INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3."

Transcription

1 INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 5, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN Determination of soil thermal conductivity using solar energy and soil temperature in Sokoto Gwani M 1, Abubakar G.A 1, Utah E.U 2 1- Department of Physics, Kebbi State University of Science and Technology Aliero. 2- Department of Physics, University of Jos. Gwani25@yahoo.com doi: /ijes ABSTRACT This study has investigated the thermal conductivity of sandy soil at a site in Usmanu Danfodiyo University Sokoto, Nigeria (13.10 o N,5.23 o E). The results are based on soil temperature, Surface temperature, insolation data collected from the meteorological Department of Sokoto Energy Research Center (SERC) between the months of March to June 2008 by sensor installed by the center for Basic Space Science (CBSS). The soil thermometer was buried at 5cm depth in the ground which measured the soil temperature. The mean value of the soil thermal conductivity is _0.06WM -2 k -1.The calculation of thermal conductivity assumed that the energy radiated from the surface of the earth is equal to that conducted from the soil. It was also observed that the soil thermal conductivity decreases as the temperature gradient is increasing. Keyword: Thermal conductivity, Soil temperature, Solar energy. 1. Introduction The amount of solar radiation reaching the surface of the earth is affected by such factors in the till of the earth on its axis, the sum earth distance, latitude of the location, attitude of the sum of the location, length of the day and the presence and density of clouds, aerosols, and gases in the atmosphere. Apart from direct measurement of any location on earth, the intensity of solar radiation could be computed by meteorological variable. The heat energy from solar radiation changes the states of water liquid to vapour at free water surfaces and rom the soil in a process called evaporation. On the textural,class of soil on the field (variation) sand, salt, clay, loams etc from a graduated sequence from soils that are in nature and easy to handle than the clay, which are very fine and difficult to manage, while these textural class names are determined by particles size distribution. They markedly affect other physical properties such as soil aeration and ease of tillage. The net radiation energy received at the land surface is partly in heating the sub medium. Soil thermal conductivity are useful for determining soil surface energy, soil temperature can be determined by the transport process of heat between the soil and atmosphere (Braver et al 1972). Solar energy has many connotations for individuals and society (Halacy, 1973), for society, the amount of solar radiation reaching the surface of the earth is affected by such factors in the tilt of the earth on its axis, the sun earth distance, latitude and altitude of sun of the location, length of the day, present of aerosols and gases in the atmosphere. Apart from the Received on December 2012 Published on March

2 direct measurements at any location on earth, the intensity of solar radiation can be computed by metrological variables which can be used to determine the soil thermal conductivity. Soil temperature at any time depends on the ratio of the energy absorbed to that being lost. The constant change in this relationship is reflected in the seasonal, monthly and daily temperatures. The temperature of soil in the field is dependent directly or indirectly on the net amount of heat the soil observed, the heat energy required to bring a given change in temperature of a soil and the energy required for changes such as evaporation, which are constantly occurring at or near the surface of the soil. (Utah et al). The net radiation received at the land surface is partly utilized in heating the submedium.soil thermal conductivity is useful in determining the soil surface energy, soil temperature can be determined by the transport process of heat between the soil and atmosphere (Baver et al, 1972). This transport of heat within the soil can occur by conduction (predominantly), convection and radiation (Koorevaar et al, 1983). 2. Materials and method Solar radiation and soil temperature measurement was carried out at the center for basic space science (C.B.S.S) under Sokoto energy research center in sokoto state Nigeria between March and June Sokoto energy research centre is situated in the Usmanu Danfodiyo University Sokoto at latitude of 13.1 o N which is 9km distance away from sokoto metropolis.the sensor is located around the meteorological center of the geography department Usmanu Danfodiyo University Sokoto nd the sensor is 2km away from the Sokoto energy research center where the data was collected. 2.1 Measurement techniques Solar radiation and soil temperature data are available based on several time scales hourly, daily, weekly and monthly basis, each of these data sets has its own specified utility depending upon the nature of the analysis (Kendal and Berdahl 1970), for this study, hourly values of soil temperature, solar energy, ambient temperature and soil temperature were obtained 2.2 Data collection method All measurement were obtain from the meteorology department of Sokoto Energy Research center by the use of Campbell PY56276X data logger which sample the data every hour for the period the experiment lasted, soil thermometer were buried in the ground at depth of 5Cm carefully so that the surrounding soil was left undisturbed and measurement of soil temperature in ( o C) are recorded on the data logger. While for the solar radiation measurement is based on the used of pyronometer which is place in horizontal recorded by the same data logger The logger records the total radiation after converting it using the below equation H h = B h + D h (1) (Kendal et al 1970). Where H h = Total solar radiation 1331

3 B h = Beam solar radiation D h = Diffuse solar radiation, The computation of thermal conductivity was based on the Stefan s Boltzmann equation R Earth = K (2) R Earth = Rate of conduction of heat per unit area. = Temperature gradient. K = Thermal conductivity of soil in question. T is obtained from the two temperatures the mean ambient temperature and mean soil temperature. Z is the depth of the soil thermometers = 5cm = 5*10-10 M R Earth = δt A (3) (Stefan s Boltzmann equation) δ = 5.67 * 10-8 MW -2 K Soil Thermal Wave From the heat conduction, expressed in a partial differential form as (4) Where D = Soil thermal conductivity, this parameter is indicative of the speed at which thermal waves move in the soil type and depth of thermal influence of its active surface. Generally D increase in value with soil moisture until it reaches maximum about 20% by volume and beyond it drops off. For shallow soil layers, it can be assumed that D is constant (as in equation (4) above. 2.4 Soil thermal conductivity Conduction is important for heat transfer in soil. However, if the temperature gradient in a solid or motionless fluid is the rate of conduction of heat per unit areas is proportional to the gradient and the constant of proportionality is called the thermal concuctivity of the materials k i.e G = -K (5) where the negative sign is reminder that heat move in direction of decreasing temperature. Table 1: Monthly average Values of soil temperature, solar radiation and ambient temperature at 12:00 noon Month Soil Temperature Solar Energy Ambient T S - T A ( o C) T S ( o C) Mjm -2 Temperature ( o C) March April May June

4 For the month of March, T o A C T s T A o C :. TA = =309k T 4 A = R earth ( Stefan Botlzman Equation) where = 5.67 x 10-8 Mw -2 K -4 Rearth = 5.67 x 10-8 x (309) 4 T A 4 = 5.23 x 10 2 wm -2 = Rearth Rearth = K 5.23 x 10 2 wm x 10 2 = K x = 1.39wm -1 K -1 Where k is the thermal conductivity, Depth = 5cm or 5 x 10-2 or 0.05m T A mean ambient temperature, = Temperature gradient From R Earth = K = = From Table 1for the month of April T A = o C : = K Rearth = K 5.23 x 10 2 wm x 10 2 = K x = 1.19wm -1 K -1 = Temperature gradient = = 441 From table 1 for the month of May T A = that is T A = = k = 0.05m Rearth = K 5.23 x 10 2 wm -2 T S - T A = O C 5.23 x 10 2 = K x = 1.32wm -1 K

5 = Temperature gradient = = From table 1 for the month of June T A = that is T A = = k = 0.05m Rearth = K 5.23 x 10 2 wm -2 T S - T A = O C 5.23 x 10 2 = K x = 1.30wm -1 K -1 = Temperature gradient = = Table 5: table of result for the month the experiment lasted Month Earth Radiation (Rearth) Thermal Temperature wm -2 conductivity (K) wm -1 k -1 Gradient March 5.23 x April 5.25 x May 5.06 x June 5.04 x Mean Thermal Conductivity K = = 1.30wm -2. K = w -1 mk -1 Table 6: Values of solar energy in (wm -2 ) at the local time on 9 th March 2008 in Sokoto Local 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 Time Energy MJm -2 Table 7: Values of solar energy in (wm -2 ) at the local time on 2 nd April 2008 in Sokoto Local 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 Time Energy MJm Results 1334

6 Figure 1: Variation of Solar energy against time March 2008 Figure 2: Variation of solar energy against time 2008 April. 1335

7 Figure 3: Variaiton of soil temperature and ambient temperature March Discussion Figure 4: Variation of soil temperature and ambient temperature April The continuous measurement of soil temperature and solar energy have been made from 08 March to 10 th June The data in table 1 shows the monthly average values of the soil temperature and solar radiation and ambient temperature computed for the experimental site during the period of the observation. From the calculation made on the thermal conductivity, it was observed that the thermal conductivity varies from month to month as shown in the table above. In the month of March when the experiment started, the thermal conductivity was calculated to be 1.39wm -2 and the 1336

8 temperature gradient was calculated to be In the month of April it was found that the thermal conductivity decrease by a factor of 0.2 with a value of 1.19wm -2 and it was observed that the temperature gradient increases to The thermal conductivity further increases from 1.19 wm -2 to 1.32wm -2 in the month of May and the temperature gradient increases from 441 to in the month of May. Finally the month of June also experience an increase in temperature gradient to and a decrease in thermal conductivity to 1.30wm -2. The Stefan Boltzmann equation used gives an estimated value of radiation to the earth (Rearth ) for the soil in question it has been shown that the steady state equation evaluated the temperature gradient which increases the thermal conductivity of the soil. Generally it was observed that the solar earth radiation was calculated to be constant throughout the four month under study with a value of 5.23 x 10 2 wm -2 where as it was observed that the thermal conductivity and the temperature gradient changes, as the soil thermal conductivity is decreasing,the temperature gradient is increasing this may be because steady state are rare where a soil surface is exposed to annual and seasonal cycles of radiation and partly because changes in the water control or compaction of a soil may change its thermal properties profoundly. The mean thermal conductivity was calculated to be or wm -1 k -1. Figure 1 above shows the variation of the solar radiation as a function of time, from the figure, it was observed that the solar radiation increases with time of the day and the peak solar energy was obtained by 12 noon before it decreases again through the afternoon in the month of March. Figure 2 shows the variation of the solar radiation as a function of time for the month of April, from the figure it was observed that the Solar radiation increases in the morning hour attain it peak at 11:00am and fluctuate a little before it start decreasing gradually in the late hour of the day. Figure 3 and Figure 4 shows the plot of the soil temperature against ambient temperature and both plot shows a similar trend in the month of March and April. 4. Conclusion The analysis of heat conduction in soil is more complex partly because steady state are rare when a soil surface is exposed to annual and seasonal cycles of radiation and partly because changes in the water control or compaction of a soil may change its thermal properties profoundly. The conclusion that can be drawn from this research is that the thermal conductivity decreases as the soil gets wetter and the temperature gradient increases, also it can be concluded that the calculation of thermal conductivity assumed that the energy radiated from the surface of the earth is equal to that conducted form the soil. The Stefan Boltzmann equation used gives an estimated value of radiation to the (earth R Earth ) for the soil in questioned, it has been shown that the steady equation evaluated the temperature gradient which increases the thermal conductivity of the soil. Reference 1337

9 1. Braver L.O.,Gerdner W.H. and Garner N.R., (1972), Soil Physics 4 th Edition J Wiley and Son s Inc, New York. 2. Halacy, O.S., (1973), The coming Age of Solar Energy, Hapars and Row, New York. 3. Kendahl J.M. and Berdahl,.C.M., (1970), Two Black Body Radiometers of High Accuracy New York. 4. Koovaar;,l,B.,Martin, J.,Xiaoyan,J., (1983), Introduction to soil Physics 2 nd edition, Wile and son s. 5. Utah E.U, Ahonsi G.E.C and Makama.E.K., (2006), Effect of solar radiation on evaporation Nigeria journal of space research, (2), pp 55-62, 1338

Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North- Eastern, Nigeria

Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North- Eastern, Nigeria International Research Journal of Engineering and Technology (IRJET) e-issn: - Volume: Issue: Nov- www.irjet.net p-issn: - Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North- Eastern,

More information

MAPH & & & & & & 02 LECTURE

MAPH & & & & & & 02 LECTURE Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 3 Worksheet 1 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the maximum temperature for a particular day is 26 C and the minimum temperature is 14 C, the daily

More information

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES Physical Geography (Geog. 300) Prof. Hugh Howard American River College RADIATION FROM the SUN SOLAR RADIATION Primarily shortwave (UV-SIR) Insolation Incoming

More information

) was measured using net radiometers. Soil heat flux (Q g

) was measured using net radiometers. Soil heat flux (Q g Paper 4 of 18 Determination of Surface Fluxes Using a Bowen Ratio System V. C. K. Kakane* and E. K. Agyei Physics Department, University of Ghana, Legon, Ghana * Corresponding author, Email: vckakane@ug.edu.gh

More information

Performance Assessment of Hargreaves Model in Estimating Global Solar Radiation in Sokoto, Nigeria

Performance Assessment of Hargreaves Model in Estimating Global Solar Radiation in Sokoto, Nigeria International Journal of Advances in Scientific Research and Engineering (ijasre) E-ISSN : 2454-8006 DOI: http://dx.doi.org/10.7324/ijasre.2017.32542 Vol.3 (11) December-2017 Performance Assessment of

More information

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the primary reason New York State is warmer in July than in February? A) The altitude of the noon Sun is greater in February. B) The insolation in New York is greater in July. C) The Earth

More information

Lab Activity: Climate Variables

Lab Activity: Climate Variables Name: Date: Period: Water and Climate The Physical Setting: Earth Science Lab Activity: Climate Variables INTRODUCTION:! The state of the atmosphere continually changes over time in response to the uneven

More information

Estimation of Hourly Global Solar Radiation for Composite Climate

Estimation of Hourly Global Solar Radiation for Composite Climate Open Environmental Sciences, 28, 2, 34-38 34 Estimation of Hourly Global Solar Radiation for Composite Climate M. Jamil Ahmad and G.N. Tiwari * Open Access Center for Energy Studies, ndian nstitute of

More information

Solar Resource Mapping in South Africa

Solar Resource Mapping in South Africa Solar Resource Mapping in South Africa Tom Fluri Stellenbosch, 27 March 2009 Outline The Sun and Solar Radiation Datasets for various technologies Tools for Solar Resource Mapping Maps for South Africa

More information

Earth is tilted (oblique) on its Axis!

Earth is tilted (oblique) on its Axis! MONDAY AM Radiation, Atmospheric Greenhouse Effect Earth's orbit around the Sun is slightly elliptical (not circular) Seasons & Days Why do we have seasons? Why aren't seasonal temperatures highest at

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

Optimum Collector Tilt Angles For Low Latitudes

Optimum Collector Tilt Angles For Low Latitudes The Open Renewable Energy Journal, 2012, 5, 7-14 7 Optimum Collector Tilt Angles For Low Latitudes Open Access C.O.C. Oko* and S.N. Nnamchi Department of Mechanical Engineering University of Port Harcourt,

More information

5) The amount of heat needed to raise the temperature of 1 gram of a substance by 1 C is called: Page Ref: 69

5) The amount of heat needed to raise the temperature of 1 gram of a substance by 1 C is called: Page Ref: 69 Homework #2 Due 9/19/14 1) If the maximum temperature for a particular day is 26 C and the minimum temperature is 14 C, what would the daily mean temperature be? (Page Ref: 66) 2) How is the annual mean

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

SEASONAL AND DAILY TEMPERATURES

SEASONAL AND DAILY TEMPERATURES 1 2 3 4 5 6 7 8 9 10 11 12 SEASONAL AND DAILY TEMPERATURES Chapter 3 Earth revolves in elliptical path around sun every 365 days. Earth rotates counterclockwise or eastward every 24 hours. Earth closest

More information

Chapter 3- Energy Balance and Temperature

Chapter 3- Energy Balance and Temperature Chapter 3- Energy Balance and Temperature Understanding Weather and Climate Aguado and Burt Influences on Insolation Absorption Reflection/Scattering Transmission 1 Absorption An absorber gains energy

More information

Observed and Predicted Daily Wind Travels and Wind Speeds in Western Iraq

Observed and Predicted Daily Wind Travels and Wind Speeds in Western Iraq International Journal of Science and Engineering Investigations vol., issue, April ISSN: - Observed and Predicted Daily Wind Travels and Wind Speeds in Western Iraq Ahmed Hasson, Farhan Khammas, Department

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

A Typical Meteorological Year for Energy Simulations in Hamilton, New Zealand

A Typical Meteorological Year for Energy Simulations in Hamilton, New Zealand Anderson T N, Duke M & Carson J K 26, A Typical Meteorological Year for Energy Simulations in Hamilton, New Zealand IPENZ engineering trenz 27-3 A Typical Meteorological Year for Energy Simulations in

More information

Seasonal & Daily Temperatures

Seasonal & Daily Temperatures Seasonal & Daily Temperatures Photo MER Variations in energy input control seasonal and daily temperature fluctuations 1 Cause of the Seasons The tilt of the Earth s axis relative to the plane of its orbit

More information

C) D) 2. The diagram below shows a large pendulum in motion over an 8-hour period.

C) D) 2. The diagram below shows a large pendulum in motion over an 8-hour period. 1. An observer on Earth measured the apparent diameter of the Sun over a period of 2 years. Which graph best represents the Sun's apparent diameter during the 2 years? A) B) C) D) 2. The diagram below

More information

Solar Radiation in Thailand:

Solar Radiation in Thailand: Solar Radiation in Thailand: 1970-2010 Jaruek Atthasongkhro (Lecturer in Education, PSU) Chaloemchon Wannathong (Lecturer in Astrophysics, Songkla Rajabhat U) Our study investigated solar energy (which

More information

Solar Time, Angles, and Irradiance Calculator: User Manual

Solar Time, Angles, and Irradiance Calculator: User Manual Solar Time, Angles, and Irradiance Calculator: User Manual Circular 674 Thomas Jenkins and Gabriel Bolivar-Mendoza 1 Cooperative Extension Service Engineering New Mexico Resource Network College of Agricultural,

More information

GEOGRAPHY EYA NOTES. Weather. atmosphere. Weather and climate

GEOGRAPHY EYA NOTES. Weather. atmosphere. Weather and climate GEOGRAPHY EYA NOTES Weather and climate Weather The condition of the atmosphere at a specific place over a relatively short period of time Climate The atmospheric conditions of a specific place over a

More information

Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala

Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala Tessy Chacko P and G Renuka Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram, 695 581,

More information

Evaluation of solar constant using locally fabricated aluminium cylinder

Evaluation of solar constant using locally fabricated aluminium cylinder Available online at wwwpelagiaresearchlibrarycom Advances in Applied Science Research, 2013, 4(5):401-408 ISSN: 0976-8610 CODEN (USA): AASRFC Evaluation of solar constant using locally fabricated aluminium

More information

Chapter 3. Multiple Choice Questions

Chapter 3. Multiple Choice Questions Chapter 3 Multiple Choice Questions 1. In the case of electromagnetic energy, an object that is hot: a. radiates much more energy than a cool object b. radiates much less energy than a cool object c. radiates

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Measurements of Solar Radiation

Measurements of Solar Radiation Asian J. Energy Environ., Vol. 5, Issue1, (2004), pp. 1-17 Measurements of Solar Radiation A. Q. Malik, Yeo Chin Boon, Haji Mohd Zulfaisal bin Haji Omar Ali, Hjh Norzainun Bte Haji Zainal Zainal and Nor

More information

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion Introduction to Climatology GEOGRAPHY 300 Tom Giambelluca University of Hawai i at Mānoa Solar Radiation and the Seasons Energy Energy: The ability to do work Energy: Force applied over a distance kg m

More information

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Precipitation GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Last lecture! Atmospheric stability! Condensation! Cloud condensation nuclei (CCN)! Types of clouds Precipitation! Why clouds don t fall! Terminal

More information

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 6, Issue 5 Ver. I (Sep.-Oct. 2014), PP 56-62 Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria Audu,

More information

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Ruslan Botpaev¹*, Alaibek Obozov¹, Janybek Orozaliev², Christian Budig², Klaus Vajen², 1 Kyrgyz State Technical University,

More information

Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels

Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels Naihong Shu* 1, Nobuhiro Kameda 2, Yasumitsu Kishida 2 and Hirotora Sonoda 3 1 Graduate School, Kyushu Kyoritsu University,

More information

Lecture 3A: Interception

Lecture 3A: Interception 3-1 GEOG415 Lecture 3A: Interception What is interception? Canopy interception (C) Litter interception (L) Interception ( I = C + L ) Precipitation (P) Throughfall (T) Stemflow (S) Net precipitation (R)

More information

Why the Earth has seasons. Why the Earth has seasons 1/20/11

Why the Earth has seasons. Why the Earth has seasons 1/20/11 Chapter 3 Earth revolves in elliptical path around sun every 365 days. Earth rotates counterclockwise or eastward every 24 hours. Earth closest to Sun (147 million km) in January, farthest from Sun (152

More information

Lecture 4 Air Temperature. Measuring Temperature. Measuring Temperature. Surface & Air Temperature. Environmental Contrasts 3/27/2012

Lecture 4 Air Temperature. Measuring Temperature. Measuring Temperature. Surface & Air Temperature. Environmental Contrasts 3/27/2012 Lecture 4 Air Temperature Geo210 An Introduction to Physical Geography Temperature Concepts and Measurement Temperature the average kinetic energy (motion) of molecules of matter Temperature Scales Fahrenheit

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

EFFECT OF SECONDARY RADIOCLIMATIC VARIABLES ON SIGNAL PROPAGATION IN NSUKKA, NIGERIA

EFFECT OF SECONDARY RADIOCLIMATIC VARIABLES ON SIGNAL PROPAGATION IN NSUKKA, NIGERIA EFFECT OF SECONDARY RADIOCLIMATIC VARIABLES ON SIGNAL PROPAGATION IN NSUKKA, NIGERIA P.E. Okpani, P.A. Nwofe, and N.O. Chukwu Department of Industrial Physics, Ebonyi State University, Abakaliki, Nigeria.

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather.

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather. EARTH'S ATMOSPHERE Composition of the atmosphere - Earth's atmosphere consists of nitrogen ( %), oxygen ( %), small amounts of carbon dioxide, methane, argon, krypton, ozone, neon and other gases such

More information

METEOROLOGY AND AIR POLLUTION. JAI PRAKASH Civil Engineering IIT Delhi 1 AUGUST, 2011

METEOROLOGY AND AIR POLLUTION. JAI PRAKASH Civil Engineering IIT Delhi 1 AUGUST, 2011 METEOROLOGY AND AIR POLLUTION JAI PRAKASH Civil Engineering IIT Delhi 1 AUGUST, 2011 METEOROLOGY Aerosols particles which are emitted from the sources they are transported and dispersed through meteorological

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION

HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION CHAPTER 4 HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION MULTIPLE CHOICE QUESTIONS 1. Heat is *a. the name given to the energy transferred between objects at different temperatures. b. the equivalent of

More information

1/55. Solar energy. solar radiation definitions incident solar energy

1/55. Solar energy. solar radiation definitions incident solar energy 1/55 Solar energy solar radiation definitions incident solar energy 2/55 Sun closest star centre of our planetary system solar system 3/55 Sun diameter 1 392 000 km 109 x larger than Earth weight 2 x 10

More information

Science Chapter 13,14,15

Science Chapter 13,14,15 Science 1206 Chapter 13,14,15 1 Weather dynamics is the study of how the motion of water and air causes weather patterns. Energy from the Sun drives the motion of clouds, air, and water. Earth s tilt at

More information

GEO1010 tirsdag

GEO1010 tirsdag GEO1010 tirsdag 31.08.2010 Jørn Kristiansen; jornk@met.no I dag: Først litt repetisjon Stråling (kap. 4) Atmosfærens sirkulasjon (kap. 6) Latitudinal Geographic Zones Figure 1.12 jkl TØRR ATMOSFÆRE Temperature

More information

ME 476 Solar Energy UNIT THREE SOLAR RADIATION

ME 476 Solar Energy UNIT THREE SOLAR RADIATION ME 476 Solar Energy UNIT THREE SOLAR RADIATION Unit Outline 2 What is the sun? Radiation from the sun Factors affecting solar radiation Atmospheric effects Solar radiation intensity Air mass Seasonal variations

More information

LECTURE 3 - SOLAR ENERGY AND SOLAR RADIATION -

LECTURE 3 - SOLAR ENERGY AND SOLAR RADIATION - LECTURE 3 - SOLAR ENERGY AND SOLAR RADIATION - Prof. Marco Perino DENER Politecnico di Torino C.so Duca degli Abruzzi 24 10129 Torino e-mail: marco.perino@polito.it http://areeweb.polito.it/ricerca/tebe/

More information

Diurnal and Seasonal Variation of Surface Refractivity in Minna and Lapai, North Central Nigeria

Diurnal and Seasonal Variation of Surface Refractivity in Minna and Lapai, North Central Nigeria International Journal of Engineering Research and Advanced Technology (IJERAT) DOI: http://doi.org/10.31695/ijerat.2018.3283 E-ISSN : 2454-6135 Volume.4, Issue 7 July -2018 Diurnal and Seasonal Variation

More information

Chapter 1 Solar Radiation

Chapter 1 Solar Radiation Chapter 1 Solar Radiation THE SUN The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39 10 9 m It is, on the average, 1.5 10 11 m away from the earth. The sun rotates on its axis

More information

Global Climate Change

Global Climate Change Global Climate Change Definition of Climate According to Webster dictionary Climate: the average condition of the weather at a place over a period of years exhibited by temperature, wind velocity, and

More information

Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015

Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015 Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015 1) Solar radiation basics 2) Energy balance 3) Other relevant biophysics 4) A few selected applications of RS in ecosystem

More information

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D) 1. The hottest climates on Earth are located near the Equator because this region A) is usually closest to the Sun B) reflects the greatest amount of insolation C) receives the most hours of daylight D)

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

More information

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 2: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Luminosity (L) the constant flux of energy put out

More information

UNIT TEST PRACTICE TEST

UNIT TEST PRACTICE TEST Page 1 of 1 Directions: Match the best answer to complete each question. Some words may be used more than once and some may not be used at all. e 1. The condition of Earth s atmosphere at a given time

More information

Chapter 2 Available Solar Radiation

Chapter 2 Available Solar Radiation Chapter 2 Available Solar Radiation DEFINITIONS Figure shows the primary radiation fluxes on a surface at or near the ground that are important in connection with solar thermal processes. DEFINITIONS It

More information

Chapter 11 Lecture Outline. Heating the Atmosphere

Chapter 11 Lecture Outline. Heating the Atmosphere Chapter 11 Lecture Outline Heating the Atmosphere They are still here! Focus on the Atmosphere Weather Occurs over a short period of time Constantly changing Climate Averaged over a long period of time

More information

Soil Temperatures Regime at Ahmedabad

Soil Temperatures Regime at Ahmedabad Soil Temperatures Regime at Ahmedabad Girja Sharan Professor Cummins-IIMA Lab Centre for Management in Agriculture Indian Institute of Management, Ahmedabad Ratan Jadhav Project Officer SEWA Ahmedabad

More information

Analysis Global and Ultraviolet Radiation in Baghdad City, Iraq

Analysis Global and Ultraviolet Radiation in Baghdad City, Iraq Analysis Global and Ultraviolet Radiation in Baghdad City, Iraq Ali M. Alsalihi 1 Siaf H. Abdulatif 1,2 1.Department of Atmospheric Sciences, College of science, Al-Mustansiriyah University, Baghdad, Iraq

More information

LAB 2: Earth Sun Relations

LAB 2: Earth Sun Relations LAB 2: Earth Sun Relations Name School The amount of solar energy striking the Earth s atmosphere is not uniform; distances, angles and seasons play a dominant role on this distribution of radiation. Needless

More information

Optimizing the Photovoltaic Solar Energy Capture on Sunny and Cloudy Days Using a Solar Tracking System

Optimizing the Photovoltaic Solar Energy Capture on Sunny and Cloudy Days Using a Solar Tracking System Optimizing the Photovoltaic Solar Energy Capture on Sunny and Cloudy Days Using a Solar Tracking System Nelson A. Kelly and Thomas L. Gibson Chemical Sciences and Material Systems Laboratory General Motors

More information

Solar radiation and thermal performance of solar collectors for Denmark

Solar radiation and thermal performance of solar collectors for Denmark Downloaded from orbit.dtu.dk on: Feb 01, 2018 Solar radiation and thermal performance of solar collectors for Denmark Dragsted, Janne; Furbo, Simon Publication date: 2012 Document Version Publisher's PDF,

More information

5. In which diagram is the observer experiencing the greatest intensity of insolation? A) B)

5. In which diagram is the observer experiencing the greatest intensity of insolation? A) B) 1. Which factor has the greatest influence on the number of daylight hours that a particular Earth surface location receives? A) longitude B) latitude C) diameter of Earth D) distance from the Sun 2. In

More information

The Spatial Analysis of Insolation in Iran

The Spatial Analysis of Insolation in Iran The Spatial Analysis of Insolation in Iran M. Saligheh, F. Sasanpour, Z. Sonboli & M. Fatahi Department of Geography, Tehran Tarbiat Moallem University, Iran E-mail: salighe@hamoon.usb.ac.ir; far20_sasanpour@yahoo.com;

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Thermodynamics and Statistical Physics Key contents: Temperature scales Thermal expansion Temperature and heat, specific heat Heat and

More information

The Structure and Motion of the Atmosphere OCEA 101

The Structure and Motion of the Atmosphere OCEA 101 The Structure and Motion of the Atmosphere OCEA 101 Why should you care? - the atmosphere is the primary driving force for the ocean circulation. - the atmosphere controls geographical variations in ocean

More information

Dependence of evaporation on meteorological variables at di erent time-scales and intercomparison of estimation methods

Dependence of evaporation on meteorological variables at di erent time-scales and intercomparison of estimation methods Hydrological Processes Hydrol. Process. 12, 429±442 (1998) Dependence of evaporation on meteorological variables at di erent time-scales and intercomparison of estimation methods C.-Y. Xu 1 and V.P. Singh

More information

Monthly performance of passive and active solar stills for different Indian climatic conditions

Monthly performance of passive and active solar stills for different Indian climatic conditions Monthly performance of passive and active solar stills for different Indian climatic conditions H.N. Singh, G.N.Tiwari* Centre for Energy Studies, llt Delhi, Haus Khas, New Delhi 11 O0 16, India Fax: +91

More information

Which table correctly shows the dates on which the apparent paths of the Sun were observed? A) B) C) D)

Which table correctly shows the dates on which the apparent paths of the Sun were observed? A) B) C) D) 1. The diagram below represents the horizon and the Sun's apparent paths, A, B, and C, on three different dates, as viewed from the same location in New York State. Which table correctly shows the dates

More information

Solar radiation in Onitsha: A correlation with average temperature

Solar radiation in Onitsha: A correlation with average temperature Scholarly Journals of Biotechnology Vol. 1(5), pp. 101-107, December 2012 Available online at http:// www.scholarly-journals.com/sjb ISSN 2315-6171 2012 Scholarly-Journals Full Length Research Paper Solar

More information

Chapter 3: Temperature

Chapter 3: Temperature Chapter 3: Temperature Elements of WAC (Basic Measurable Properties) 1. Temperature of Air 2. Humidity of Air 3. Cloud Cover (type and amount) 4. Precipitation (type and amount) 5. Air Pressure 6. Wind

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

SURFACE ORIENTATIONS AND ENERGY POLICY FOR SOLAR MODULE APPLICATIONS IN DHAKA, BANGLADESH

SURFACE ORIENTATIONS AND ENERGY POLICY FOR SOLAR MODULE APPLICATIONS IN DHAKA, BANGLADESH International Journal of Scientific & Engineering Research, Volume 5, Issue, February-014 83 ISSN 9-5518 SURFACE ORIENTATIONS AND ENERGY POLICY FOR SOLAR MODULE APPLICATIONS IN DHAKA, BANGLADESH 1 Debazit

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS

XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS Estimating the performance of a solar system requires an accurate assessment of incident solar radiation. Ordinarily, solar radiation is measured on

More information

DETERMINATION OF OPTIMAL TILT ANGLE FOR MAXIMUM SOLAR INSOLATION FOR PV SYSTEMS IN ENUGU-SOUTHERN NIGERIA

DETERMINATION OF OPTIMAL TILT ANGLE FOR MAXIMUM SOLAR INSOLATION FOR PV SYSTEMS IN ENUGU-SOUTHERN NIGERIA Nigerian Journal of Technology (NIJOTECH) Vol. 34 No. 4, October 2015, pp. 838 843 Copyright Faculty of Engineering, University of Nigeria, Nsukka, ISSN: 0331-8443 www.nijotech.com http://dx.doi.org/10.4314/njt.v34i4.24

More information

Heating the Atmosphere (Chapter 14, with material from Chapter 2)

Heating the Atmosphere (Chapter 14, with material from Chapter 2) Heating the Atmosphere (Chapter 14, with material from Chapter 2) 1. Reflection on Prior Knowledge: What process in Earth s early history resulted in the formation of an atmosphere? What gases characterized

More information

Chapter 2 Solar and Infrared Radiation

Chapter 2 Solar and Infrared Radiation Chapter 2 Solar and Infrared Radiation Chapter overview: Fluxes Energy transfer Seasonal and daily changes in radiation Surface radiation budget Fluxes Flux (F): The transfer of a quantity per unit area

More information

GLOBAL AND DIFFUSE ILLUMINANCE DATA IN MAKASSAR-INDONESIA SEN 166

GLOBAL AND DIFFUSE ILLUMINANCE DATA IN MAKASSAR-INDONESIA SEN 166 GLOBAL AND DIFFUSE ILLUMINANCE DATA IN MAKASSAR-INDONESIA 3 SEN 166 Ramli RAHIM 1, Baharuddin 1, and Stephen S.Y. LAU 2 1 Department of Architecture, Faculty of Engineering, Hasanuddin University, Campus

More information

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation Lecture 6: Radiation Transfer Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere Vertical and latitudinal energy distributions Absorption, Reflection,

More information

Lecture 6: Radiation Transfer

Lecture 6: Radiation Transfer Lecture 6: Radiation Transfer Vertical and latitudinal energy distributions Absorption, Reflection, and Transmission Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature

More information

1. SOLAR GEOMETRY, EXTRATERRESTRIAL IRRADIANCE & INCIDENCE ANGLES

1. SOLAR GEOMETRY, EXTRATERRESTRIAL IRRADIANCE & INCIDENCE ANGLES 1. SOLAR GEOMETRY, EXTRATERRESTRIAL IRRADIANCE & INCIDENCE ANGLES The Sun A blackbody with T ~ 6000 K Blackbody radiation with the same amount of energy per unit of area T ~ 5762 K Blackbody radiating

More information

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3 Seasonal & Diurnal Temp Variations ATS351 Lecture 3 Earth-Sun Distance Change in distance has only a minimal effect on seasonal temperature. Note that during the N. hemisphere winter, we are CLOSER to

More information

PV 2012/2013. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment

PV 2012/2013. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment SOLAR RESOURCE Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment 1 is immense Human energy use: 4.0x10 14 kwh/year on Earth s surface: 5.5x10 17 kwh/year

More information

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2016 Range Cattle Research and Education Center.

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2016 Range Cattle Research and Education Center. 1 Range Cattle Research and Education Center January 2017 Research Report RC-2017-1 CLIMATOLOGICAL REPORT 2016 Range Cattle Research and Education Center Brent Sellers Weather conditions strongly influence

More information

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun Insolation and Temperature variation Atmosphere: blanket of air surrounding earth Without our atmosphere: cold, quiet, cratered place Dynamic: currents and circulation cells June 23, 2008 Atmosphere important

More information

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red Name: Topic 6 Test 1. Which process is responsible for the greatest loss of energy from Earth's surface into space on a clear night? A) condensation B) conduction C) radiation D) convection 2. Base your

More information

Determination of Optimum Fixed and Adjustable Tilt Angles for Solar Collectors by Using Typical Meteorological Year data for Turkey

Determination of Optimum Fixed and Adjustable Tilt Angles for Solar Collectors by Using Typical Meteorological Year data for Turkey Determination of Optimum Fixed and Adjustable Tilt Angles for Solar Collectors by Using Typical Meteorological Year data for Turkey Yohannes Berhane Gebremedhen* *Department of Agricultural Machinery Ankara

More information

Solar Radiation Measurements and Model Calculations at Inclined Surfaces

Solar Radiation Measurements and Model Calculations at Inclined Surfaces Solar Radiation Measurements and Model Calculations at Inclined Surfaces Kazadzis S. 1*, Raptis I.P. 1, V. Psiloglou 1, Kazantzidis A. 2, Bais A. 3 1 Institute for Environmental Research and Sustainable

More information

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater Renewable Energy Volume 14, Article ID 757618, 11 pages http://dx.doi.org/1.1155/14/757618 Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar

More information

4. Solar radiation on tilted surfaces

4. Solar radiation on tilted surfaces 4. Solar radiation on tilted surfaces Petros Axaopoulos TEI of Athens Greece Learning Outcomes After studying this chapter, readers will be able to: define the direct, diffuse and reflected solar radiation

More information