engineering Carnegie Mellon University IDEMA Dec. 6, 27 Outline Microwave

More information

Validity of the 2D ideal dipole approximation in shallow water

Validity of the 2D ideal dipole approximation in shallow water 3 4 5 6 7 8 9 0 Supplementary Text S Validity of the D ideal dipole approximation in shallow water In the main text we used the two-dimensional ideal dipole formula to predict the voltage difference between

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

Chapter 30. Inductance. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 30. Inductance. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 30 Inductance PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 30 Looking forward at how a time-varying

More information

D Alembert s principle of virtual work

D Alembert s principle of virtual work PH101 Lecture 9 Review of Lagrange s equations from D Alembert s Principle, Examples of Generalized Forces a way to deal with friction, and other non-conservative forces D Alembert s principle of virtual

More information

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L Discussion Question 1A P1, Week 1 Power in AC Circuits An electronic device, consisting of a simle C circuit, is designed to be connected to an American-standard ower outlet delivering an EMF of 1 V at

More information

Quantitative characterization of spin-orbit torques in Pt/Co/Pt /Co/Ta/BTO heterostructure on the magnetization azimuthal angle dependence

Quantitative characterization of spin-orbit torques in Pt/Co/Pt /Co/Ta/BTO heterostructure on the magnetization azimuthal angle dependence Quantitative characterization of spin-orbit torques in Pt/Co/Pt /Co/Ta/BTO heterostructure on the magnetization azimuthal angle dependence Christian Engel, Sarjoosing Goolaup, Feilong Luo, and Wen Siang

More information

LECTURE 18: Horn Antennas (Rectangular horn antennas. Circular apertures.) Equation Section 18

LECTURE 18: Horn Antennas (Rectangular horn antennas. Circular apertures.) Equation Section 18 LCTUR 18: Horn Antennas (Rectangular horn antennas. Circular apertures.) quation Section 18 1 Rectangular horn antennas Horn antennas are popular in the microwave band (above 1 GHz). Horns provide high

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI:.38/NMAT4855 A magnetic heterostructure of topological insulators as a candidate for axion insulator M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki,

More information

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number:

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number: Final Exam Physics 7b Section 2 Fall 2004 R Packard Name: SID: Section Number: The relative weight of each problem is stated next to the problem. Work the easier ones first. Define physical quantities

More information

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories Kyungmi Song 1 and Kyung-Jin Lee 1,2,* 1 KU-KIST Graduate School of Converging Science and Technology,

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 Fig..1 shows a device for measuring the frequency of vibrations of an engine. The rigid

More information

Spin-torque nano-oscillators trends and challenging

Spin-torque nano-oscillators trends and challenging Domain Microstructure and Dynamics in Magnetic Elements Heraklion, Crete, April 8 11, 2013 Spin-torque nano-oscillators trends and challenging N H ext S Giovanni Finocchio Department of Electronic Engineering,

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Effect of heavy metal layer thickness on spin-orbit torque and current-induced. switching in Hf CoFeB MgO structures 90095, USA USA.

Effect of heavy metal layer thickness on spin-orbit torque and current-induced. switching in Hf CoFeB MgO structures 90095, USA USA. Effect of heavy metal layer thickness on spin-orbit torque and current-induced switching in Hf CoFeB MgO structures Mustafa Akyol, 1, 2 Wanjun Jiang, 3 Guoqiang Yu, 1 Yabin Fan, 1 Mustafa Gunes, 4 Ahmet

More information

Resistance switching behavior of atomic layer deposited SrTiO3 film through possible formation of Sr2Ti6O13 or Sr1Ti11O20 phases

Resistance switching behavior of atomic layer deposited SrTiO3 film through possible formation of Sr2Ti6O13 or Sr1Ti11O20 phases On-line Supplementary Information for Resistance switching behavior of atomic layer deposited SrTiO3 film through possible formation of SrTi6O13 or Sr1Ti11O0 phases Woongkyu Lee 1, Sijung Yoo 1, Kyung

More information

Mechanics and Statistical Mechanics Qualifying Exam Spring 2006

Mechanics and Statistical Mechanics Qualifying Exam Spring 2006 Mechanics and Statistical Mechanics Qualifying Exam Spring 2006 1 Problem 1: (10 Points) Identical objects of equal mass, m, are hung on identical springs of constant k. When these objects are displaced

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE-

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- NOMENOLOGY In the main text we introduce anisotropic magnetoresistance (AMR) in analogy to ferromagnets where non-crystalline and crystalline contributions

More information

Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode

Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode Supplementary Information Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode Jiyoul Lee 1,2, *, Albert J.J.M. van Breemen 1, Vsevolod Khikhlovskyi 1, 3, Martijn

More information

Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves SUPPLEMENTARY INFORMATION Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves A. Giordano, R. Verba, R. Zivieri,

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

Figure 1. A planar mechanism. 1

Figure 1. A planar mechanism. 1 ME 352 - Machine Design I Summer Semester 201 Name of Student Lab Section Number EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, July 2nd, 201 Use the blank paper provided for your solutions. Write on one

More information

Exam 3--PHYS 102--S14

Exam 3--PHYS 102--S14 Name: Exam 3--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is always true? a. resistors in parallel have the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magneto-ionic Control of Interfacial Magnetism Uwe Bauer, Lide Yao, Aik Jun Tan, Parnika Agrawal, Satoru Emori, Harry L. Tuller, Sebastiaan van Dijken and Geoffrey S. D. Beach - Supplementary Information

More information

Experiment 7: Fourier Series

Experiment 7: Fourier Series Experiment 7: Fourier Series Theory A Fourier series is an infinite sum of harmonic functions (sines and cosines) with every term in the series having a frequency which is an integral multiple of some

More information

Magnon-drag thermopile

Magnon-drag thermopile Magnon-drag thermopile I. DEVICE FABRICATION AND CHARACTERIZATION Our devices consist of a large number of pairs of permalloy (NiFe) wires (30 nm wide, 20 nm thick and 5 µm long) connected in a zigzag

More information

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer Normalized Absorbance (a.u.) Normalized PL Intensity (a.u.) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 22 SUPPORTING INFORMATION

More information

Room Temperature Planar Hall Transistor

Room Temperature Planar Hall Transistor Room Temperature Planar Hall Transistor Bao Zhang 1, Kangkang Meng 1, Mei-Yin Yang 1, K. W. Edmonds 2, Hao Zhang 1, Kai-Ming Cai 1, Yu Sheng 1,3, Nan Zhang 1, Yang Ji 1, Jian-Hua Zhao 1, Kai-You Wang 1*

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

I 1. YIG CoO Pt. φ=0 o φ=90 o I 3. XAS (a.u.) E φ. X-ray Photon energy (ev) T=78 K T=230 K ΔR L

I 1. YIG CoO Pt. φ=0 o φ=90 o I 3. XAS (a.u.) E φ. X-ray Photon energy (ev) T=78 K T=230 K ΔR L a YIG CoO Pt φ= o φ=9 o I 1 I 3 H X-ray E φ XAS (a.u.) 778 779 11 112 111 775 78 785 Photon energy (ev) c.1 T=78 K T=23 K d.2 R L3 ΔR L3.1 ΔR L3 -.1 3 6 φ (deg.) 9 1 2 3 T (K) Supplementary Figure 1: a.

More information

Exam 3--PHYS 202--S15

Exam 3--PHYS 202--S15 Name: Class: Date: Exam 3--PHYS 202--S15 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Consider this circuit Which of these equations is correct? 3 Which

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers

Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers 1 Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers Sung Hwan Kim, 1, 2 Kyung-Hwan Jin, 2 Joonbum Park, 2 Jun Sung Kim, 2 Seung-Hoon Jhi,

More information

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves I. N. Krivorotov Department of Physics and Astronomy, University of California, Irvine, California 92697-4575,

More information

Atomistic modeling of metallic nanowires in silicon

Atomistic modeling of metallic nanowires in silicon Atomistic modeling of metallic nanowires in silicon - Supporting Information - Hoon Ryu, a,e Sunhee Lee, b,e Bent Weber, c Suddhasatta Mahapatra, c Lloyd C. L. Hollenberg, d Michelle Y. Simmons, c and

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated Supplementary Information Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated metal B. G. Ueland, C. F. Miclea, Yasuyuki Kato, O. Ayala Valenzuela, R. D. McDonald, R.

More information

Additional Problem (HW 10)

Additional Problem (HW 10) 1 Housekeeping - Three more lectures left including today: Nov. 20 st, Nov. 27 th, Dec. 4 th - Final Eam on Dec. 11 th at 4:30p (Eploratory Planetary 206) 2 Additional Problem (HW 10) z h y O Choose origin

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION University of Groningen Direct observation of the spin-dependent Peltier effect Flipse, J.; Bakker, F. L.; Slachter, A.; Dejene, F. K.; van Wees, Bart Published in: Nature Nanotechnology DOI: 10.1038/NNANO.2012.2

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding Minsoo Kim 1, Ji-Hae Choi 1, Sang-Hoon Lee 1, Kenji Watanabe 2, Takashi Taniguchi 2, Seung-Hoon Jhi 1, and Hu-Jong

More information

Spatiotemporal magnetic imaging at the nanometer and picosecond scales

Spatiotemporal magnetic imaging at the nanometer and picosecond scales AFOSR Nanoelectronics Review, Oct. 24, 2016 Spatiotemporal magnetic imaging at the nanometer and picosecond scales Gregory D. Fuchs School of Applied & Engineering Physics, Cornell University T M V TRANE

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.38/nphys436 Non-adiabatic spin-torques in narrow magnetic domain walls C. Burrowes,2, A. P. Mihai 3,4, D. Ravelosona,2, J.-V. Kim,2, C. Chappert,2, L. Vila 3,4, A. Marty

More information

Forced Mechanical Vibrations

Forced Mechanical Vibrations Forced Mechanical Vibrations Today we use methods for solving nonhomogeneous second order linear differential equations to study the behavior of mechanical systems.. Forcing: Transient and Steady State

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information

Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information Shehrin Sayed, Vinh Q. Diep, Kerem Yunus Camsari, and Supriyo Datta School of Electrical and Computer Engineering,

More information

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers David G. Cahill, Greg Hohensee, and Gyung-Min Choi Department of Materials Science and Engineering University of

More information

Equations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the

More information

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments PHYS85 Quantum Mechanics I, Fall 9 HOMEWORK ASSIGNMENT Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments. [ pts]

More information

KCET PHYSICS 2014 Version Code: C-2

KCET PHYSICS 2014 Version Code: C-2 KCET PHYSICS 04 Version Code: C-. A solenoid has length 0.4 cm, radius cm and 400 turns of wire. If a current of 5 A is passed through this solenoid, what is the magnetic field inside the solenoid? ().8

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Trigonometric Identities. Sum and Differences

Trigonometric Identities. Sum and Differences Trigonometric Identities Sum and Differences WARNING: While viewing this pdf, the viewer may experience the following: 1.) Shock.) Confusion.) Denial 4.) Disbelief 5.) I never learned this 6.) Fear 7.)

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

Course Updates. 2) This week: Electromagnetic Waves +

Course Updates.  2) This week: Electromagnetic Waves + Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr1/physics272.html Reminders: 1) Assignment #11 due Wednesday 2) This week: Electromagnetic Waves + 3) In the home stretch [review schedule]

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. GATE 5 SET- ELECTRONICS AND COMMUNICATION ENGINEERING - EC Q. Q. 5 carry one mark each. Q. The bilateral Laplace transform of a function is if a t b f() t = otherwise (A) a b s (B) s e ( a b) s (C) e as

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 2 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS (1) ( points) Solve the equation x 1 =. Solution: Since x 1 =, x 1 = or x 1 =. Solving for x, x = 4 or x = 2. (2) In the triangle below, let a = 4,

More information

Physics 208 Final Exam December 15, 2008

Physics 208 Final Exam December 15, 2008 Page 1 Name: Student ID: Section #: Physics 208 Final Exam December 15, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must

More information