I. INTRODUCTION In this work we analize the slow roll approximation in cosmological moels of nonminimally couple theories of gravity (NMC) starting fr

Size: px
Start display at page:

Download "I. INTRODUCTION In this work we analize the slow roll approximation in cosmological moels of nonminimally couple theories of gravity (NMC) starting fr"

Transcription

1 Slow Roll Ination in Non-Minimally Couple Theories: Hyperextene Gravity Approach Diego F. Torres Departamento e Fsica, Universia Nacional e La Plata C.C. 67, 900, La Plata, Buenos Aires, Argentina Abstract The slow roll approximation is stuie for cosmological moels in Hyperextene Scalar-Tensor Theories of Gravity. A proceure to obtain slow roll solutions in non-minimally couple gravity is outline an some examples are provie. An integral conition over the functional form of the non-minimal coupling is impose in orer to obtain intermeiate inationary behavior. torres@venus.sica.unlp.eu.ar

2 I. INTRODUCTION In this work we analize the slow roll approximation in cosmological moels of nonminimally couple theories of gravity (NMC) starting from the complete two free functions lagrangian ensity of Hyperextene Scalar-Tensor Theories (HSTG) []. These HSTG are ierent from both, generalize Brans-Dicke (BD) cases an an NMC cases, when there are non-invertible functions of the el involve in the lagrangian. This give rise to the representation of a singularity in the el transformation which allows the passage from a NMC lagrangian to a BD one []. HSTG may reuce itself either to BD or to NMC whenever convenient. In past work, exact cosmological solutions were obtaine for these moels in the case of vacuum, raiation an sti matter universes []. Concerning ination, exact an approximate solutions were foun for particular scalar-tensor theories []. The slow roll approximation [4] were analize by Garcia Bellio, Line an Line in the case of BD gravity [] an later by Barrow for generalize BD gravity with power law couplings [6]. Here, we are going to present the slow roll approximation in the context of HSTG. We work out, following the metho use by Barrow, examples for non-minimally couple gravity. We impose an integral vinculum over the form of the non-minimal coupling in orer to have intermeiate ination behavior. II. HYPEREXTENDED SCALAR-TENSOR THEORIES AND THE SLOW ROLL APPROXIMATION The hyperextene scalar-tensor el equations are erive from the action: S = p g "6L M + K() ; ; + G() R () From now on, we shall call K() =!() to facilitate the comparison with the BD cases. This must be unerstoo only as a change in the names of the functions. Taking variational erivatives from () with respect to the ynamical variables g an we get the el equations. We are intereste in an isotropical an homogeneous universe. We shall have

3 a metric ene by a Friemann-Robertson-walker one with zero curvature an a stressenergy tensor for matter given by the euce from a lagrangian ensity of another scalar el with self interaction potential V (). Finally, these equations become: H 4 _ +! H G _ G! 6 _ G! + G = G = 8 G _ + V () G G () 8 h 4V () _ i () +H_+V 0 ()=0 (4) where we have ene = 4!! G G! 6 G 4 G! + G G G () an H as usual. These equations reuce to those of GR when equals to a constant an to those of BD when G equals =. In orer to examine the forms of ination that can arise in these kin of moels, we are going to assume the slow roll approximation given by: H _ (6) _ V () (7) H _ H (8) The last conition requires a scalar el which evolves slowly with respect to the expansion of the universe an was stuie an applie in the context of both, BD gravity [] an generalize BD gravity [6]. Conition (8) may be use to x a similar one, suitable to be applie in the more general case. It is possible to see that, for any function f positive ene an with a convergent Taylor serie, conition (8) may be transforme to f() H _ f() H f() (9)

4 in any case in which 9n=n N ^ n _ ' H. In particular, the choice f = G makes possible to x useful simplications on the el equations (-4). Finally, the slow roll el equations become: H _ ' V 0 () (0) _ 4 +H _! H '! _ G + 8 G! + G ' GV () () G V () () G The leaing orer terms referre in the slow roll equations also reuce to the BD ones when G == as expecte (see reference [6] for comparison). From here, an in orer to procee further, it is necessary to ene both,!() an G() together with the form of the potential V () for the inaton. In [6], a complete xing of the problem was obtaine by ening the functional form of the coupling, in that case a power law. We propose now, using the freeom given by having two generic functions instea of one, to sketch how general analytical solutions for the slow roll equations for non-minimally couple theories may be obtaine. From now on, we are going to use equalities even when we only have approximate expressions. III. SLOW ROLL SOLUTIONS OF NON-MINIMALLY COUPLED GRAVITY The NMC theories of gravitywere obtaine in the previous formalism ening! = =. We shall impose that, in orer to recover the Einstein's regime at large times an to be consistent with solar system tests of gravity, (G _ ) 4! 0 when t![7]. This conition is (G ) satise when G tens to a constant without asymptotic variations in the rst erivative. This matching approximation carries the factor in the previous equations to a, given by: "!! G! a = () G 4

5 Finally, the NMC slow roll equations may be written as H _ = V 0 () (4) H = 4 _ G +8GV () () _ G G +H_ 4 G! + G G = V () (6) G A further application of the slow roll conition on (6) allows to write it as H 4 _ G! + G G = V () (7) G Using () in (7) an suppossing that G oes not iverge we obtain an aitional prouct of the slow roll equations: H _ 4 + G G! = Note that the secon term on the left behaves as oes as G G H G (8) 9 G G H (G _ ) while that on the right G G H G an so we are allowe to have another simplication H _ = G G H (9) This last equation may be reaily integrate as G =4ln a a 0 (0) with a 0 a constant of integration; thus giving = (a) for every selection which makes invertible the result of the integral an a = a() always. To n = (t) it is necessary to specify the form of the potential. Let us consier some common cases.

6 A. V () =V 0 =constant The case of constant potential allows complete integration. From the previous paragraph we have H G =8V 0 () Replacing the value of H in (9) we obtain G = G =4 8V0 (t t0 ) () with t 0 a constant ofintegration. Dening the gravitational theory by giving the form of G, () gives t = t() an, in the cases in which inversion is possible, = (t). In such cases, it will be also possible then, to replace in (0) to have a = a(t). We see that the proceure followe here continues the line of that presente by Barrow [6] in the case of given coupling of a BD theory; an as that, this enable to see the form of ination (if any) in a particular gravity theory by integrating an inverting two ierential equations. B. V () =V 0 exp ( ); V 0 ; = constants With this exponential form for the inaton potential the slow roll equations become H _ = V 0 exp () () H G =8V 0 exp ( ) (4) H 4 _ G! + G G = G V 0 exp () () Dening as in [6] a new time coorinate as t = H (6) 6

7 the equations are integrable again: () = lnh i V 0 ( + 0 ) (7) + G G G G = ln [ + 0 ] (8) Deng G an inverting (8) to get as a function of one can use the slow roll equation (4) to nally obtain the behavior of H. C. V () =V 0 r ;V 0 ;r = constant an r 6= With the same time variable, we have now: 0 = rv 0 r (9) an the solutions are: G H G =8V 0 r (0) G! G = G V 0 r () () =[4r( r)v 0 ( 0 )] + G G G G =V 0 [4r( ( r) () r)v 0 ] r r (0 ) ( r) () with 0 a constant of integration. IV. SLOW ROLL SOLUTIONS: EXAMPLES Let us rst show how the formalism works for integrable an invertible examples which o not require numerical recipes an amit comparison with previous works. 7

8 A. G = n, n 6= ;4an V = V 0 = constant We are ealing with the lagrangian ensity given by L = n R + ; ; +6L m (4) Equation (0) may be integrate to give (a) n+ = 4n( n) ln(a=a 0 ) () Equation () may also be integrate: an so (t) n=+ = 4n n + 8V0 t (6) (t) / t n+4 (7) This last relationship, use in () gives a(t)! n+ / exp ( t n+4) (8) a 0 a(t) When n grows, the behavior of the scale factor tens to a 0 / exp [t ]. We have to consier now if these solutions are consistent with the slow roll approximations. We see that _ H for all n greater that 4 an lower than an that the approximation fails in the interval (; 4). The slow roll solutions foun have the form of those of intermeiate ination, in which the scale factor expans more slowly than for De Sitter case but faster than for power law ination []. The consistency of the to a passage may be also teste, we n that G / t n 4 n an so, it is a ecreasing quantity with t. B. G =, V = V 0 = constant The lagrangian ensity given by L = R + ; ; +6L m (9) 8

9 was mainly stuie by the Naples group in relation with scalar potentials an ination [8]. Using equation (0) we get (a) / a 8 a 0 (40) an with equation () (t) =ct (4) with c a constant. It may be verie with these solutions that both, the universe is not in expansion an the slow roll conition is not satise; an so, they must be iscare. C. G = 4, V = V 0 = constant Equation (0) gives in this case a / exp[ ] (4) a 0 while (), / exp[ t] (4) Thus, the behavior of the scale factor with time is given by a / exp [exp[t]] (44) Here, the scale factor appears to exhibit an extreme form of ination. It may beprove that j _ jan G H! 0 when t is large enough. The evolution of () can be foun from equation (4) in each of the cases previously analize since _ / a. D. Spaning of Intermeiate Ination Solutions We are willing now to stuy in a completely general form which kin of couplings may allow intermeiate ination behavior. For simplicity we shall use the case of constant potential. 9

10 In our stuy, we shall have two important equations: (0), which is potential inepenent, an (). From the integration of (0), it may inmeiately be seen that, in orer to have a scale factor evolving as 4 R it is necessary to have t m =, that is: G Deriving with respect to we get: m a(t) / exp [t m ] (4) G = G G G = G m = G G G G which is an integral vinculum over the functional form of G(). Although highly non-linear, equation (47) is very suggestive. It may beprove that G() = with m = (+) 4+ (46) (47) is one of its solutions, as expecte, since we n intermeiate ination behavior for it in the previous section. This case was alreay stuie concerning the fulllment of the slow roll conitions. Also the choice G() =exp [], with a constant, is a solution of (47). For such choice, using the previously erive metho we obtain: an a / exp[t ] (48) / ln [t] (49) It is woth recalling that the behavior of the sclae factor in (48) coincies with that of G = if is large enough. The exponential form of G is such that the slow roll an the! a conitions are fullle. V. DISCUSSION Starting from the hyperextene approach of scalar-tensor theories, we have formulate the slow roll approximation in non-minimally couple gravity. The solutions were given in 0

11 the form of two integrals that may be solve analytically in some cases an numerically in all cases. These integrals give the behavior of as function of a an t. Properly inversion (again analytically or numerically) gives so, a an as functions of time. We stuie constant, power law an exponential forms for the inaton potential. Some examples that show intermeiate ination were presente for power law non-minimally couplings in agreement with the results of power-law couplings in BD theories. An integral vinculum for the functional form of G was stablishe in orer to evelop intermeiate ination behavior an some examples were provie. VI. ACKNOWLEDGMENTS This work was partially supporte by CONICET. Valuable conversations with H. Vucetich are acknolege.

12 REFERENCES [] D.F. Torres an H. Vucetich. At press in Phys. Rev. D. See also N. Sakai an K. Maea, Prog. of Theor. Phys. 90, 00, 99 [] A.R. Lile an D. Wans, Phys. Rev. D 4, 66 (99) [] D. La an P.J. Steinhart, Phys. Rev. Lett. 6, 76 (989); P.J. Steinhart an F.S. Ascetta, Phys. Rev. Lett. 64, 470 (990) J.D. Barrow an J.P. Mimoso, Phys. Rev. D 0, 746 (994); J.D. Barrow, Phys. Lett. B, 40 (990); J.D. Barrow an P. Saich, ibi. 49, 406 (990) J. Garcia Bellio an M. Quiros, Phys. Lett. B 4, 4 (990) [4] See for example: P. Coles an F. Lucchin, Cosmology, John Wiley 99. For a more rigurous approach: A. Lile, P. Parsons an J.D. Barrow, Phys. Rev. D. 0, 7 (994) [] J. Garcia-Bellio, A. Line an D. Line, Phys. Rev. D 0, 70 (994) [6] J.D. Barrow, Phys. Rev. D, 79 (994) [7] S. Capozziello, R. e Ritis an P. Scuellaro, Phys. Lett. A 88, 0 (994). [8] S. Capozziello an R. e Ritis, Phys. Lett. A 9, 48 (994). See also: ibi. 77, (99) an references therein.

arxiv:gr-qc/ v1 17 Dec 1996

arxiv:gr-qc/ v1 17 Dec 1996 Classes of Anisotropic Cosmologies of Scalar-Tensor Gravitation Diego F. Torres Departamento de Física - Universidad Nacional de La Plata C.C. 67, C. P. 1900, La Plata, Buenos Aires, Argentina arxiv:gr-qc/9612048v1

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters Sudipto Roy 1, Soumyadip Chowdhury 2 1 Assistant Professor, Department of Physics, St. Xavier s College, Kolkata,

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments Problem F U L W D g m 3 2 s 2 0 0 0 0 2 kg 0 0 0 0 0 0 Table : Dimension matrix TMA 495 Matematisk moellering Exam Tuesay December 6, 2008 09:00 3:00 Problems an solution with aitional comments The necessary

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

1 Introuction In the past few years there has been renewe interest in the nerson impurity moel. This moel was originally propose by nerson [2], for a

1 Introuction In the past few years there has been renewe interest in the nerson impurity moel. This moel was originally propose by nerson [2], for a Theory of the nerson impurity moel: The Schrieer{Wol transformation re{examine Stefan K. Kehrein 1 an nreas Mielke 2 Institut fur Theoretische Physik, uprecht{karls{universitat, D{69120 Heielberg, F..

More information

Formulation of statistical mechanics for chaotic systems

Formulation of statistical mechanics for chaotic systems PRAMANA c Inian Acaemy of Sciences Vol. 72, No. 2 journal of February 29 physics pp. 315 323 Formulation of statistical mechanics for chaotic systems VISHNU M BANNUR 1, an RAMESH BABU THAYYULLATHIL 2 1

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Lie symmetry and Mei conservation law of continuum system

Lie symmetry and Mei conservation law of continuum system Chin. Phys. B Vol. 20, No. 2 20 020 Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

arxiv: v1 [physics.class-ph] 20 Dec 2017

arxiv: v1 [physics.class-ph] 20 Dec 2017 arxiv:1712.07328v1 [physics.class-ph] 20 Dec 2017 Demystifying the constancy of the Ermakov-Lewis invariant for a time epenent oscillator T. Pamanabhan IUCAA, Post Bag 4, Ganeshkhin, Pune - 411 007, Inia.

More information

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7.

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7. Lectures Nine an Ten The WKB Approximation The WKB metho is a powerful tool to obtain solutions for many physical problems It is generally applicable to problems of wave propagation in which the frequency

More information

u t v t v t c a u t b a v t u t v t b a

u t v t v t c a u t b a v t u t v t b a Nonlinear Dynamical Systems In orer to iscuss nonlinear ynamical systems, we must first consier linear ynamical systems. Linear ynamical systems are just systems of linear equations like we have been stuying

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

arxiv:gr-qc/ v3 12 Apr 2006

arxiv:gr-qc/ v3 12 Apr 2006 Acceleration from M theory an Fine-tuning arxiv:gr-qc/0602055v3 12 Apr 2006 Yungui Gong an Anzhong Wang College of Electronic Engineering, Chongqing University of Posts an Telecommunications, Chongqing

More information

Generalization of the persistent random walk to dimensions greater than 1

Generalization of the persistent random walk to dimensions greater than 1 PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Generalization of the persistent ranom walk to imensions greater than 1 Marián Boguñá, Josep M. Porrà, an Jaume Masoliver Departament e Física Fonamental,

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

The effect of nonvertical shear on turbulence in a stably stratified medium

The effect of nonvertical shear on turbulence in a stably stratified medium The effect of nonvertical shear on turbulence in a stably stratifie meium Frank G. Jacobitz an Sutanu Sarkar Citation: Physics of Fluis (1994-present) 10, 1158 (1998); oi: 10.1063/1.869640 View online:

More information

Accelerate Implementation of Forwaring Control Laws using Composition Methos Yves Moreau an Roolphe Sepulchre June 1997 Abstract We use a metho of int

Accelerate Implementation of Forwaring Control Laws using Composition Methos Yves Moreau an Roolphe Sepulchre June 1997 Abstract We use a metho of int Katholieke Universiteit Leuven Departement Elektrotechniek ESAT-SISTA/TR 1997-11 Accelerate Implementation of Forwaring Control Laws using Composition Methos 1 Yves Moreau, Roolphe Sepulchre, Joos Vanewalle

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

G j dq i + G j. q i. = a jt. and

G j dq i + G j. q i. = a jt. and Lagrange Multipliers Wenesay, 8 September 011 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

Nested Saturation with Guaranteed Real Poles 1

Nested Saturation with Guaranteed Real Poles 1 Neste Saturation with Guarantee Real Poles Eric N Johnson 2 an Suresh K Kannan 3 School of Aerospace Engineering Georgia Institute of Technology, Atlanta, GA 3332 Abstract The global stabilization of asymptotically

More information

and from it produce the action integral whose variation we set to zero:

and from it produce the action integral whose variation we set to zero: Lagrange Multipliers Monay, 6 September 01 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

Brazilian Journal of Physics, vol. 28, no. 1, March, Electrodynamics. Rua Pamplona,145, S~ao Paulo, SP, Brazil

Brazilian Journal of Physics, vol. 28, no. 1, March, Electrodynamics. Rua Pamplona,145, S~ao Paulo, SP, Brazil Brazilian Journal of Physics, vol. 28, no., March, 998 35 One An The Same oute Two Outstaning Electroynamics Antonio Accioly () an Hatsumi Mukai (2) () Instituto e Fsica Teorica, Universiae Estaual Paulista,

More information

arxiv:gr-qc/ v1 4 Dec 1997

arxiv:gr-qc/ v1 4 Dec 1997 Proof of the cosmic no-hair conjecture for quadratic homogeneous cosmologies arxiv:gr-qc/97106v1 4 Dec 1997 S Cotsakis, J Miritzis Department of Mathematics, University of the Aegean, Karlovassi 8300,

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Derivation of angular momentum balance law using the cauchy stress tensor measure. (HW#4, MAE 295. UCI)

Derivation of angular momentum balance law using the cauchy stress tensor measure. (HW#4, MAE 295. UCI) Derivation of angular momentum balance law using the cauchy stress tensor measure. (HW#4, MAE 295. UCI) by Nasser Abbasi February 28, 2006 Problem Derive the angular momentum balance (AMB) equation for

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Calculus and optimization

Calculus and optimization Calculus an optimization These notes essentially correspon to mathematical appenix 2 in the text. 1 Functions of a single variable Now that we have e ne functions we turn our attention to calculus. A function

More information

How the potentials in different gauges yield the same retarded electric and magnetic fields

How the potentials in different gauges yield the same retarded electric and magnetic fields How the potentials in ifferent gauges yiel the same retare electric an magnetic fiels José A. Heras a Departamento e Física, E. S. F. M., Instituto Politécnico Nacional, México D. F. México an Department

More information

arxiv: v1 [gr-qc] 24 Jan 2019

arxiv: v1 [gr-qc] 24 Jan 2019 A moment approach to compute quantum-gravity effects in the primorial universe Davi Brizuela 1 an Unai Muniain Fisika Teorikoa eta Zientziaren Historia Saila, UPV/EHU, 644 P.K., 48080 Bilbao, Spain arxiv:1901.08391v1

More information

initial configuration initial configuration end

initial configuration initial configuration end Design of trajectory stabilizing feeback for riftless at systems M. FLIESS y J. L EVINE z P. MARTIN x P. ROUCHON { ECC95 Abstract A esign metho for robust stabilization of riftless at systems aroun trajectories

More information

Tensors, Fields Pt. 1 and the Lie Bracket Pt. 1

Tensors, Fields Pt. 1 and the Lie Bracket Pt. 1 Tensors, Fiels Pt. 1 an the Lie Bracket Pt. 1 PHYS 500 - Southern Illinois University September 8, 2016 PHYS 500 - Southern Illinois University Tensors, Fiels Pt. 1 an the Lie Bracket Pt. 1 September 8,

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

ON THE RIEMANN EXTENSION OF THE SCHWARZSCHILD METRICS

ON THE RIEMANN EXTENSION OF THE SCHWARZSCHILD METRICS ON THE RIEANN EXTENSION OF THE SCHWARZSCHILD ETRICS Valerii Dryuma arxiv:gr-qc/040415v1 30 Apr 004 Institute of athematics an Informatics, AS R, 5 Acaemiei Street, 08 Chisinau, olova, e-mail: valery@ryuma.com;

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

FRW solutions and holography from uplifted AdS/CFT

FRW solutions and holography from uplifted AdS/CFT SLAC-PUB-14552 SU-ITP-11/44 NSF-KITP-11-196 FRW solutions an holography from uplifte AS/CFT Xi Dong, 1 Bart Horn, 1 Shunji Matsuura, 2,1 Eva Silverstein, 1 Gonzalo Torroba 1 1 Stanfor Institute for Theoretical

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

the solution of ()-(), an ecient numerical treatment requires variable steps. An alternative approach is to apply a time transformation of the form t

the solution of ()-(), an ecient numerical treatment requires variable steps. An alternative approach is to apply a time transformation of the form t Asymptotic Error Analysis of the Aaptive Verlet Metho Stephane Cirilli, Ernst Hairer Beneict Leimkuhler y May 3, 999 Abstract The Aaptive Verlet metho [7] an variants [6] are time-reversible schemes for

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Chapter 6: Energy-Momentum Tensors

Chapter 6: Energy-Momentum Tensors 49 Chapter 6: Energy-Momentum Tensors This chapter outlines the general theory of energy an momentum conservation in terms of energy-momentum tensors, then applies these ieas to the case of Bohm's moel.

More information

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012 CS-6 Theory Gems November 8, 0 Lecture Lecturer: Alesaner Mąry Scribes: Alhussein Fawzi, Dorina Thanou Introuction Toay, we will briefly iscuss an important technique in probability theory measure concentration

More information

Modified Geroch Functional and Submanifold Stability in Higher Dimension

Modified Geroch Functional and Submanifold Stability in Higher Dimension Avance Stuies in Theoretical Physics Vol. 1, 018, no. 8, 381-387 HIKARI Lt, www.m-hikari.com https://oi.org/10.1988/astp.018.8731 Moifie Geroch Functional an Submanifol Stability in Higher Dimension Flinn

More information

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS VI International Conference on Computational Methos for Couple Problems in Science an Engineering COUPLED PROBLEMS 15 B. Schrefler, E. Oñate an M. Paparakakis(Es) COUPLING REQUIREMENTS FOR WELL POSED AND

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

3-dimensional Evolution of an Emerging Flux Tube in the Sun. T. Magara

3-dimensional Evolution of an Emerging Flux Tube in the Sun. T. Magara 3-imensional Evolution of an Emerging Flux Tube in the Sun T. Magara (Montana State University) February 6, 2002 Introuction of the stuy Dynamical evolution of emerging fiel lines Physical process working

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Generalized Tractability for Multivariate Problems

Generalized Tractability for Multivariate Problems Generalize Tractability for Multivariate Problems Part II: Linear Tensor Prouct Problems, Linear Information, an Unrestricte Tractability Michael Gnewuch Department of Computer Science, University of Kiel,

More information

The continuity equation

The continuity equation Chapter 6 The continuity equation 61 The equation of continuity It is evient that in a certain region of space the matter entering it must be equal to the matter leaving it Let us consier an infinitesimal

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

State-Space Model for a Multi-Machine System

State-Space Model for a Multi-Machine System State-Space Moel for a Multi-Machine System These notes parallel section.4 in the text. We are ealing with classically moele machines (IEEE Type.), constant impeance loas, an a network reuce to its internal

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

Introduction to Markov Processes

Introduction to Markov Processes Introuction to Markov Processes Connexions moule m44014 Zzis law Gustav) Meglicki, Jr Office of the VP for Information Technology Iniana University RCS: Section-2.tex,v 1.24 2012/12/21 18:03:08 gustav

More information

The dynamics of the simple pendulum

The dynamics of the simple pendulum .,, 9 G. Voyatzis, ept. of Physics, University of hessaloniki he ynamics of the simple penulum Analytic methos of Mechanics + Computations with Mathematica Outline. he mathematical escription of the moel.

More information

Bianchi Type-VI Inflationary Universe in General Relativity

Bianchi Type-VI Inflationary Universe in General Relativity March 01 Vol. 3 Issue 5 pp. 7-79 Katore S. D. & Chopade B. B. Bianchi Type-VI Inflationary Universe in General Relativity Bianchi Type-VI Inflationary Universe in General Relativity 7 Article Shivdas.

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

arxiv:hep-th/ v2 20 Sep 2000

arxiv:hep-th/ v2 20 Sep 2000 UOSTP 99-105 SNUST 99-0 hep-th/990173 revise version Cosmic Holography 1 arxiv:hep-th/990173v 0 Sep 000 Dongsu Bak 1 an Soo-Jong Rey Physics Department, University of Seoul, Seoul 130-743 Korea 1 Physics

More information

Advanced Partial Differential Equations with Applications

Advanced Partial Differential Equations with Applications MIT OpenCourseWare http://ocw.mit.eu 18.306 Avance Partial Differential Equations with Applications Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.eu/terms.

More information

A Modification of the Jarque-Bera Test. for Normality

A Modification of the Jarque-Bera Test. for Normality Int. J. Contemp. Math. Sciences, Vol. 8, 01, no. 17, 84-85 HIKARI Lt, www.m-hikari.com http://x.oi.org/10.1988/ijcms.01.9106 A Moification of the Jarque-Bera Test for Normality Moawa El-Fallah Ab El-Salam

More information

Evaporating droplets tracking by holographic high speed video in turbulent flow

Evaporating droplets tracking by holographic high speed video in turbulent flow Evaporating roplets tracking by holographic high spee vieo in turbulent flow Loïc Méès 1*, Thibaut Tronchin 1, Nathalie Grosjean 1, Jean-Louis Marié 1 an Corinne Fournier 1: Laboratoire e Mécanique es

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

On the problem of inflation in non-linear multidimensional cosmological models. Odessa National University

On the problem of inflation in non-linear multidimensional cosmological models. Odessa National University On the problem of inflation in non-linear multiimensional cosmological moels Alexaner Zhuk, Tamerlan Saiov Oessa National niversity -imensional factorizable geometry: g g ( ( x n i L Pl e β i ( x g ( i

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time.

In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time. Cosmological models In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time. The expansion is described by the scale factor R(t).

More information

Variational principle for limit cycles of the Rayleigh van der Pol equation

Variational principle for limit cycles of the Rayleigh van der Pol equation PHYICAL REVIEW E VOLUME 59, NUMBER 5 MAY 999 Variational principle for limit cycles of the Rayleigh van er Pol equation R. D. Benguria an M. C. Depassier Faculta e Física, Pontificia Universia Católica

More information

Singularities of varying light speed cosmologies

Singularities of varying light speed cosmologies Journal of Physics: Conference Series Singularities of varying light speed cosmologies To cite this article: John Miritzis and Spiros Cotsakis 2007 J. Phys.: Conf. Ser. 8 012019 View the article online

More information

arxiv:gr-qc/ v1 2 Apr 1997

arxiv:gr-qc/ v1 2 Apr 1997 Boson Stars in General Scalar-Tensor Gravitation: Equilibrium Configurations Diego F. Torres Departamento de Física, Universidad Nacional de La Plata, C.C. 67, C. P. 1900, La Plata, Buenos Aires, Argentina

More information

Rules of Differentiation

Rules of Differentiation LECTURE 2 Rules of Differentiation At te en of Capter 2, we finally arrive at te following efinition of te erivative of a function f f x + f x x := x 0 oing so only after an extene iscussion as wat te

More information

Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Bair, faculty.uml.eu/cbair University of Massachusetts Lowell 1. Pre-Einstein Relativity - Einstein i not invent the concept of relativity,

More information

A nonlinear inverse problem of the Korteweg-de Vries equation

A nonlinear inverse problem of the Korteweg-de Vries equation Bull. Math. Sci. https://oi.org/0.007/s3373-08-025- A nonlinear inverse problem of the Korteweg-e Vries equation Shengqi Lu Miaochao Chen 2 Qilin Liu 3 Receive: 0 March 207 / Revise: 30 April 208 / Accepte:

More information

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers Optimal Variable-Structure Control racking of Spacecraft Maneuvers John L. Crassiis 1 Srinivas R. Vaali F. Lanis Markley 3 Introuction In recent years, much effort has been evote to the close-loop esign

More information

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis The Kepler Problem For the Newtonian 1/r force law, a miracle occurs all of the solutions are perioic instea of just quasiperioic. To put it another way, the two-imensional tori are further ecompose into

More information

Topological Ination in Dual Superstring Models. M. C. Bento and O. Bertolami. Departamento de Fsica, Instituto Superior Tecnico

Topological Ination in Dual Superstring Models. M. C. Bento and O. Bertolami. Departamento de Fsica, Instituto Superior Tecnico DF/IST{2.96 Topological Ination in Dual Superstring Models M. C. Bento and O. Bertolami Departamento de Fsica, Instituto Superior Tecnico Av. Rovisco Pais, 1096 Lisboa Codex, Portugal Abstract We study

More information

Polynomial Inclusion Functions

Polynomial Inclusion Functions Polynomial Inclusion Functions E. e Weert, E. van Kampen, Q. P. Chu, an J. A. Muler Delft University of Technology, Faculty of Aerospace Engineering, Control an Simulation Division E.eWeert@TUDelft.nl

More information

Optimized Schwarz Methods with the Yin-Yang Grid for Shallow Water Equations

Optimized Schwarz Methods with the Yin-Yang Grid for Shallow Water Equations Optimize Schwarz Methos with the Yin-Yang Gri for Shallow Water Equations Abessama Qaouri Recherche en prévision numérique, Atmospheric Science an Technology Directorate, Environment Canaa, Dorval, Québec,

More information

Charge { Vortex Duality. in Double-Layered Josephson Junction Arrays

Charge { Vortex Duality. in Double-Layered Josephson Junction Arrays Charge { Vortex Duality in Double-Layere Josephson Junction Arrays Ya. M. Blanter a;b an Ger Schon c a Institut fur Theorie er Konensierten Materie, Universitat Karlsruhe, 76 Karlsruhe, Germany b Department

More information

Nonsingular big-bounce cosmology from spin and torsion

Nonsingular big-bounce cosmology from spin and torsion Nonsingular big-bounce cosmology from spin and torsion Nikodem J. Popławski Department of Physics, Indiana University, Bloomington, IN 22 nd Midwest Relativity Meeting University of Chicago, Chicago, IL

More information

EVALUATING HIGHER DERIVATIVE TENSORS BY FORWARD PROPAGATION OF UNIVARIATE TAYLOR SERIES

EVALUATING HIGHER DERIVATIVE TENSORS BY FORWARD PROPAGATION OF UNIVARIATE TAYLOR SERIES MATHEMATICS OF COMPUTATION Volume 69, Number 231, Pages 1117 1130 S 0025-5718(00)01120-0 Article electronically publishe on February 17, 2000 EVALUATING HIGHER DERIVATIVE TENSORS BY FORWARD PROPAGATION

More information

Energy behaviour of the Boris method for charged-particle dynamics

Energy behaviour of the Boris method for charged-particle dynamics Version of 25 April 218 Energy behaviour of the Boris metho for charge-particle ynamics Ernst Hairer 1, Christian Lubich 2 Abstract The Boris algorithm is a wiely use numerical integrator for the motion

More information

Applications of the Wronskian to ordinary linear differential equations

Applications of the Wronskian to ordinary linear differential equations Physics 116C Fall 2011 Applications of the Wronskian to orinary linear ifferential equations Consier a of n continuous functions y i (x) [i = 1,2,3,...,n], each of which is ifferentiable at least n times.

More information

A simple model for the small-strain behaviour of soils

A simple model for the small-strain behaviour of soils A simple moel for the small-strain behaviour of soils José Jorge Naer Department of Structural an Geotechnical ngineering, Polytechnic School, University of São Paulo 05508-900, São Paulo, Brazil, e-mail:

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 6 First Orer Linear Differential Equations A linear first orer orinary ifferential equation is a ifferential equation of the form ( a(xy + b(xy = c(x. Here y represents the unknown function, y

More information

ATTITUDE STABILIZATION OF A SATELLITE BY MAGNETIC COILS

ATTITUDE STABILIZATION OF A SATELLITE BY MAGNETIC COILS Acta Astronautica Vol. 50, No. 12, pp. 721 728, 2002? 2002 Publishe by Elsevier Science Lt. Printe in Great Britain www.elsevier.com/locate/actaastro PII: S0094-5765(02)00011-5 0094-5765/02/$ - see front

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Department of Physics, Visva-Bharati University, Santiniketan , India 2

Department of Physics, Visva-Bharati University, Santiniketan , India 2 On the non-star Lagrangian equations Aparna Saha Benoy Talukar Department of Physics, Visva-Bharati University, Santiniketan 7335, Inia Nutan Palli, Bolpur 7304, Inia Email. aparna_phyvb@yahoo.co.in binoy3@bsnl.in

More information

Applications of First Order Equations

Applications of First Order Equations Applications of First Orer Equations Viscous Friction Consier a small mass that has been roppe into a thin vertical tube of viscous flui lie oil. The mass falls, ue to the force of gravity, but falls more

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

The Press-Schechter mass function

The Press-Schechter mass function The Press-Schechter mass function To state the obvious: It is important to relate our theories to what we can observe. We have looke at linear perturbation theory, an we have consiere a simple moel for

More information

Text S1: Simulation models and detailed method for early warning signal calculation

Text S1: Simulation models and detailed method for early warning signal calculation 1 Text S1: Simulation moels an etaile metho for early warning signal calculation Steven J. Lae, Thilo Gross Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresen, Germany

More information