FUNDAMENTALS OF AERODYNAMICS

Size: px
Start display at page:

Download "FUNDAMENTALS OF AERODYNAMICS"

Transcription

1 *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Hamburg Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan Sao Paulo Singapore Sydney Tokyo Toronto

2 CONTENTS Preface to the Second Edition Preface to the First Edition xv xvii Part 1 Fundamental Principles Chapter 1 Aerodynamics: Some Introductory Thoughts Importance of Aerodynamics: Historical Examples Aerodynamics: Classification and Practical Objectives Road Map for This Chapter Some Fundamental Aerodynamic Variables Aerodynamic Forces and Moments Center of Pressure Dimensional Analysis: The Buckingham Pi Theorem Flow Similarity Fluid Statics: Buoyancy Force Types of Flow Applied Aerodynamics: The Aerodynamic Coefficients Their Magnitudes and Variations Historical Note: The Illusive Center of Pressure Problems 71 Chapter 2 Aerodynamics: Some Fundamental Principles and Equations and Road Map Review of Vector Relations Models of the Fluid: Control Volumes and Fluid Elements Continuity Equation Momentum Equation 97 ix

3 X CONTENTS 2.6 An Application of the Momentum Equation: Drag of a Two-Dimensional Body Energy Equation Interim Substantial Derivative Fundamental Equations in Terms of the Substantial Derivative Pathlines and Streamlines of a Flow Angular Velocity, Vorticity, and Strain Circulation Stream Function Velocity Potential Relationship between the Stream Function and Velocity Potential Problems 148 Part II Inviscid, Incompressible Flow Chapter 3 Fundamentals of Inviscid, Incompressible Flow t and Road Map Bernoulli's Equation Incompressible Flow in a Duct: The Venturi and Low-Speed Wind Tunnel Pitot Tube: Measurement of Airspeed Pressure Coefficient Condition on Velocity for Incompressible Flow Governing Equation for Irrotatiorial, Incompressible Flow: Laplace's Equation Interim Uniform Flow: Our First Elementary Flow Source Flow: Our Second Elementary Flow Combination of a Uniform Flow with a Source and Sink Doublet Flow: Our Third Elementary Flow Nonlifting Flow over a Circular Cylinder,^J95 ; 3.14 Vortex Flow: Our Fourth Elementary Flow " $ Lifting Flow over a Cylinder The Kutta-Joukowski Theorem and the Generation of Lift Nonlifting Flows over Arbitrary Bodies: The Numerical * Source Panel Method Applied Aerodynamics: The Flow over a Circular Cylinder The Real Case Historical Note: Bernouli and Euler The Origins of Theoretical Fluid Dynamics Historical Note: d'alembert and His Paradox Problems 245

4 CONTENTS Xi Chapter 4 Incompressible Flow over Airfoils Airfoil Nomenclature Airfoil Characteristics Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils: The Vortex Sheet The Kutta Condition Kelvin's Circulation Theorem and the Starting Vortex Classical Thin Airfoil Theory: The Symmetric Airfoil The Cambered Airfoil Lifting Flows over Arbitrary Bodies: The Vortex Panel Numerical Method Modern Low-Speed Airfoils Applied Aerodynamics: The Flow over an Airfoil The Real Case Historical Note: Early Airplane Design and the Role of Airfoil Thickness Historical Note: Kutta, Joukowski, and the Circulation Theory of Lift Problems 314 Chapter 5 Incompressible Flow over Finite Wings : Downwash and Induced Drag The Vortex Filament, the Biot-Savart Law, and Helmholtz's Theorems Prandtl's Classical Lifting-Line Theory A Numerical Nonlinear Lifting-Line Method Lifting-Surface Theory; Vortex Lattice Numerical Method Applied Aerodynamics: The Delta Wing Historical Note: Lanchester and Prandtl The Early Development of Finite-Wing Theory Historical Note: Prandtl The Man Problems 374 Chapter 6 Three-Dimensional Incompressible Flow * Three-Dimensional Source Three-Dimensional Doublet Flow over a Sphere General Three-Dimensional Flows: Panel Techniques Applied Aerodynamics: The Flow over a Sphere The Real Case ' 390 Problems 390

5 Xii CONTENTS Part III Inviscid, Compressible Flow Chapter 7 Compressible Flow: Some Preliminary Aspects A Brief Review of Thermodynamics Definition of Compressibility Governing Equations for Inviscid, Compressible Flow Definition of Total (Stagnation) Conditions Some Aspects of Supersonic Flow: Shock Waves Problems 418 Chapter 8 Normal Shock Waves and Related Topics The Basic Normal Shock Equations Speed of Sound Special Forms of the Energy Equation When Is a Flow Compressible? Calculation of Normal Shock-Wave Properties Measurement of Velocity in a Compressible Flow Problems 452 Chapter 9 Oblique Shock and Expansion Waves Oblique Shock Relations "Supersonic Flow over Wedges and Cones Shock Interactions and Reflections Detached Shock Wave in Front of a Blunt Body Prandtl-Meyer Expansion Waves Shock-Expansion Theory: Applications to Supersonic Airfoils Historical Note: Ernst Mach A Biographical Sketch Problems 497 Chapter 10 Compressible Flow through Nozzles, Diffusers, and Wind Tunnels Governing Equations for Quasi-One-Dimensional Flow 10.3 Nozzle Flows 10.4 Diffusers 10.5 Supersonic Wind Tunnels 10.6 Problems

6 CONTENTS Xiii Chapter Chapter Chapter Chapter Subsonic Compressible Flow over Airfoils: Linear Theory The Velocity Potential Equation 533 The Linearized Velocity Potential Equation 536 Prandtl-Glauert Compressibility Correction 542,, Improved Compressibility Corrections 546 Critical Mach Number 547 Drag-Divergence Mach Number: The Sound Barrier 551 The Area Rule 554 The Supercritical Airfoil 556 Historical Note: High-Speed Airfoils Early Research and Development 559 Historical Note: Richard T. Whitcomb Architect of the Area Rule and the Supercritical Wing Problems 566 Linearized Supersonic Flow Derivation of the Linearized Supersonic Pressure Coefficient Formula 570 Application to Supersonic Airfoils Problems 577 to Numerical Techniques for Nonlinear Supersonic Flow 579 : Philosophy of Computational Fluid Dynamics 579 Elements of the Method of Characteristics 581 Supersonic Nozzle Design 589 Elements of Finite-Difference Methods 592 The Time-Dependent Technique: Application to Supersonic Blunt Bodies Problems 608 Elements of Hypersonic Flow 6ii^ 611 Qualitative Aspects of Hypersonic Flow * 612 Newtonian Theory 616 The Lift and Drag of Wings at Hypersonic Speeds: Newtonian Results for a Flat Plate at Angle of Attack 620 Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory 627 Mach Number Independence Problems 635

7 Viscous Flow to the Fundamental Principles and Equations of Viscous Flow Qualitative Aspects of Viscous Flow Viscosity and Thermal Conduction The Navier-Stokes Equations The Viscous Flow Energy Equation Similarity Parameters Solutions of Viscous Flows: A Preliminary Discussion Problems Some Special Cases; Couette and Poiseuille Flows Couette Flow: General Discussion Incompressible (Constant Property) Couette Flow Compressible Couette Flow Two-Dimensional Poiseuille Flow to Boundary Layers Boundary-Layer Properties The Boundary-Layer Equations Incompressible Flow over a Flat Plate: The Blasius Solution Compressible Flow over a Flat Plate Results for Turbulent Boundary Layers Final Comments Problems Navier-Stokes Solutions: Some Examples The Approach Examples of Some Solutions Appendixes Insentropic Flow Properties Normal Shock Properties Prandtl-Meyer Function and Mach Angle Bibliography Index $

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

Syllabus for AE3610, Aerodynamics I

Syllabus for AE3610, Aerodynamics I Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory

More information

Introduction to Flight

Introduction to Flight l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

More information

Inviscid & Incompressible flow

Inviscid & Incompressible flow < 3.1. Introduction and Road Map > Basic aspects of inviscid, incompressible flow Bernoulli s Equation Laplaces s Equation Some Elementary flows Some simple applications 1.Venturi 2. Low-speed wind tunnel

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

Higher Education. Mc Grauu FUNDAMENTALS AND APPLICATIONS SECOND EDITION

Higher Education. Mc Grauu FUNDAMENTALS AND APPLICATIONS SECOND EDITION FLUID MECHANICS FUNDAMENTALS AND APPLICATIONS SECOND EDITION Mc Grauu Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota Caracas Kuala Lumpur

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

AERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem

AERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem AERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem UNIT II TWO DIMENSIONAL FLOWS Complex Potential, Point Source

More information

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach Dynamic Systems Modeling and Analysis Hung V. Vu California State University, Long Beach Ramin S. Esfandiari California State University, Long Beach THE McGRAW-HILL COMPANIES, INC. New York St. Louis San

More information

Egon Krause. Fluid Mechanics

Egon Krause. Fluid Mechanics Egon Krause Fluid Mechanics Egon Krause Fluid Mechanics With Problems and Solutions, and an Aerodynamic Laboratory With 607 Figures Prof. Dr. Egon Krause RWTH Aachen Aerodynamisches Institut Wüllnerstr.5-7

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

ACD2503 Aircraft Aerodynamics

ACD2503 Aircraft Aerodynamics ACD2503 Aircraft Aerodynamics Session delivered by: Prof. M. D. Deshpande 1 Aims and Summary PEMP It is intended dto prepare students for participation i i in the design process of an aircraft and its

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

6.1 According to Handbook of Chemistry and Physics the composition of air is

6.1 According to Handbook of Chemistry and Physics the composition of air is 6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

More information

OUTLINE FOR Chapter 3

OUTLINE FOR Chapter 3 013/4/ OUTLINE FOR Chapter 3 AERODYNAMICS (W-1-1 BERNOULLI S EQUATION & integration BERNOULLI S EQUATION AERODYNAMICS (W-1-1 013/4/ BERNOULLI S EQUATION FOR AN IRROTATION FLOW AERODYNAMICS (W-1-.1 VENTURI

More information

Summer AS5150# MTech Project (summer) **

Summer AS5150# MTech Project (summer) ** AE1 - M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

Aerodynamics. Lecture 1: Introduction - Equations of Motion G. Dimitriadis

Aerodynamics. Lecture 1: Introduction - Equations of Motion G. Dimitriadis Aerodynamics Lecture 1: Introduction - Equations of Motion G. Dimitriadis Definition Aerodynamics is the science that analyses the flow of air around solid bodies The basis of aerodynamics is fluid dynamics

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Continuity Equation for Compressible Flow

Continuity Equation for Compressible Flow Continuity Equation for Compressible Flow Velocity potential irrotational steady compressible Momentum (Euler) Equation for Compressible Flow Euler's equation isentropic velocity potential equation for

More information

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON APPLIED PARTIAL DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fifth Edition Richard Haberman Southern Methodist University PEARSON Boston Columbus Indianapolis New York San Francisco

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution I II III IV V VI VII VIII Total 28 22 25 24 25 28 18 14 184 SEMESTER I AS1010 Introduction to Aerospace

More information

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru Two-Dimensional Potential Flow Session delivered by: Prof. M. D. Deshpande 1 Session Objectives -- At the end of this session the delegate would have understood PEMP The potential theory and its application

More information

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Configuration Aerodynamics

Configuration Aerodynamics Configuration Aerodynamics William H. Mason Virginia Tech Blacksburg, VA The front cover of the brochure describing the French Exhibit at the Montreal Expo, 1967. January 2018 W.H. Mason CONTENTS i CONTENTS

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, yderabad - 500 043 AERONAUTICAL ENGINEERING COURE DECRIPTION FORM Course Title Course Code Regulation Course tructure Course Coordinator Team

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information

An Introduction to the Finite Element Method

An Introduction to the Finite Element Method An Introduction to the Finite Element Method Third Edition J. N. REDDY Department 01 Mechanical Engineering Texas A&M University College Station, Texas, USA 77843 11 Boston Burr Ridge, IL Dubuque, IA Madison,

More information

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

More information

1. (20 pts total 2pts each) - Circle the most correct answer for the following questions.

1. (20 pts total 2pts each) - Circle the most correct answer for the following questions. ME 50 Gas Dynamics Spring 009 Final Exam NME:. (0 pts total pts each) - Circle the most correct answer for the following questions. i. normal shock propagated into still air travels with a speed (a) equal

More information

Engineering Fluid Mechanics

Engineering Fluid Mechanics Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY

More information

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0. bernoulli_11 In which of the following scenarios is applying the following form of Bernoulli s equation: p V z constant! g + g + = from point 1 to point valid? a. 1 stagnant column of water steady, inviscid,

More information

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

Continuum Mechanics Lecture 5 Ideal fluids

Continuum Mechanics Lecture 5 Ideal fluids Continuum Mechanics Lecture 5 Ideal fluids Prof. http://www.itp.uzh.ch/~teyssier Outline - Helmholtz decomposition - Divergence and curl theorem - Kelvin s circulation theorem - The vorticity equation

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY & SONS, INC. Contents PREFACE

More information

Aerodynamics for Engineering Students

Aerodynamics for Engineering Students Aerodynamics for Engineering Students Aerodynamics for Engineering Students Sixth Edition E.L. Houghton P.W. Carpenter Steven H. Collicott Daniel T. Valentine AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK

More information

Hypersonic flow and flight

Hypersonic flow and flight University of Stuttgart, Aerospace Engineering and Geodesy Dept. - Lecture - Hypersonic flow and flight Master Level, Specialization 4 lecture hours per week in WS, 3-6 LPs/ECTS Lecturer: Dr. Markus J.

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru Governing Equations of Fluid Flow Session delivered by: M. Sivapragasam 1 Session Objectives -- At the end of this session the delegate would have understood The principle of conservation laws Different

More information

Introduction and Basic Concepts

Introduction and Basic Concepts Topic 1 Introduction and Basic Concepts 1 Flow Past a Circular Cylinder Re = 10,000 and Mach approximately zero Mach = 0.45 Mach = 0.64 Pictures are from An Album of Fluid Motion by Van Dyke Flow Past

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering 4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

More information

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? 1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

More information

CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

More information

FLUID MECHANICS AND HEAT TRANSFER

FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER WITH APPLICATIONS IN CHEMICAL & MECHANICAL PROCESS ENGINEERING BY J. M. KAY AND R. M. NEDDERMAN

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved.

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved. Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the

More information

ELECTROMAGNETIC FIELDS AND RELATIVISTIC PARTICLES

ELECTROMAGNETIC FIELDS AND RELATIVISTIC PARTICLES ELECTROMAGNETIC FIELDS AND RELATIVISTIC PARTICLES Emil J. Konopinski Professor of Physics Indiana University McGraw-Hill Book Company New York St. Louis San Francisco Auckland Bogota Hamburg Johannesburg

More information

THE PROPERTIES OF GASES AND LIQUIDS

THE PROPERTIES OF GASES AND LIQUIDS THE PROPERTIES OF GASES AND LIQUIDS Bruce E. Poling University of Toledo John M. Prausnitz University of California at Berkeley John P. O'Connell University of Virginia Fifth Edition McGRAW-HILL New York

More information

Aerodynamic Rotor Model for Unsteady Flow and Wake Impact

Aerodynamic Rotor Model for Unsteady Flow and Wake Impact Aerodynamic Rotor Model for Unsteady Flow and Wake Impact N. Bampalas, J. M. R. Graham Department of Aeronautics, Imperial College London, Prince Consort Road, London, SW7 2AZ June 28 1 (Steady Kutta condition)

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP... B-1: Mathematics for Aerodynamics B-: Flow Field Representations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis

More information

APPLIED FLUID DYNAMICS HANDBOOK

APPLIED FLUID DYNAMICS HANDBOOK APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.-nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

All that begins... peace be upon you

All that begins... peace be upon you All that begins... peace be upon you Faculty of Mechanical Engineering Department of Thermo Fluids SKMM 2323 Mechanics of Fluids 2 «An excerpt (mostly) from White (2011)» ibn Abdullah May 2017 Outline

More information

MECFLUID - Advanced Fluid Mechanics

MECFLUID - Advanced Fluid Mechanics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 751 - DECA - Department of Civil and Environmental Engineering ERASMUS

More information

MATHEMATICAL HANDBOOK. Formulas and Tables

MATHEMATICAL HANDBOOK. Formulas and Tables SCHAUM'S OUTLINE SERIES MATHEMATICAL HANDBOOK of Formulas and Tables Second Edition MURRAY R. SPIEGEL, Ph.D. Former Professor and Chairman Mathematics Department Rensselaer Polytechnic Institute Hartford

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley Fundamentals of and Statistical thermal physics F. REIF Professor of Physics Universüy of California, Berkeley McGRAW-HILL BOOK COMPANY Auckland Bogota Guatemala Hamburg Lisbon London Madrid Mexico New

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

ENG ME 542 Advanced Fluid Mechanics

ENG ME 542 Advanced Fluid Mechanics Instructor: M. S. Howe EMA 218 mshowe@bu.edu ENG This course is intended to consolidate your knowledge of fluid mechanics and to develop a critical and mature approach to the subject. It will supply the

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

The E80 Wind Tunnel Experiment the experience will blow you away. by Professor Duron Spring 2012

The E80 Wind Tunnel Experiment the experience will blow you away. by Professor Duron Spring 2012 The E80 Wind Tunnel Experiment the experience will blow you away by Professor Duron Spring 2012 Objectives To familiarize the student with the basic operation and instrumentation of the HMC wind tunnel

More information

EXPERIMENTS IN PHYSICAL CHEMISTRY

EXPERIMENTS IN PHYSICAL CHEMISTRY EXPERIMENTS IN PHYSICAL CHEMISTRY SIXTH EDITION DAVID P. SHOEMAKER CARL W. GARLAND JOSEPH W. NIBLER The Late Emeritus Professor of Chemistry Professor of Chemistry Professor of Chemistry Oregon State University

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Supersonic Aerodynamics. Methods and Applications

Supersonic Aerodynamics. Methods and Applications Supersonic Aerodynamics Methods and Applications Outline Introduction to Supersonic Flow Governing Equations Numerical Methods Aerodynamic Design Applications Introduction to Supersonic Flow What does

More information

Thin airfoil theory. Chapter Compressible potential flow The full potential equation

Thin airfoil theory. Chapter Compressible potential flow The full potential equation hapter 4 Thin airfoil theory 4. ompressible potential flow 4.. The full potential equation In compressible flow, both the lift and drag of a thin airfoil can be determined to a reasonable level of accuracy

More information

Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics

Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics 1. Consider a sphere of radius R immersed in a uniform stream U0, as shown in 3 R Fig.1. The fluid velocity along streamline AB is given by V ui U i x 1. 0 3 Find (a) the position of maximum fluid acceleration

More information

BLUFF-BODY AERODYNAMICS

BLUFF-BODY AERODYNAMICS International Advanced School on WIND-EXCITED AND AEROELASTIC VIBRATIONS OF STRUCTURES Genoa, Italy, June 12-16, 2000 BLUFF-BODY AERODYNAMICS Lecture Notes by Guido Buresti Department of Aerospace Engineering

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

the pitot static measurement equal to a constant C which is to take into account the effect of viscosity and so on.

the pitot static measurement equal to a constant C which is to take into account the effect of viscosity and so on. Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module -2 Lecture - 27 Measurement of Fluid Velocity We have been

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

[.B.S.E., M.I.E.T., F.H.E.A. Environment, Heriot-Watt University

[.B.S.E., M.I.E.T., F.H.E.A. Environment, Heriot-Watt University Sixth edition JOHN F. DOUGLAS ".Sc, Ph.D., A.C.G.I., D.I.C., C.Eng., M.I.C.E., M.l.Mech.E. Fomieily of London South Bank University JANUSZ M. GASIOREK B.Sc, Ph.D., C.Eng., M.l.Mech.E., M.C.I.B.S.E. Formerly

More information

GAME PHYSICS SECOND EDITION. дяййтаййг 1 *

GAME PHYSICS SECOND EDITION. дяййтаййг 1 * GAME PHYSICS SECOND EDITION DAVID H. EBERLY дяййтаййг 1 * К AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO MORGAN ELSEVIER Morgan Kaufmann Publishers

More information

Lifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b - Fundamentals of Compressible Flow II 1

Lifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b - Fundamentals of Compressible Flow II 1 Lifting Airfoils in Incompressible Irrotational Flow AA21b Lecture 3 January 13, 28 AA21b - Fundamentals of Compressible Flow II 1 Governing Equations For an incompressible fluid, the continuity equation

More information

FEEDBACK and CONTROL SYSTEMS

FEEDBACK and CONTROL SYSTEMS SCHA UM'S OUTLINE OF THEORY AND PROBLEMS OF FEEDBACK and CONTROL SYSTEMS Second Edition CONTINUOUS (ANALOG) AND DISCRETE (DIGITAL) JOSEPH J. DiSTEFANO, III, PhD. Departments of Computer Science and Mediane

More information

The Influence of Viscosity and Surface Curvature on the Pressure Distribution of a Stream Thrust Probe

The Influence of Viscosity and Surface Curvature on the Pressure Distribution of a Stream Thrust Probe 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2006-093 9-2 January 2006, Reno, Nevada The Influence of Viscosity and Surface Curvature on the Pressure Distribution of a Stream Thrust Probe Renee

More information

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C. William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

ME EN 3700: FLUID MECHANICS (Fall 2003)

ME EN 3700: FLUID MECHANICS (Fall 2003) ME EN 3700: FLUID MECHANICS (Fall 2003) Lecturer: Eric R. Pardyjak Lecture: MTWThF 7:30am - 8:20am Room 104 EMCB Office Hours: (9:00am - 10:30am M W F, Room 169 KEN Website: http://www.mech.utah.edu/~pardyjak/

More information

Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows

Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows Modo U. P, Chukwuneke J. L, Omenyi Sam 1 Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka,

More information