Heavy flavour precision physics from N f = lattice simulations

Size: px
Start display at page:

Download "Heavy flavour precision physics from N f = lattice simulations"

Transcription

1 Available online at Nuclear and Particle Pysics Proceedings (2016) Heavy flavour precision pysics from N f = lattice simulations A. Bussone a, N. Carrasco b, P. Dimopoulos d,a,, R. Frezzotti a, P. Lami c, V. Lubicz c, F. Nazzaro a, E. Picca c, L. Riggio c, G.C. Rossi a, F. Sanfilippo e, S. Simula b,c, C. Tarantino c a Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00173, Rome, Italy b INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I Rome, Italy c Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I Rome, Italy d Museo Storico della Fisica e Centro Studi e Ricerce Enrico Fermi, Compendio del Viminale, Piazza del Viminale 1, I Rome, Italy e Scool of Pysics and Astronomy, University of Soutampton, SO17 1BJ Soutampton, U.K. Abstract We present precision lattice calculations of te pseudoscalar decay constants of te carmed sector as well as determinations of te bottom quark mass and its ratio to te carm quark mass. We employ N f = dynamical quark gauge configurations generated by te European Twisted Mass Collaboration, using data at tree values of te lattice spacing and pion masses as low as 210 MeV. Strange and carm sea quark masses are close to teir pysical values. Keywords: D (s) -decay constants, b-quark mass, Lattice QCD, ETMC 1. Introduction Pysical processes in te eavy quark sector offer te possibility to get some of te more stringest tests of te Standard Model and to searc for possible footprints of New Pysics dynamics, by directly callenging te unitarity constraints of te CKM matrix. Lattice QCD as already entered te precision era as te accuracy of numerical computations is becoming comparable to tat of experiments. For some of te relevant adronic quantities in Flavour Pysics te goal of per cent precision as been acieved. State-of-teart lattice calculations involve O(a)-improved fermionic actions wit N f = 2, 2+1 and dynamical flavours wit te smallest simulated pion masses being today at te pysical point or sligtly iger and employing tree or more values of te lattice spacing. For a review wit a critical evaluation of lattice results and averages, see [1]. First computations wit four non-degenerate quark flavours including electromagnetic effects ave also been presented recently [2]. Corresponding autor, dimopoulos@roma2.infn.it ttp://dx.doi.org/ /j.nuclpysbps / 2015 Elsevier B.V. All rigts reserved. Direct computations by many lattice collaborations ave sown tat te cutoff effects in te D-sector are small and under control. Moreover, considerable progress as been recently made in flavour pysics at te b mass, wit te elp of bot effective teories approaces and tanks to te implementation of some innovative metods. All tese progresses ave allowed te determination of a number of B-pysics parameters (e.g. m b, f B and f Bs ) wit controlled systematic uncertainties. Lattice metods are an invaluable tool to obtain direct determinations of adronic quantities relevant for te computation of many of te so called golden plated processes suc as decay constants, form factors and bag parameters. For instance, te widt of te D and D s leptonic decays is given, to lowest order, by Γ(D (s) lν) = G2 F f D 2 (s) m 2 l M D(s) 8π 1 m2 2 l MD(s) 2 V cd(s) 2. (1) Tus lattice computations of te quantities f D and f Ds gives access to te determination of te CKM matrix elements, V cd and V cs, respectively, as in Eq. (1) all te

2 A. Bussone et al. / Nuclear and Particle Pysics Proceedings (2016) rest is known experimentally. On te experimental side also te accuracy of te measurements of te D [3, 4, 5] and D s [6, 7] leptonic widt as progressively improved during te years. Lattice QCD provides a first principles way to compute quark masses. Tis is possible since quark masses enter as parameters in te QCD Lagrangian and teir values can be extracted by matcing adron masses calculated on te lattice wit teir experimental values. Te accuracy of quark mass estimates depends on te conversion from te lattice regularisation to continuum renormalisation scemes. Quark mass ratios instead can be computed in a fully non-perturbative way and are free of renormalisation sceme ambiguities. We notice, ere, tat te knowledge of te b-quark mass value and to less extent tat of te c-quark mass plays an important rôle in te study of te Higgs decay to b b and c c [8]. Te European Twisted Mass Collaboration (ETMC) as undertaken an extensive program of eavy quark pysics calculations on te lattice using two and four dynamical flavours. Here we present te results of te computation of te D (s) pseudoscalar meson decay constants (in te isospin symmetric limit) and te b to c quark mass ratio obtained using gauge configurations wit N f = dynamical quarks. Te main (preliminary) results in tese proceedings are f D = 208.7(5.2) MeV, f Ds = 247.5(4.1) MeV, (2) ( ) f Ds fds / ( ) fk = 1.186(21), = 0.998(14), (3) f D f D f π m b (MS, m b ) = 4.26(16) GeV, (4) m b /m c = 4.40(8) (5) For completeness we remind te recent ETMC determinations of te c-quark mass and te carm to strange quark mass ratio publised in [9]: m c (MS, m c ) = 1.348(42) GeV, m c /m s = 11.62(16) (6) For a preliminary ETMC computation of te B-meson decay constants, giving f B = 196(9) MeV, f Bs = 235(9) MeV and f Bs / f B = 1.201(25), we refer to [10]. 2. Lattice setup ETMC as produced gauge configurations wit N f = dynamical quarks [11] employing te Iwasaki gluon action [12] and te Wilson Twisted Mass fermionic action for te sea quarks [13]. Automatic O(a)-improvement is guaranteed bot for te ligt and eavier quarks by tuning at maximal twist wilst te drawback of te mixing between te strange and carm sectors [14] is avoided in te valence by using te Osterwalder-Seiler fermions [15]. We ave data ensembles at tree values of te lattice spacing in te range [0.06, 0.09] fm. Simulated pion masses lie in te interval [210, 440] MeV. Tanks to te properties of te twisted mass action ligt quarks in te sea and all types of quarks in te valence enjoy multiplicative mass renormalisation, Z m = 1/Z P, wic is computed nonperturbatively using te RI -MOM sceme [9]. Moreover owing to PCAC, at maximal twisted angle no normalisation constant is needed in te computation of te decay constants. In Ref. [9] we ave presented our computation for te quark masses of te (degenerate) ligt m u/d (MS, 2 GeV) = 3.70(17) MeV, strange m s (MS, 2 GeV) = 99.6(4.1) MeV and carm m c (MS, m c ) = 1.348(42) GeV, wic are determined by using te experimental values of te pion, kaon and D (or D s ) masses, respectively. Te penomenological value of f π as been used for setting te scale. In tis work te computation of te decay constants in te carmed region as well as te determination of te b-quark mass are performed using (Gaussian) smearing meson operators [16, 17] combined wit APE smeared links [18] in order to reduce bot te coupling of te interpolating field wit te excited states and te gauge noise of te links involved in te smeared fields. (For an alternative preliminary analysis of te carmed decay constants tat use local point correlators see Ref.[19].) A summary of te most important details of our simulations is given in Table Carmed decay constants We use two point correlation functions wit pseudoscalar interpolating operators, P(x) = q 1 (x)γ 5 q 2 (x), tat in periodic lattice ave te typical form: C PP (t) = (1/L 3 ) P( x, t)p ( 0, 0) t 0, (T t) 0 x ξ PP 2M ps ( e M ps t + e M ps(t t) ) (7) We take te Wilson parameters of te two valence quarks of te pseudoscalar meson to be opposite in order to guarantee tat te cutoff effects on te pseudoscalar mass are O(a 2 μ) [21, 22, 23]. We ten consider two cases, using smeared source only and source and sink bot smeared. As for ξ PP, tis is given by ξ PP = 0 P L ps ps P S 0 in te first case and ξ PP = 0 P S ps ps P S 0 in te second one, were L and S indicate local and smeared operators. By combining te

3 1640 A. Bussone et al. / Nuclear and Particle Pysics Proceedings (2016) β V/a 4 aμ sea = aμ l N cfg aμ s aμ c aμ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , (fcs/mcs) (MDs) expt (GeV) β =1.90 β =1.95 β =2.10 CL-pys. point μ l (GeV) Table 1: Summary of simulation details. Gauge couplings β = 1.90, 1.95 and 2.10 correspond to lattice spacings a = 0.089, and 0.062, respectively; see Ref. [9]. We denote wit aμ l, aμ s and aμ c aμ, te ligt, strange-like, carm-like and somewat eavier bare quark masses, respectively, entering in te valence sector computations. Figure 1: Combined ciral and continuum fit (χ 2 /(dof) = 0.8) of ( f cs /M cs ) M expt Ds against te renormalised ligt quark mass expressed in MS-sceme at te scale of 2 GeV, μ l = μ sea. Te fit ansatz is linear bot in μ l and in a 2. Te vertical black tin line marks te position of u/d quark mass point. Te empty black circle is our result at te pysical u/d quark mass point in te continuum limit. two kinds of correlators it is easy to obtain te matrix element of te local operator g ps = 0 P L ps wic serves for computing te pseudoscalar decay constant (via PCAC) given by: g ps f ps = (μ 1 + μ 2 ), (8) M ps sin M ps were μ 1,2 are te masses of te valence quarks tat form te pseudoscalar meson wit mass M ps. Te use of sin M ps (rater tan M ps ) in Eq. (8) is beneficial for reducing te discretisation errors. For te computation of f Ds we tune, via well controlled interpolations, one of te valence quark masses to te value of te strange mass and te oter to te value of te carm mass, bot taken from Ref. [9]. In tis way, for eac value of te sea ligt quark mass and of te tree lattice spacings, we get estimates for te decay constant f cs. Ten a simultaneous extrapolation to te pysical value of te u/d quark mass and to te continuum limit can be performed in order to obtain f Ds. In te present analysis we consider te quantity ( f cs /M cs ) M expt Ds, were M cs is a pseudoscalar meson mass made of c and s quarks and is computed at eac value of te sea ligt quark mass, wile M expt Ds = (1.4) MeV is te experimental value of te D s mass. Te above coice of observable is advantageous because, first, in te determination of f Ds any scale setting uncertainty is avoided and, second, tis quantity presents very small discretisation effects. Te fit ansatz of te combined ciral and continuum extrapolation reads: [( f cs /M cs ) M expt Ds ] = C 0+C 1 μ l +Da 2, see Fig. 1. We control ciral fit uncertainties by adding in te above fit ansatz eiter a quadratic quark mass term or fitting data corresponding to ligt pseudoscalar masses wit M ll < 350 MeV. Finite volume systematics are estimated by fitting data corresponding to L > 2.6 fm. Discretisation systematic errors ave been estimated by fitting data eiter from te two finest lattice spacings or from te two coarsest ones, and also by estimating te difference of our results from te finest lattice to te continuum limit. Moreover, we ave also included te propagated error due to te m s,c uncertainties as well as te systematic effect of te quark mass renormalisation constant (RC) computed in two ways tat differ by O(a 2 )effects. Our central value is te weigted average over te results from all te analyses described above. Our (preliminary) result for f Ds reads f Ds = 247.5(3.0) stat+ fit (2.7) syst [4.1] MeV, (9) were we report in square brackets te total error ( 1.6%) tat is te sum in quadrature of te statistical and systematic uncertainties. For te full error budget see Table 2. In Fig. 2 we compare our result wit tose computed in oter lattice studies and wit te PDG estimate based on experimental results and unitarity assumptions. Some tension between te PDG estimate and te most precise lattice results is still present. In order to determine te SU(3) symmetry breaking ratio f Ds / f D we measure on our data sets te double ratio R f = ( f cs / f cl )( f ll / f sl ). Tis coice enjoys te

4 A. Bussone et al. / Nuclear and Particle Pysics Proceedings (2016) uncertainty (in %) f Ds f Ds / f D f D stat. + fit syst. from ciral fits syst. from discr. effects syst. from FSE syst. from f K / f π Total Rf β =1.90 β =1.95 β =2.10 (HM)CPT Fit Lin. Fit Table 2: Full error budget for f Ds, f Ds / f D and f D. Te different sources of uncertainty are self explanatory PDG (expt + pen) (tis work) FNAL/MILC 14 χqcd 14 N f =2 HPQCD 12 FNAL/MILC 11 f Ds [MeV] Figure 2: We compare te available continuum limit determinations for f Ds (in MeV) from lattice studies tat use N f = 2, 2+1 and dynamical flavours. result refers to te present work. For te results of oter lattice studies we refer to (from top to bottom) [24, 25, 26, 27, 28, 29, 30]). For te PDG result see [31]. property of very mild ligt quark mass dependence as expected from te large cancellation between te SU(2) ciral logaritms [32, 33]. Te quantity R f in te continuum limit and at te pysical pion mass point multiplied wit ( f K / f π ) (taken from Ref. [20]) will provide te result for f Ds / f D. We try te following fit ansätze: R f = c (1) 0 + c (1) 1 μ l + D (1) a 2, (10) [ R f = c (2) c (2) 1 μ l + ( 9ĝ ) ] ξ l log ξ l + D (2) a 2, (11) 2 were ξ l = (2B 0 μ l )/(4π f 0 ) 2 wit B 0 and f 0 determined in Ref. [9]. We ave applied finite size corrections using Ref.[34]. Among te available estimates for te (D Dπ) coupling we ave used ĝ = 0.61(7) tat in our case leads to te most conservative estimate for te ciral fit systematic uncertainty. Te ciral and continuum limit extrapolation is sown in Fig. 3. Moreover we ave performed an analysis similar to te one for f Ds in order μ l (GeV) Figure 3: Combined ciral and continuum fit for te quantity R f against te renormalised ligt quark mass expressed in MS-sceme at te scale of 2 GeV, μ l = μ sea. Te vertical black tin line marks te position of u/d quark mass point. Te empty black circle and empty triangle represent te results for te ratio f Ds / f D, using te fit ansatz of Eq. (10) (χ 2 /(dof) = 0.7) and Eq. (11) (χ 2 /(dof) = 1.1), respectively, at te pysical u/d quark mass point and in te continuum limit. to estimate our systematic uncertainties. Te full error budget is given in Table 2. Te central value corresponds to te weigted average over results from all te different analyses. Our (preliminary) results read ( f Ds / f D )/( f K / f π ) = (8) stat+ fit (11) syst [14], (12) f Ds / f D = (9) stat+ fit (19) syst [21], (13) and eac one of te total errors (in square brackets) is te sum in quadrature of te statistical error and te systematic one. We combine te results from Eqs. (9) and (13) to get our (preliminary) result for te decay constant of te D- meson, namely f D = f Ds /( f Ds / f D ), wic reads: f D = 208.7(3.3) stat+ fit (4.0) syst [5.2] MeV, (14) were also in tis case te total error written in square brackets ( 2.5%) is te sum in quadrature of te statistical and systematic uncertainties. For te complete error budget see Table 2. In Figs. 4 and 5 we present a world comparison between lattice results for f Ds / f D and f D, respectively. In bot figures te PDG estimate is also included. For some recent non-lattice estimates of te carmed decay constants, see Refs. [35, 36, 37, 38]. 4. Computation of m b and m b /m c We perform te determination of te b-quark mass employing te ratio metod described in detail in

5 1642 A. Bussone et al. / Nuclear and Particle Pysics Proceedings (2016) PDG (expt + pen) (tis work) FNAL/MILC 14 HPQCD 12 FNAL/MILC f Ds/f D Figure 4: We compare te available continuum limit determinations for f Ds / f D from lattice studies tat use N f = 2, 2+1 and dynamical flavours. result refers to te present work. For te results of te oter lattice studies we refer to (from top to bottom) [24, 26, 28, 29, 30]). For te PDG result see [31]. PDG (expt + pen) (tis work) FNAL/MILC 14 HPQCD 12 FNAL/MILC 11 N f =2 f D [MeV] Figure 5: We compare te available continuum limit determinations for f D (in MeV) from lattice studies tat employ N f = 2, 2+1 and dynamical flavours. result refers to te present work. For te results of te oter lattice studies we refer to (from top to bottom) [24, 25, 26, 27, 28, 29, 30]). For te PDG result see [31]. Refs. [30, 39, 40]. We present ere a variant of tis metod and we build te quantity Q = M s /(M l ) γ, were M s and M l are te eavy-strange and eavyligt pseudoscalar masses, respectively. Te parameter γ is a free one and may take values at will in te interval [0, 1). By HQET arguments we know tat for te asymptotic beaviour we get: lim M s/(m l ) γ = const., (15) μ pole (μ pole ) (1 γ) were μ pole is te eavy quark pole mass. We ten consider a sequence of eavy quark masses expressed in te MS-sceme at te scale of 2 GeV suc tat any two successive masses ave a common and fixed ratio i.e. μ (n) = λμ (n 1), n = 2, 3,... Te next step is to construct at eac value of te sea quark mass and te lattice spacing te following ratios: y Q (μ (n),λ; μ l, μ s, a) Q (μ (n) ; μ l, μ s, a) Q (μ (n 1) ; μ l, μ s, a) = λ (γ 1) Q (μ (n) ; μ l, μ s, a) Q (μ (n) /λ; μ l, μ s, a) μ (n) ρ(μ(n),μ ) μ (n 1) ρ(μ (n 1) ρ(μ (n) (γ 1),μ ) ρ(μ (n),μ (γ 1) ) /λ, (16) μ ) wit n = 2, 3,... and we ave used te relation μ pole = ρ(μ,μ ) μ (μ ) between te MS renormalised quark mass (at te scale of 2 GeV) and te pole quark mass. Te ρ s are known perturbatively up to N 3 LO. For eac pair of eavy quark masses we ten carry out a simultaneous ciral and continuum fit of te quantity defined in Eq. (16) to obtain y Q (μ ) y Q (μ,λ; μ u/d, μ s, a = 0). By construction tis quantity involves (double) ratios of pseudoscalar meson masses at successive values of te eavy quark mass, so we expect tat discretisation errors will be under control. In fact tis is te case even for te largest values of te eavy quark mass used in tis work, see Fig. 6. Since we ave taken into account te matcing of QCD onto HQET concerning te evaluation of a eavy-ligt pseudoscalar mass, M s/l, our ratio y Q (μ ) as been defined in suc a way tat te following ansatz is sufficient to describe te μ -dependence 1 y Q (μ ) = 1 + η 1 + η 2, (17) μ in wic te constraint lim μ y Q (μ ) = 1 as already been incorporated. Tis fit is reported in Fig. 7. Finally, we compute te b-quark mass via te cain equation y Q (μ (2) ) y Q(μ (3) )... y Q(μ (K+1) ) = = λ K(γ 1) Q (μ (K+1) ) (ρ(μ (K+1),μ )) γ 1 Q (μ (1) ) (18) ρ(μ (1),μ ) in wic te values of te factors in te (ls) are evaluated using te result of te fit function (Eq. 17) and λ, K (integer) and μ (1) are suc tat te quantity Q (μ (K+1) ) matces M Bs /(M B ) γ, were M Bs = (4) MeV and M B = (3) MeV are te experimental values of te B s - and B-meson masses [31], respectively. Notice tat te quantity Q (μ (1) ) for any value of μ(1) around 1 For more details on tis point see te Appendix of Ref. [40] and [30], section 4. μ 2

6 A. Bussone et al. / Nuclear and Particle Pysics Proceedings (2016) te carm quark mass is safely computed in te continuum limit and at te pysical pion mass. For instance, using quark mass RC of te M2-type (see [9]) and setting as input μ (1) = GeV and γ = 0.75 we find (λ, K) = (1.1588, 10). Tus, te b-quark mass in te MS-sceme at te scale of 2 GeV is given by μ b = λ K μ (1). Our preliminary result for te b- quark mass is given by te average over two estimates obtained using eiter M1 or M2-type quark mass RCs wile teir alf difference is taken as an additional systematic error. Tis reads m b (MS, m b ) = 4.26(7) stat+ fit (14) syst [16] GeV, (19) y (8) Q β =1.90 β =1.95 β =2.10 CL - pys. point μ l (GeV) were te total error (in brackets) is te sum in quadrature of te statistical and te systematic ones. For a complete error budget we refer to Table 3. We ave uncertainty (in %) m b m b /m c stat+fit syst. from lat. scale syst. from discr. effects syst. from ratios fits syst. from ciral fits syst. from RC Total Table 3: Full error budget for m b and m b /m c. Te different sources of uncertainty are self explanatory. verified tat for a large range of values of γ [0, 1) we get fully compatible final results 2 for m b. Te freedom of coosing γ allows for better control of systematic uncertainties stemming from discretisation effects and te fit ansatz Eq. (17). Finally, te ratio metod offers te advantage of determining te ratio m b /m c in a simple and fully nonperturbative way. By setting μ (1) = μ c we repeat te above ratio metod analysis and we find m b /m c = 4.40(6) stat+ fit (5) syst [8] (20) A complete error budget is also reported in Table 3. In Figs. 8 and 9 we present a comparison between lattice results for m b and m b /m c, respectively. For non-lattice estimate of m b see [41]. Acknowledgements We are grateful to all members of ETMC for fruitful discussions. We acknowledge te CPU time provided by 2 Tis systematic uncertainty as been included in te estimate called syst. from ratios fits of Table 3. Figure 6: Combined ciral and continuum fit of te ratio defined in Eq. (16) and corresponding to te case of te two largest values of eavy quark mass against te renormalised ligt quark mass μ l = μ sea. Te fit ansatz is linear bot in μ l and in a 2 wit χ/(dof) = 1.1. Te empty black circle is our result at te pysical u/d quark mass point in te continuum limit. In tis example we ave considered γ = yq(μ ) μ 1 b /μ (GeV 1 ) Figure 7: y Q (μ ) against 1/μ using te fit ansatz of Eq. (17) wit χ 2 /(dof) = 0.1. We ave used γ = 0.75, λ = and Λ N f =4 QCD = 296(15) MeV for te running coupling entering in te ρ(μ,μ) function. Te vertical black tin line marks te position of 1/μ b. Quark mass values, μ, μ b are expressed in te MS-sceme at te scale of 2 GeV. te PRACE Researc Infrastructure under te project PRA067 at te Jülic and CINECA SuperComputing Centers, and by te agreement between INFN and CINECA under te specific initiative INFN-lqcd123. References [1] FLAG, Aoki, S., et al., Eur.Pys.J. C74 (9) (2014) arxiv: , doi: /epjc/s [2] S. Borsanyi, et al. arxiv: [3] Belle, Zupanc, A., et al., JHEP 1309 (2013) 139. arxiv: , doi: /jhep09(2013)

7 1644 A. Bussone et al. / Nuclear and Particle Pysics Proceedings (2016) PDG (tis work) HPQCD m b (MS,m b ) [GeV] Figure 8: We compare te available continuum limit determinations for m b (m b ) (in GeV) from lattice studies wit N f = 2, 2+1 and dynamical flavours. result refers to te present work. For te results of oter lattice studies we refer to (from top to bottom) [42, 43, 44, 30]. For te PDG value see [31]. (tis work) m b /m c Figure 9: Comparison between te two available continuum limit determinations for m b /m c obtained from fully non-perturbative studies. For te HPQCD result see [43]. [4] BaBar, del Amo Sancez, P., et al., Pys.Rev. D82 (2010) arxiv: , doi: /pysrevd [5] CLEO-C, Naik, P., et al., Pys.Rev. D80 (2009) arxiv: , doi: /pysrevd [6] H.-B. Li, EPJ Web Conf. 72 (2014) doi: /epjconf/ [7] Y. Zeng, ICHEP 2014, tese proceedings. [8] A. Djouadi, Pys.Rept. 457 (2008) arxiv:epp/ , doi: /j.pysrep [9] ETMC, Carrasco, N., et al., Nucl.Pys. B887 (2014) arxiv: , doi: /j.nuclpysb [10] ETMC, Carrasco, N., et al., PoS (LATTICE 2013) (2013) 313. arxiv: [11] ETMC, Baron, R., et al., JHEP 1006 (2010) 111. arxiv: , doi: /jhep06(2010)111. [12] Y. Iwasaki, Nucl.Pys. B258 (1985) doi: / (85) [13] R. Frezzotti, G. Rossi, Nucl.Pys.Proc.Suppl. 128 (2004) arxiv:ep-lat/ , doi: /s (03) [14] ETMC, Baron, R., et al., Comput.Pys.Commun. 182 (2011) arxiv: , doi: /j.cpc [15] K. Osterwalder, E. Seiler, Annals Pys. 110 (1978) 440. doi: / (78) [16] S. Gusken, Nucl.Pys.Proc.Suppl. 17 (1990) doi: / (90)90273-w. [17] K. Jansen, et al., JHEP 0812 (2008) 058. arxiv: , doi: / /2008/12/058. [18] M. Albanese, et al., Pys.Lett. B192 (1987) doi: / (87) [19] ETMC, Dimopoulos, P., et al. PoS(LATTICE 2013) (2013) 314. arxiv: [20] ETMC, Carrasco, N., et al. in preparation. [21] R. Frezzotti, G. C. Rossi, JHEP 08 (2004) 007. arxiv:eplat/ [22] R. Frezzotti, et al., JHEP 0604 (2006) 038. arxiv:eplat/ , doi: / /2006/04/038. [23] P. Dimopoulos, et al., Pys.Rev. D81 (2010) arxiv: , doi: /pysrevd [24] FNAL-MILC, Bazavov, A., et al. arxiv: [25] χqcd, Yang, Yi-Bo, et al. arxiv: [26] HPQCD, Na, Heecang, et al., Pys.Rev. D86 (2012) arxiv: , doi: /pysrevd [27] HPQCD, Davies, C.T.H., et al., Pys.Rev. D82 (2010) arxiv: , doi: /pysrevd [28] FNAL, Bazavov, A., et al., Pys.Rev. D85 (2012) arxiv: , doi: /pysrevd [29] ALPHA, Heitger, J., PoS LATTICE2013 (2013) 475. arxiv: [30] ETMC, Carrasco, N., et al., JHEP 1403 (2014) 016. arxiv: , doi: /jhep03(2014)016. [31] PDG, Olive, K.A., et al., Review of Particle Pysics, Cin.Pys. C38 (2014) doi: / /38/9/ [32] D. Becirevic, S. Fajfer, S. Prelovsek, J. Zupan, Pys.Lett. B563 (2003) arxiv:ep-p/ , doi: /s (03) [33] ETMC, Blossier, B., et al., JHEP 0907 (2009) 043. arxiv: , doi: / /2009/07/043. [34] G. Colangelo, et al., Nucl.Pys. B721 (2005) arxiv:ep-lat/ , doi: /j.nuclpysb [35] S. Narison, Pys.Lett. B718 (2013) arxiv: , doi: /j.pysletb [36] W. Luca, D. Melikov, S. Simula, Pys.Lett. B701 (2011) arxiv: , doi: /j.pysletb [37] Z.-G. Wang, JHEP 1310 (2013) 208. arxiv: , doi: /jhep10(2013)208. [38] P. Gelausen, et al., Pys.Rev. D88 (1) (2013) arxiv: , doi: /pysrevd [39] ETMC, Blossier, B., et al., JHEP 1004 (2010) 049. arxiv: , doi: /jhep04(2010)049. [40] ETMC, Dimopoulos, P., et al., JHEP 1201 (2012) 046. arxiv: , doi: /jhep01(2012)046. [41] K. Cetyrkin, et al., Pys.Rev. D80 (2009) arxiv: , doi: /pysrevd [42] HPQCD, Lee, A.J., et al., Pys.Rev. D87 (7) (2013) arxiv: , doi: /pysrevd [43] HPQCD, McNeile, C., et al., Pys.Rev. D82 (2010) arxiv: , doi: /pysrevd [44] ALPHA, Bernardoni, F., et al., Pys.Lett. B730 (2014) arxiv: , doi: /j.pysletb

arxiv: v1 [hep-lat] 12 Nov 2013

arxiv: v1 [hep-lat] 12 Nov 2013 A N f = 2 + + twisted determination of te b-quark mass, f B and f Bs arxiv:3.2837v [ep-lat] 2 Nov 203 N. Carrasco (a,b, P. Dimopoulos (c,d, R. Frezzotti (d, V. Giménez (a, P. Lami (e,b, V. Lubicz (e,b,

More information

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions Scalar and vector form factors of D πlν and D Klν decays with N f = + + Twisted fermions N. Carrasco (a), (a,b), V. Lubicz (a,b), E. Picca (a,b), L. Riggio (a), S. Simula (a), C. Tarantino (a,b) (a) INFN,

More information

PoS(LATTICE 2013)393. K and D oscillations in the Standard Model and its. extensions from N f = Twisted Mass LQCD

PoS(LATTICE 2013)393. K and D oscillations in the Standard Model and its. extensions from N f = Twisted Mass LQCD K and D oscillations in the Standard Model and its extensions from N f = 2+1+1 Twisted Mass LQCD, V. Giménez Dep. de Física Teòrica and IFIC, Universitat de València-CSIC P. Dimopoulos Centro Fermi - Museo

More information

B-physics calculations from Lattice QCD by ETM Collaboration

B-physics calculations from Lattice QCD by ETM Collaboration B-pysics calculations from Lattice QCD by ETM Collaboration Petros Dimopoulos University of Rome Tor Vergata on bealf of ETM Collaboration April 2, 2012 Outline B-pysics and Lattice ETMC computation 1.

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

arxiv: v1 [hep-lat] 23 Nov 2018

arxiv: v1 [hep-lat] 23 Nov 2018 B c spectroscopy using highly improved staggered quarks arxiv:1811.09448v1 [hep-lat] 23 Nov 2018 INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma RM, Italy E-mail: andrew.lytle@roma2.infn.it

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

arxiv: v1 [hep-lat] 6 Feb 2009

arxiv: v1 [hep-lat] 6 Feb 2009 ROM2F/2009/03 February 6, 2009 Quenched B K -parameter from Osterwalder-Seiler tmqcd quarks and mass-splitting discretization effects P. Dimopoulos a, H. Simma b and A. Vladikas c arxiv:0902.074v [hep-lat]

More information

JHEP07(2013)143. Erratum: kaon mixing beyond the SM from N f = 2 tmqcd and model independent constraints from the UTA. The ETM collaboration

JHEP07(2013)143. Erratum: kaon mixing beyond the SM from N f = 2 tmqcd and model independent constraints from the UTA. The ETM collaboration Published for SISSA by Springer Received: July 5, 2013 Accepted: July 7, 2013 Published: July 23, 2013 Erratum: kaon mixing beyond the SM from N f = 2 tmcd and model independent constraints from the UTA

More information

arxiv:hep-ph/ v1 1 Mar 2001

arxiv:hep-ph/ v1 1 Mar 2001 NYU-TH/01/02/02 ep-p/0103001 arxiv:ep-p/0103001v1 1 Mar 2001 Scale-Independent Calculation of sin 2 θ lept eff. A. Ferroglia 1, G. Ossola 2, and A. Sirlin 3. Department of Pysics, New York University,

More information

arxiv: v1 [hep-lat] 15 Nov 2018

arxiv: v1 [hep-lat] 15 Nov 2018 to decay amplitudes in lattice QCD arxiv:1811.6364v1 [hep-lat] 15 Nov 218 Davide Giusti (a)(b), Vittorio Lubicz (a)(b), Guido Martinelli (c), (d), Francesco Sanfilippo (b), Silvano Simula (b), Nazario

More information

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK School of Mathematics, Trinity College, Dublin 2, Ireland E-mail: donaldg@tcd.ie Christine Davies SUPA, School of Physics

More information

High Precision. Charm Physics. HISQ quarks

High Precision. Charm Physics. HISQ quarks f % f K High Precision m Charm Physics $ with m N m Ds m D m D * HISQ quarks - m s D s m " - m #c "(1P-1S) 2m Bs,av -m! Christine m Davies Bc E. Follana, G. P. Lepage, R. Horgan, K. Hornbostel, C. McNeile,

More information

arxiv: v1 [hep-lat] 13 Nov 2013

arxiv: v1 [hep-lat] 13 Nov 2013 Peudocalar decay contant / f π, f D and f D with N f = 2 + 1 + 1 ETMC configuration arxiv:1311.3080v1 [hep-lat] 13 Nov 2013 P. Dimopoulo (a,b), R. Frezzotti (b,c), P. Lami (d,e), V. Lubicz (d,e), E. Picca

More information

arxiv: v1 [hep-lat] 8 Oct 2007

arxiv: v1 [hep-lat] 8 Oct 2007 arxiv:71.1517v1 [hep-lat] 8 Oct 27 Lattice QCD with two light Wilson quarks and maximally twisted mass Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool

More information

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD The decay constants f B + and f D + from three-flavor lattice QCD C. Bernard a, C. DeTar b, M. Di Pierro c, A.X. El-Khadra d, R.T. Evans d, E. Freeland e, S. Gottlieb f, U.M. Heller g, J.E. Hetrick h,

More information

Firooz Arash (a,b) , which have caused confusion in the normalization of ZEUS data is discussed and resolved. PCAC I. INTRODUCTION

Firooz Arash (a,b) , which have caused confusion in the normalization of ZEUS data is discussed and resolved. PCAC I. INTRODUCTION PION STRUCTURE FUNCTION F π 2 In te Valon Model Firooz Aras (a,b) (a) Center for Teoretical Pysics and Matematics, AEOI P.O.Box 365-8486, Teran, Iran (b) Pysics Department, AmirKabir University (Tafres

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

arxiv: v2 [hep-lat] 24 Oct 2007

arxiv: v2 [hep-lat] 24 Oct 2007 Non-perturbative renormalisation of four-fermion operators in N f = 2 QCD arxiv:7.2862v2 [hep-lat] 24 Oct 27 LPHA ACollaboration Petros Dimopoulos, Gregorio Herdoiza, Anastassios Vladikas INFN, Sezione

More information

PoS(EPS-HEP2017)662. Charm physics prospects at Belle II

PoS(EPS-HEP2017)662. Charm physics prospects at Belle II Dipartimento di Matematica e Fisica, Università di Roma Tre and INFN Sezione di Roma Tre, Via della vasca navale 84, I-00146 Rome, Italy E-mail: giacomo.depietro@roma3.infn.it Belle II is a major upgrade

More information

https://doi.org/ /epjconf/

https://doi.org/ /epjconf/ Heavy Domain Wall Fermions: physics program The RBC and UKQCD charm Peter A Boyle 1, Luigi Del Debbio 1, Andreas Jüttner 2, Ava Khamseh 1, Justus Tobias Tsang 1,, and Oliver Witzel 1,3 1 Higgs Centre for

More information

arxiv: v1 [hep-lat] 20 Oct 2017

arxiv: v1 [hep-lat] 20 Oct 2017 arxiv:1710.07554v1 [hep-lat] 20 Oct 2017 Light meson form factors at high Q 2 from lattice QCD Jonna Koponen 1,, André Zimermmane-Santos 2, Christine Davies 3, G. Peter Lepage 4, and Andrew Lytle 3 1 INFN,

More information

arxiv: v1 [hep-lat] 17 Mar 2012

arxiv: v1 [hep-lat] 17 Mar 2012 Standard Model Heavy Flavor physics on the Lattice arxiv:1203.3862v1 [hep-lat] 17 Mar 2012 University of Glasgow E-mail: c.davies@physics.gla.ac.uk Lattice QCD calculations in charm and bottom physics

More information

PoS(Lattice 2010)120. Strange and charmed baryons using N f = 2 twisted mass QCD. Mauro Papinutto,Jaume Carbonell

PoS(Lattice 2010)120. Strange and charmed baryons using N f = 2 twisted mass QCD. Mauro Papinutto,Jaume Carbonell Strange and charmed baryons using N f = 2 twisted mass QCD,Jaume Carbonell Laboratoire de Physique Subatomique et de Cosmologie, UJF/CNRS-IN2P3/INPG, 53 rue des Martyrs, F-38026 Grenoble, France E-mail:

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

η and η mesons from N f = flavour lattice QCD

η and η mesons from N f = flavour lattice QCD η and η mesons from N f = 2++ flavour lattice QCD for the ETM collaboration C. Michael, K. Ottnad 2, C. Urbach 2, F. Zimmermann 2 arxiv:26.679 Theoretical Physics Division, Department of Mathematical Sciences,

More information

arxiv: v1 [hep-lat] 12 Sep 2016

arxiv: v1 [hep-lat] 12 Sep 2016 Neutral Kaon Mixing Beyond the Standard Model with n f = 2 + 1 Chiral Fermions Part 1: Bare Matrix Elements and Physical Results N. Garron a, R.J. Hudspith b, A.T. Lytle c a Theoretical Physics Division,

More information

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011 Lattice QCD Steven Gottlieb, Indiana University Fermilab Users Group Meeting June 1-2, 2011 Caveats I will borrow (shamelessly). 3 Lattice field theory is very active so there is not enough time to review

More information

Lattice QCD and flavour physics

Lattice QCD and flavour physics Lattice QCD and flavour physics Vittorio Lubicz Workshop on Indirect Searches for New Physics at the time of LHC 15/02/2010-26/03/2010 OUTLINE: The accuracy of LQCD in the flavour sector the past (the

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Neutral Beyond-Standard-Model Higgs Searches in CMS

Neutral Beyond-Standard-Model Higgs Searches in CMS Neutral Beyond-Standard-Model Higgs Searces in On bealf of te Collaboration I.N.F.N. Sezione di Bologna, Italy E-mail: marcellini@bo.infn.it Searces for beyond te Standard Model neutral Higgs bosons at

More information

Vittorio Lubicz Dip. di Matematica e Fisica, Università Roma Tre & INFN, Sezione di Roma Tre, Rome, Italy

Vittorio Lubicz Dip. di Matematica e Fisica, Università Roma Tre & INFN, Sezione di Roma Tre, Rome, Italy mesons in Lattice QCD with N f = 2 + 1 + 1 twisted-mass fermions Vittorio Lubicz Dip. di Matematica e Fisica, Università Roma Tre & INFN, Sezione di Roma Tre, Rome, Itay E-mai: ubicz@fis.uniroma3.it Aurora

More information

D and B Meson Semileptonic Decays from the Lattice. Lattice QCD Meets Experiment Workshop April 26-27, 2010 Fermilab

D and B Meson Semileptonic Decays from the Lattice. Lattice QCD Meets Experiment Workshop April 26-27, 2010 Fermilab D and B Meson Semileptonic Decays from the Lattice Lattice QCD Meets Experiment Workshop April 26-27, 2010 Fermilab presented by : Junko Shigemitsu The Ohio State University 1 Meson Semileptonic Decays

More information

Relativistic heavy quarks on the lattice

Relativistic heavy quarks on the lattice Relativistic heavy quarks on the lattice Christine Davies University of Glasgow HPQCD collaboration ECT* workshop April 2012 Charm and bottom physics Lattice QCD calculations important because: simple

More information

Lattice QCD on Blue Waters

Lattice QCD on Blue Waters Lattice QCD on Blue Waters PI: Paul Mackenzie (Fermilab) Presenter: Steven Gottlieb (Indiana) (USQCD) NCSA Blue Waters Symposium for Petascale Science and Beyond Sunriver Resort May 16-19, 2017 Collaborators

More information

Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration. CHARM2013, August 2013

Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration. CHARM2013, August 2013 Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration CHARM2013, August 2013 Quark masses are CDF fundamental parameters of the SM but cannot be directly

More information

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD tmft Collaboration: Pseudo-Critical Temperature and Thermal Equation of State from N f = Twisted Mass Lattice QCD F. Burger, M. Kirchner, M. Müller-Preussker Humboldt-Universität zu Berlin, Institut für

More information

D - physics. Svjetlana Fajfer. Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia

D - physics. Svjetlana Fajfer. Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia D - physics Svjetlana Fajfer Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia Heavy quarks and leptons, 16.10. 20.10. 2006, Munich, Germany 1 Outline Strong decays

More information

Light pseudoscalar masses and decay constants with a mixed action

Light pseudoscalar masses and decay constants with a mixed action Light pseudoscalar masses and decay constants with a mixed action Jack Laiho Washington University Christopher Aubin and Ruth Van de Water Lattice 2008 July 15, 2008 William + Mary, July 15, 2008 p.1/21

More information

Lattice QCD determination of quark masses and

Lattice QCD determination of quark masses and Lattice QCD determination of quark masses and s Christine Davies University of Glasgow HPQCD collaboration APS GHP2017 Washington Jan 2017 Quark masses and strong coupling are fundamental parameters of

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

Heavy-Meson Decay Constants: Isospin Breaking from QCD Sum Rules

Heavy-Meson Decay Constants: Isospin Breaking from QCD Sum Rules Heavy-Meson Decay Constants: Isospin Breaking from QCD Sum Rules Wolfgang Lucha 1,a, Dmitri Melikhov 1,2,3,b, and Silvano Simula 4,c 1 Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse

More information

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD FLAG: LATTICE FLAVOUR PHYSICS AND WORLD AVERAGES A. Vladikas INFN - TOR VERGATA Trento - ECT* 14th January 2013 Lattice QCD and Hadron Physics LPHA ACollaboration OUTLINE FLAG description and summary of

More information

Unquenched spectroscopy with dynamical up, down and strange quarks

Unquenched spectroscopy with dynamical up, down and strange quarks Unquenched spectroscopy with dynamical up, down and strange quarks CP-PACS and JLQCD Collaborations Tomomi Ishikawa Center for Computational Sciences, Univ. of Tsukuba tomomi@ccs.tsukuba.ac.jp 4th ILFTN

More information

Higgs mediated lepton flavour violation. Alejandro Celis

Higgs mediated lepton flavour violation. Alejandro Celis Higgs mediated lepton flavour violation Alejandro Celis (e-mail) IFIC, Universitat de Valencia-CSIC 29-02-2014 XLII International Meeting on Fundamental Pysics Benasque, Spain Contents Motivation to study

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

Lattice check of dynamical fermion mass generation

Lattice check of dynamical fermion mass generation Lattice check of dynamical fermion mass generation Petros Dimopoulos Centro Fermi & University of Rome Tor Vergata Workshop on the Standard Model and Beyond, Corfu, September 2-10, 2017 in collaboration

More information

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 23rd 2006 Contents 1. Spontaneous Symmetry

More information

MILC results and the convergence of the chiral expansion

MILC results and the convergence of the chiral expansion MILC results and the convergence of the chiral expansion MILC Collaboration + (for part) HPQCD, UKQCD Collaborations Benasque Center for Science, July 27, 2004 p.1 Collaborators MILC Collaboration: C.

More information

PoS(EPS-HEP2015)598. Strong decay of scalar B meson

PoS(EPS-HEP2015)598. Strong decay of scalar B meson Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-9145 Orsay Cedex, France E-mail: benoit.blossier@th.u-psud.fr The use of Heavy Meson Chiral Perturbation Theory is very

More information

Fundamental Parameters of QCD from the Lattice

Fundamental Parameters of QCD from the Lattice Fundamental Parameters of QCD from the Lattice Milano Bicocca, DESY Zeuthen GGI Firenze, Feb 2007 Introduction Coupling Masses Summary and Outlook QCD Lagrangian and Parameters L QCD (g 0, m 0 ) = 1 4

More information

Nonperturbative comparison of clover and HISQ quarks in lattice QCD and the properties of the φ meson

Nonperturbative comparison of clover and HISQ quarks in lattice QCD and the properties of the φ meson Nonperturbative comparison of clover and HISQ quarks in lattice QCD and the properties of the φ meson to create a B meson from the vacuum with the temporal axial current containing a bottom quark field

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

Precise determination of the lattice spacing in full lattice QCD

Precise determination of the lattice spacing in full lattice QCD Precise determination of the lattice spacing in full lattice QCD None of these quantities can be computed as accurately as r 1 /a in simulations, but we can combine simulation rearxiv:0910.1229v1 [hep-lat]

More information

PoS(LATTICE 2013)243. Hadron spectra from overlap fermions on HISQ gauge configurations.

PoS(LATTICE 2013)243. Hadron spectra from overlap fermions on HISQ gauge configurations. Hadron spectra from overlap fermions on HISQ gauge configurations. S. Basak a, S. Datta b, A. T. Lytle b, Padmanath M. b, P. Majumdar c, and b (Indian Lattice Gauge Theory Initiative) a School of Physical

More information

Low-energy QCD II Status of Lattice Calculations

Low-energy QCD II Status of Lattice Calculations Low-energy QCD II Status of Lattice Calculations Hartmut Wittig Institute for Nuclear Physics and Helmholtz Institute Mainz Determination of the Fundamental Parameters of QCD Nanyang Technical University

More information

Fractional momentum correlations in multiple production of W bosons and of b b pairs in high energy pp collisions

Fractional momentum correlations in multiple production of W bosons and of b b pairs in high energy pp collisions SMR.1751-43 Fift International Conference on PERSPECTIVES IN HARONIC PHYSICS Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies 22-26 May 26 Fractional momentum correlations in multiple

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

PoS(LATTICE 2013)001. Quark Flavor Physics Review

PoS(LATTICE 2013)001. Quark Flavor Physics Review Physics Department, University of Illinois, Urbana, Illinois 61801, USA Theoretical Physics Department, Fermilab, Batavia, IL 60510, USA E-mail: axk@illinois.edu I review the status of lattice-qcd calculations

More information

arxiv: v1 [hep-lat] 3 Nov 2009

arxiv: v1 [hep-lat] 3 Nov 2009 SU(2 chiral fits to light pseudoscalar masses and decay constants arxiv:0911.0472v1 [hep-lat] 3 Nov 2009 The MILC Collaboration: A. Bazavov, W. Freeman and D. Toussaint Department of Physics, University

More information

arxiv: v1 [hep-lat] 20 Mar 2014

arxiv: v1 [hep-lat] 20 Mar 2014 arxiv:1403.5252v1 [hep-lat] 20 Mar 2014 Physics Department, University of Illinois, Urbana, Illinois 61801, USA E-mail: axk@illinois.edu I review the status of lattice-qcd calculations relevant to quark

More information

Lattice QCD and Heavy Quark Physics

Lattice QCD and Heavy Quark Physics Christine Davies Department of Physics and Astronomy University of Glasgow Glasgow G12 8QQ, U.K. Lattice QCD results relevant to heavy quark physics are reviewed. In particular new results will be shown

More information

Vacuum stability with the effective six-pointed couplings of the Higgs bosons in the heavy supersymmetry

Vacuum stability with the effective six-pointed couplings of the Higgs bosons in the heavy supersymmetry Vacuum stability wit te effective six-pointed couplings of te Higgs bosons in te eavy supersymmetry Mikail Dubinin 1,2, and Elena Petrova 1,2, 1 Skobeltsyn Institute of Nuclear Pysics, Lomonosov Moscow

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

1 Introduction Radiative corrections can ave a significant impact on te predicted values of Higgs masses and couplings. Te radiative corrections invol

1 Introduction Radiative corrections can ave a significant impact on te predicted values of Higgs masses and couplings. Te radiative corrections invol RADCOR-2000-001 November 15, 2000 Radiative Corrections to Pysics Beyond te Standard Model Clint Eastwood 1 Department of Radiative Pysics California State University Monterey Bay, Seaside, CA 93955 USA

More information

arxiv: v1 [hep-lat] 7 Dec 2016

arxiv: v1 [hep-lat] 7 Dec 2016 arxiv:161.065v1 hep-lat 7 Dec 016 Dipartimento di Fisica, Università di Roma Tor Vergata and INFN, Sezione di Roma E-mail: frezzotti@roma.infn.it G.C. Rossi Dipartimento di Fisica, Università di Roma Tor

More information

Flavor Physics and Lattice QCD An emblematic study: the Unitarity Triangle Analysis. Cecilia Tarantino Università Roma Tre

Flavor Physics and Lattice QCD An emblematic study: the Unitarity Triangle Analysis. Cecilia Tarantino Università Roma Tre Flavor Physics and Lattice QCD An emblematic study: the Unitarity Triangle Analysis Cecilia Tarantino Università Roma Tre 1 Flavor Physics is complementary, in NP searches, to the direct production of

More information

Phenomenology with Lattice NRQCD b Quarks

Phenomenology with Lattice NRQCD b Quarks HPQCD Collaboration 16 July 2015 Our approaches to b quarks In Glasgow, we take two complementary approaches to b quarks: Nonrelativistic QCD and heavy HISQ. Here I will focus exclusively on NRQCD (for

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown The College of William & Mary E-mail: zsbrown@email.wm.edu William Detmold Massachusetts Institute of Technology E-mail: wdetmold@mit.edu Stefan Meinel Massachusetts Institute of Technology E-mail: smeinel@mit.edu

More information

arxiv: v1 [hep-lat] 27 Feb 2017

arxiv: v1 [hep-lat] 27 Feb 2017 arxiv:1703.00392v1 [hep-lat] 27 Feb 2017 School of Physics an Astronomy,University of Einburgh, EH9 3FD, Einburgh, UK E-mail: J.R.Kettle-2@sms.e.ac.uk Peter Boyle School of Physics an Astronomy,University

More information

Properties of the Spin-flip Amplitude of Hadron Elastic Scattering and Possible Polarization Effects at RHIC

Properties of the Spin-flip Amplitude of Hadron Elastic Scattering and Possible Polarization Effects at RHIC Properties of te Spin-flip Amplitude of Hadron Elastic Scattering and Possible Polarization Effects at RHIC arxiv:ep-p/0210418v1 30 Oct 2002 O. V. Selyugin 1 Joint Institute for Nuclear Researc, Dubna,

More information

Realistic shell-model calculations for double-beta decay based on chiral three-body forces

Realistic shell-model calculations for double-beta decay based on chiral three-body forces Realistic sell-model calculations for double-beta decay based on ciral tree-body forces Tokuro Fukui, L. Coraggio, L. De Angelis, A. Gargano, Y. Ma, and N. Itaco, Istituto Nazionale di Fisica Nucleare,

More information

Heavy Quarks with Domain Wall fermions

Heavy Quarks with Domain Wall fermions Heavy Quarks with Domain Wall fermions Justus Tobias Tsang RBC-UKQCD Collaborations University of Southampton 1 August 2016 1 / 34 Justus Tobias Tsang Heavy Quarks with Domain Wall fermions RBC-UKQCD Collaborations

More information

University of Groningen

University of Groningen University of Groningen First results of ETMC simulations with Nf=+1+1 maximally twisted mass fermions Baron, R.; Blossier, B.; Boucaud, P.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza,

More information

The kaon B-parameter from unquenched mixed action lattice QCD

The kaon B-parameter from unquenched mixed action lattice QCD The kaon B-parameter from unquenched mixed action lattice QCD Christopher Aubin Department of Physics, Columbia University, New York, NY, USA Department of Physics, College of William and Mary, Williamsburg,

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Cascades on the Lattice

Cascades on the Lattice Cascade Physics - Jlab 2005 Cascades on the Lattice Kostas Orginos College of William and Mary - JLab LHP Collaboration LHPC collaborators R. Edwards (Jlab) G. Fleming (Yale) P. Hagler (Vrije Universiteit)

More information

Nuclear electromagnetic charge and current operators in ChEFT

Nuclear electromagnetic charge and current operators in ChEFT Nuclear electromagnetic carge and current operators in CEFT Luca Girlanda Università del Salento & INFN Lecce collaborators: Saori Pastore, Bob Wiringa (ANL), Rocco Sciavilla, (Jlab), Laura Marcucci, Alejandro

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Lattice QCD Christine Davies University of Glasgow, HPQCD collaboration. Lepton-photon 2007 Daegu, Korea

Lattice QCD Christine Davies University of Glasgow, HPQCD collaboration. Lepton-photon 2007 Daegu, Korea Lattice QCD 2007 Christine Davies University of Glasgow, HPQCD collaboration Lepton-photon 2007 Daegu, Korea QCD is key part of SM but quark confinement tricky a Lattice QCD enables calcn of QCD effects

More information

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos CHARMED BOTTOM BARYON SPECTROSCOPY Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos 1 OUTLINE Landscape of heavy baryon spectroscopy Details of our calculation Extrapolations Results

More information

Decay constants of B and D mesons from improved relativistic lattice QCD with two flavors of sea quarks

Decay constants of B and D mesons from improved relativistic lattice QCD with two flavors of sea quarks PHYSICAL REVIEW D, VOLUME 64, 034505 Decay constants of B and D mesons from improved relativistic lattice QCD with two flavors of sea quarks A. Ali Khan, 1 S. Aoki, 2 R. Burkhalter, 1,2 S. Ejiri, 1 M.

More information

Nucleon structure from 2+1-flavor dynamical DWF ensembles

Nucleon structure from 2+1-flavor dynamical DWF ensembles Nucleon structure from 2+1-flavor dynamical DWF ensembles Michael Abramczyk Department of Physics, University of Connecticut, Storrs, CT 06269, USA E-mail: michael.abramczyk@uconn.edu Meifeng Lin Computational

More information

arxiv:hep-lat/ v2 8 Sep 2005

arxiv:hep-lat/ v2 8 Sep 2005 Charmed-Meson Decay Constants in Three-Flavor Lattice QCD arxiv:hep-lat/0506030 v2 8 Sep 2005 C. Aubin, 1 C. Bernard, 2 C. DeTar, 3 M. Di Pierro, E. D. Freeland, 5 Steven Gottlieb, 6 U. M. Heller, 7 J.

More information

arxiv: v2 [hep-lat] 20 Nov 2016

arxiv: v2 [hep-lat] 20 Nov 2016 Kaon semileptonic decays with N f = 2 + 1 + 1 HISQ fermions and physical light-quark masses a, A. Bazavov b, C. Bernard c, C. DeTar d, D. Du e, A.X. El-Khadra f, E.D. Freeland g, Steven Gottlieb h, U.M.

More information

Chiral perturbation theory with physical-mass ensembles

Chiral perturbation theory with physical-mass ensembles Chiral perturbation theory with physical-mass ensembles Steve Sharpe University of Washington S. Sharpe, Future of ChPT for LQCD 5/19/16 @ TUM-IAS EFT workshop 1 /35 ChPT for LQCD: Does it have a future?

More information

(Towards) Baryon Resonances from Lattice QCD

(Towards) Baryon Resonances from Lattice QCD (Towards) Baryon Resonances from Lattice QCD Daniel Mohler Fermilab Theory Group Batavia, IL, USA Paphos, October 2013 Daniel Mohler (Fermilab) Baryon Resonances from Lattice QCD Paphos, October 2013 1

More information

The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data

The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data L. Alvarez-Ruso 1, T. Ledwig 1, J. Martin-Camalich, M. J. Vicente-Vacas 1 1 Departamento de Física Teórica

More information

Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies

Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies University of Glasgow HPQCD and UKQCD collaborations Key aim of HPQCD collabn: accurate calcs in lattice QCD,

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Advances in Open Charm Physics at CLEO-c

Advances in Open Charm Physics at CLEO-c Advances in Open Charm Physics at CLEO-c Paras Naik CLEO-c 2230104-002 Solenoid Coil Barrel Calorimeter Ring Imaging Cherenkov Detector Drift Chamber Inner Drift Chamber / Beampipe SC Quadrupole Pylon

More information

Masses and decay constants of the light mesons in the quenched approximation using the tadpole improved SW-clover action.

Masses and decay constants of the light mesons in the quenched approximation using the tadpole improved SW-clover action. Glasgow Preprint GUTPA 95 9 2 Liverpool Preprint LTH 359 arxiv:hep-lat/9509083v1 25 Sep 1995 hep-lat/9509083 Masses and decay constants of the light mesons in the quenched approximation using the tadpole

More information