Fast multipole method

Size: px
Start display at page:

Download "Fast multipole method"

Transcription

1 203/0/ page Chapter 4 Fast multipole method Originally designed for particle simulations One of the most well nown way to tae advantage of the low-ran properties Applications include Simulation of physical systems (a) Gravitational potential due to a distribution of masses (b) Electrostatic potential due to a distribution of charges Electromagnetics of complex systems (c) Stellar clusters (d) Protein folding (e) Acoustics (f) Turbulence 2 Grand challenge problems in large numbers of variables 3 Learning theory (a) Kernel methods (b) Support Vector Machines 4 Graphics and Vision, Light scattering Introduced by Rohlin & Greengard in 987 One of the 0 most significant advances in computing of the 20th century Approximation result with O(m + n) cost Use analytical manipulation of series to achieve faster summation Approximate result with arbitrary accuracy This section is mainly based on [4]

2 203/0/ page 2 2 Chapter 4 Fast multipole method Figure 4 (Well separated) source and target points 40 A basic idea m source particle i with charge q i at position s i By Coulomb s law, the potential at target j located at t j for n targets: ϕ(t j ) = q i K(s i, t j ), j = : n, where, for example, K(s, t) = s t Write Then K = (K(s i, t j )), q = (q i ), Φ = (ϕ(t j )) Φ = Kq This usually costs O(mn) However, this cost can be reduced if K is separable Assume r K(x, y) = f (x)g (y) = ( f (x) f p (x) ) Then K = = f (s ) f r (s ) f (s 2 ) f r (s 2 ) } f (s m ) {{ f r (s m ) } m r r f g T, (f = (f (x i )) i, g = (f (x j )) j ) Consider a special K as an example g (y) g p (y) g (t ) g (t 2 ) g (t n ) = F G T g r (t ) g r (t 2 ) g r (t n ) }{{} Theorem 4 δ (0, ), [0, ) For any x, y [0, ) satisfying have r K(x, y) = (x y) 2 = f (x)g (y) + R r, f (x) = (x ), g (y) = R r (r + )δ r r n (y ) +, x y δ we

3 203/0/ page 3 3 x { y { 0 Figure 42 Well separated points Proof Then use (x y) 2 = ((y ) (x )) 2 = (y ) 2 ( ) 2 x r ( t) 2 = t + R r, t δ < Note that, to reach a given tolerance τ, (r + )δ r < τ, y we need r = O( log τ ) Definition 42 Two sets {x i }, {y j } are well separated if there exist points x 0, y 0 and d > 0 st where α > 2 is a constant x i x 0 < d, y i y 0 < d, x 0 y 0 > αd, Corollary 43 If K is formed for all the subsets of a total of n points, then any off-diag bloc of K has numerical ran O(log n) Proof The interval can be repeatedly partitioned 402 Math preliminaries Multipole expansion Consider K(, 0 ) = log( 0 )

4 203/0/ page 4 4 Chapter 4 Fast multipole method Lemma 44 A point change is located at 0 Then for any st > 0 log( 0 ) = log ( 0 ) Proof log( 0 ) log = log( t) Taylor Theorem 45 (Multipole expansion (with center 0)) q i, i = : m at points i, i = : m with i < d Then for any C with > d, the potential is Furthermore, with truncation ϕ() = q log + a q = q i, a = ϕ() = M p (, 0 ) + R r r a M p (, 0 ) = q log + q i i ( ) r+ ( A R r α c c c =, Q m = q i, α = d ) ( ) r c A /c Proof The previous lemma gives the expansion: ϕ() = q i K( i, ) = q i [log ( m ) = q i log = Q log + a =r+ ( m q =r+ q i q i i ) d q ( i ) =r+ ] ( i ) ( ) c In particular, if c 2 or 2d, R r q ( ) r 2

5 203/0/ page 5 5 By the theorem ϕ xi (y j ) M p (y j, x 0 ) q ( ) r 2 The coefs of in a multipole expansion costs mp, once for all y i To compute the potential (force) at {y j } due to the charges at {x i }, we need m ϕ x i (y j ) for all j The evaluation of the expansion at {y j } is nr Total cost mr + nr Translation/shift Theorem 46 (Shifting center to 0) Suppose ϕ() = a 0 log( 0 ) + a ( 0 ) (4) is a ME of the potential due to q i, i = : m located inside the circle D of radius R with center 0 Then for outside the circle D of radius R + 0 and centered at the origin, ϕ() = a 0 log + b l = l a l 0 l= b l l ( l With truncation, the error is bounded by A 0 + R 0 +R ) a 0 l 0 l r+ Proof log( 0 ) log = log( t), etc Taylor expansion at 0 This means we can shift the center without loss of accuracy Theorem 47 (Multipole to local expansion (for the purpose of later evaluation)) q i, i = : m located inside the circle D with radius R and centered at 0, 0 > (c + )R, c > Then (4) converges inside the circle D 2 of radius R about the origin Inside D 2, ϕ() = b 0 = b l = b l l l= 0 a a +l 0 ( ) + a 0 log( 0 ) ( l + ) ( ) a 0 l0, l

6 203/0/ page 6 6 Chapter 4 Fast multipole method D R 0 q q i 0 For r max(2, 2c/(c )), error bound A(4e(r + c)(c + ) + c 2 ) c(c ) ( ) r+ c D R 0 q q i cr D 2 R 0 C Figure 43 Theorem 48 (Shifting center within a region of analyticity) For any 0,, a, = 0 : n, [ n n n ( ] a ( 0 ) = a )( 0 ) l l =0 l=0 =l l 403 FMM See slides-xuepdf Patition the domain into multiple levels of boxes Φ li : r -term multipole expansion about the box center of the potential field due to all the particles in box i at level l

7 203/0/ page 7 7 Figure 44 Single-level FMM and multi-level FMM Ψ li : r -term local expansion about the box center of the potential field due to all the particles outside box i and its nearest neighbors Ψ li : r -term local expansion about the box center of the potential field due to all the particles outside box i s parent and its parent nearest neighbors I i : Interaction list: children of the nearest neighbors of i s parent which are well separated from i Main steps: Upward: Figure 45 Computational boxes at different levels (a) for i = : 4 l max form ME of Φ lmax,i coefficients of ME only and NO evaluation! (b) for l = l max : 0 for i = : 4 l form ME of Φ l,i by shifting the center of each child coefficients of ME only and NO evaluation!

8 203/0/ page 8 8 Chapter 4 Fast multipole method 2 Downward: for l = : l max 3 Sum: for i = : 4 l for j I i, Ψ li = Ψ li + Φ lj with center of Φ lj shifted to that of i if l < l max for i = : 4 l for j I ch(i), form Ψ l+,i by shifting the center of Ψ li to j for i = : 4 l max for j box i, evaluate Ψ lmax,i( j ), ˆΨ lmax,ij of j with i s other nodes and i s neighbors i j Ψ l max,i( j ) + ˆΨ lmax,ij

9 203/0/ page 9 Bibliography [] S Börm, L Grasedyc, and W Hacbusch, Introduction to hierarchical matrices with applications, Eng Anal Bound Elem, 27 (2003), pp [2] S Chandrasearan, P Dewilde, M Gu, and N Somasunderam, On the numerical ran of the off-diagonal blocs of Schur complements of discretied elliptic PDEs, SIAM J Matrix Anal Appl, 3 (200), pp [3] S Chandrasearan, M Gu, X Sun, J Xia, and J Zhu, A superfast algorithm for Toeplit systems of linear equations, SIAM J Matrix Anal Appl, 29 (2007), pp [4] L Greengard and V Rohlin, A Fast Algorithm for Particle Simulations, J Comput Phys, 73 (987), pp [5] J Carrier, L Greengard, and V Rohlin, A fast adaptive multipole algorithm for particle simulations, SIAM J Sci Stat Comput, 9 (998), pp [6] P G Martinsson, V Rohlin, and M Tygert, A fast algorithm for the inversion of general Toeplit matrices, Comput Math Appl 50 (2005), pp [7] P Starr, On the Numerical Solution of One-Dimensional Integral and Differential Equations, Thesis advisor: V Rohlin, Research Report YALEU/DCS/RR-888, Department of Computer Science, Yale University, New Haven, CT, 99 [8] J Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J Matrix Anal Appl, 33 (202), pp [9] J Xia, S Chandrasearan, M Gu, and X S Li, Fast algorithms for hierarchically semiseparable matrices, Numer Linear Algebra Appl, 7 (200), pp

A Crash Course on Fast Multipole Method (FMM)

A Crash Course on Fast Multipole Method (FMM) A Crash Course on Fast Multipole Method (FMM) Hanliang Guo Kanso Biodynamical System Lab, 2018 April What is FMM? A fast algorithm to study N body interactions (Gravitational, Coulombic interactions )

More information

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov Week 1. Introduction. What are multipole methods and what is this course about. Problems from physics, mathematics,

More information

The Fast Multipole Method and other Fast Summation Techniques

The Fast Multipole Method and other Fast Summation Techniques The Fast Multipole Method and other Fast Summation Techniques Gunnar Martinsson The University of Colorado at Boulder (The factor of 1/2π is suppressed.) Problem definition: Consider the task of evaluation

More information

18.336J/6.335J: Fast methods for partial differential and integral equations. Lecture 13. Instructor: Carlos Pérez Arancibia

18.336J/6.335J: Fast methods for partial differential and integral equations. Lecture 13. Instructor: Carlos Pérez Arancibia 18.336J/6.335J: Fast methods for partial differential and integral equations Lecture 13 Instructor: Carlos Pérez Arancibia MIT Mathematics Department Cambridge, October 24, 2016 Fast Multipole Method (FMM)

More information

FAST STRUCTURED EIGENSOLVER FOR DISCRETIZED PARTIAL DIFFERENTIAL OPERATORS ON GENERAL MESHES

FAST STRUCTURED EIGENSOLVER FOR DISCRETIZED PARTIAL DIFFERENTIAL OPERATORS ON GENERAL MESHES Proceedings of the Project Review, Geo-Mathematical Imaging Group Purdue University, West Lafayette IN, Vol. 1 2012 pp. 123-132. FAST STRUCTURED EIGENSOLVER FOR DISCRETIZED PARTIAL DIFFERENTIAL OPERATORS

More information

Lecture 2: The Fast Multipole Method

Lecture 2: The Fast Multipole Method CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 2: The Fast Multipole Method Gunnar Martinsson The University of Colorado at Boulder Research support by: Recall:

More information

Differential Algebra (DA) based Fast Multipole Method (FMM)

Differential Algebra (DA) based Fast Multipole Method (FMM) Differential Algebra (DA) based Fast Multipole Method (FMM) Department of Physics and Astronomy Michigan State University June 27, 2010 Space charge effect Space charge effect : the fields of the charged

More information

(1) u i = g(x i, x j )q j, i = 1, 2,..., N, where g(x, y) is the interaction potential of electrostatics in the plane. 0 x = y.

(1) u i = g(x i, x j )q j, i = 1, 2,..., N, where g(x, y) is the interaction potential of electrostatics in the plane. 0 x = y. Encyclopedia entry on Fast Multipole Methods. Per-Gunnar Martinsson, University of Colorado at Boulder, August 2012 Short definition. The Fast Multipole Method (FMM) is an algorithm for rapidly evaluating

More information

MULTI-LAYER HIERARCHICAL STRUCTURES AND FACTORIZATIONS

MULTI-LAYER HIERARCHICAL STRUCTURES AND FACTORIZATIONS MULTI-LAYER HIERARCHICAL STRUCTURES AND FACTORIZATIONS JIANLIN XIA Abstract. We propose multi-layer hierarchically semiseparable MHS structures for the fast factorizations of dense matrices arising from

More information

Fast Multipole Methods for The Laplace Equation. Outline

Fast Multipole Methods for The Laplace Equation. Outline Fast Multipole Methods for The Laplace Equation Ramani Duraiswami Nail Gumerov Outline 3D Laplace equation and Coulomb potentials Multipole and local expansions Special functions Legendre polynomials Associated

More information

Course Requirements. Course Mechanics. Projects & Exams. Homework. Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications

Course Requirements. Course Mechanics. Projects & Exams. Homework. Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov What are multipole methods and what is this course about. Problems from phsics, mathematics,

More information

Fast Multipole Methods

Fast Multipole Methods An Introduction to Fast Multipole Methods Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park http://www.umiacs.umd.edu/~ramani Joint work with Nail A. Gumerov

More information

A sparse multifrontal solver using hierarchically semi-separable frontal matrices

A sparse multifrontal solver using hierarchically semi-separable frontal matrices A sparse multifrontal solver using hierarchically semi-separable frontal matrices Pieter Ghysels Lawrence Berkeley National Laboratory Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB), François-Henry

More information

Hierarchical Matrices. Jon Cockayne April 18, 2017

Hierarchical Matrices. Jon Cockayne April 18, 2017 Hierarchical Matrices Jon Cockayne April 18, 2017 1 Sources Introduction to Hierarchical Matrices with Applications [Börm et al., 2003] 2 Sources Introduction to Hierarchical Matrices with Applications

More information

Fast multipole boundary element method for the analysis of plates with many holes

Fast multipole boundary element method for the analysis of plates with many holes Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational

More information

Fast matrix algebra for dense matrices with rank-deficient off-diagonal blocks

Fast matrix algebra for dense matrices with rank-deficient off-diagonal blocks CHAPTER 2 Fast matrix algebra for dense matrices with rank-deficient off-diagonal blocks Chapter summary: The chapter describes techniques for rapidly performing algebraic operations on dense matrices

More information

ON INTERPOLATION AND INTEGRATION IN FINITE-DIMENSIONAL SPACES OF BOUNDED FUNCTIONS

ON INTERPOLATION AND INTEGRATION IN FINITE-DIMENSIONAL SPACES OF BOUNDED FUNCTIONS COMM. APP. MATH. AND COMP. SCI. Vol., No., ON INTERPOLATION AND INTEGRATION IN FINITE-DIMENSIONAL SPACES OF BOUNDED FUNCTIONS PER-GUNNAR MARTINSSON, VLADIMIR ROKHLIN AND MARK TYGERT We observe that, under

More information

Efficient Kernel Machines Using the Improved Fast Gauss Transform

Efficient Kernel Machines Using the Improved Fast Gauss Transform Efficient Kernel Machines Using the Improved Fast Gauss Transform Changjiang Yang, Ramani Duraiswami and Larry Davis Department of Computer Science University of Maryland College Park, MD 20742 {yangcj,ramani,lsd}@umiacs.umd.edu

More information

INTRODUCTION TO FAST MULTIPOLE METHODS LONG CHEN

INTRODUCTION TO FAST MULTIPOLE METHODS LONG CHEN INTRODUCTION TO FAST MULTIPOLE METHODS LONG CHEN ABSTRACT. This is a simple introduction to fast multipole methods for the N-body summation problems. Low rank approximation plus hierarchical decomposition

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

An implementation of the Fast Multipole Method without multipoles

An implementation of the Fast Multipole Method without multipoles An implementation of the Fast Multipole Method without multipoles Robin Schoemaker Scientific Computing Group Seminar The Fast Multipole Method Theory and Applications Spring 2002 Overview Fast Multipole

More information

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation A Fast N-Body Solver for the Poisson(-Boltzmann) Equation Robert D. Skeel Departments of Computer Science (and Mathematics) Purdue University http://bionum.cs.purdue.edu/2008december.pdf 1 Thesis Poisson(-Boltzmann)

More information

Rapid evaluation of electrostatic interactions in multi-phase media

Rapid evaluation of electrostatic interactions in multi-phase media Rapid evaluation of electrostatic interactions in multi-phase media P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Mark Tygert and

More information

Recurrence Relations and Fast Algorithms

Recurrence Relations and Fast Algorithms Recurrence Relations and Fast Algorithms Mark Tygert Research Report YALEU/DCS/RR-343 December 29, 2005 Abstract We construct fast algorithms for decomposing into and reconstructing from linear combinations

More information

FAST ALGORITHM FOR EXTRACTING THE DIAGONAL OF THE INVERSE MATRIX WITH APPLICATION TO THE ELECTRONIC STRUCTURE ANALYSIS OF METALLIC SYSTEMS

FAST ALGORITHM FOR EXTRACTING THE DIAGONAL OF THE INVERSE MATRIX WITH APPLICATION TO THE ELECTRONIC STRUCTURE ANALYSIS OF METALLIC SYSTEMS COMMUN. MATH. SCI. Vol. 7, No. 3, pp. 755 777 c 2009 International Press FAST ALGORITHM FOR EXTRACTING THE DIAGONAL OF THE INVERSE MATRIX WITH APPLICATION TO THE ELECTRONIC STRUCTURE ANALYSIS OF METALLIC

More information

Scalability Metrics for Parallel Molecular Dynamics

Scalability Metrics for Parallel Molecular Dynamics Scalability Metrics for arallel Molecular Dynamics arallel Efficiency We define the efficiency of a parallel program running on processors to solve a problem of size W Let T(W, ) be the execution time

More information

arxiv: v1 [cs.lg] 26 Jul 2017

arxiv: v1 [cs.lg] 26 Jul 2017 Updating Singular Value Decomposition for Rank One Matrix Perturbation Ratnik Gandhi, Amoli Rajgor School of Engineering & Applied Science, Ahmedabad University, Ahmedabad-380009, India arxiv:70708369v

More information

Particle Methods. Lecture Reduce and Broadcast: A function viewpoint

Particle Methods. Lecture Reduce and Broadcast: A function viewpoint Lecture 9 Particle Methods 9.1 Reduce and Broadcast: A function viewpoint [This section is being rewritten with what we hope will be the world s clearest explanation of the fast multipole algorithm. Readers

More information

Fast algorithms for dimensionality reduction and data visualization

Fast algorithms for dimensionality reduction and data visualization Fast algorithms for dimensionality reduction and data visualization Manas Rachh Yale University 1/33 Acknowledgements George Linderman (Yale) Jeremy Hoskins (Yale) Stefan Steinerberger (Yale) Yuval Kluger

More information

Chapter 5 Fast Multipole Methods

Chapter 5 Fast Multipole Methods Computational Electromagnetics; Chapter 1 1 Chapter 5 Fast Multipole Methods 5.1 Near-field and far-field expansions Like the panel clustering, the Fast Multipole Method (FMM) is a technique for the fast

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

Fast numerical methods for solving linear PDEs

Fast numerical methods for solving linear PDEs Fast numerical methods for solving linear PDEs P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at

More information

A Fast Algorithm for Particle Simulations*

A Fast Algorithm for Particle Simulations* JOURNAL OF COMPUTATIONAL PHYSICS 35, 280 292 (997) ARTICLE NO. CP975706 A Fast Algorithm for Particle Simulations* L. Greengard and V. Rokhlin Department of Computer Science, Yale University, New Haven,

More information

Dual-Tree Fast Gauss Transforms

Dual-Tree Fast Gauss Transforms Dual-Tree Fast Gauss Transforms Dongryeol Lee Computer Science Carnegie Mellon Univ. dongryel@cmu.edu Alexander Gray Computer Science Carnegie Mellon Univ. agray@cs.cmu.edu Andrew Moore Computer Science

More information

Fast direct solvers for elliptic PDEs

Fast direct solvers for elliptic PDEs Fast direct solvers for elliptic PDEs Gunnar Martinsson The University of Colorado at Boulder Students: Adrianna Gillman (now at Dartmouth) Nathan Halko Sijia Hao Patrick Young (now at GeoEye Inc.) Collaborators:

More information

Trefftz type method for 2D problems of electromagnetic scattering from inhomogeneous bodies.

Trefftz type method for 2D problems of electromagnetic scattering from inhomogeneous bodies. Trefftz type method for 2D problems of electromagnetic scattering from inhomogeneous bodies. S. Yu. Reutsiy Magnetohydrodynamic Laboratory, P. O. Box 136, Mosovsi av.,199, 61037, Kharov, Uraine. e mail:

More information

Solutions Preliminary Examination in Numerical Analysis January, 2017

Solutions Preliminary Examination in Numerical Analysis January, 2017 Solutions Preliminary Examination in Numerical Analysis January, 07 Root Finding The roots are -,0, a) First consider x 0 > Let x n+ = + ε and x n = + δ with δ > 0 The iteration gives 0 < ε δ < 3, which

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems Efficient smoothers for all-at-once multigrid methods for Poisson and Stoes control problems Stefan Taacs stefan.taacs@numa.uni-linz.ac.at, WWW home page: http://www.numa.uni-linz.ac.at/~stefant/j3362/

More information

A robust inner-outer HSS preconditioner

A robust inner-outer HSS preconditioner NUMERICAL LINEAR ALGEBRA WIH APPLICAIONS Numer. Linear Algebra Appl. 2011; 00:1 0 [Version: 2002/09/18 v1.02] A robust inner-outer HSS preconditioner Jianlin Xia 1 1 Department of Mathematics, Purdue University,

More information

Transforming Hierarchical Trees on Metric Spaces

Transforming Hierarchical Trees on Metric Spaces CCCG 016, Vancouver, British Columbia, August 3 5, 016 Transforming Hierarchical Trees on Metric Spaces Mahmoodreza Jahanseir Donald R. Sheehy Abstract We show how a simple hierarchical tree called a cover

More information

216 S. Chandrasearan and I.C.F. Isen Our results dier from those of Sun [14] in two asects: we assume that comuted eigenvalues or singular values are

216 S. Chandrasearan and I.C.F. Isen Our results dier from those of Sun [14] in two asects: we assume that comuted eigenvalues or singular values are Numer. Math. 68: 215{223 (1994) Numerische Mathemati c Sringer-Verlag 1994 Electronic Edition Bacward errors for eigenvalue and singular value decomositions? S. Chandrasearan??, I.C.F. Isen??? Deartment

More information

Arizona State University, Tempe, AZ 85287, USA 2 Department of Electrical Engineering. Arizona State University, Tempe, AZ 85287, USA ABSTRACT

Arizona State University, Tempe, AZ 85287, USA 2 Department of Electrical Engineering. Arizona State University, Tempe, AZ 85287, USA ABSTRACT Accurate Three-Dimensional Simulation of Electron Mobility Including Electron-Electron and Electron-Dopant Interactions C. Heitzinger, 1 C. Ringhofer, 1 S. Ahmed, 2 D. Vasileska, 2 1 Department of Mathematics

More information

Enhancing Scalability of Sparse Direct Methods

Enhancing Scalability of Sparse Direct Methods Journal of Physics: Conference Series 78 (007) 0 doi:0.088/7-6596/78//0 Enhancing Scalability of Sparse Direct Methods X.S. Li, J. Demmel, L. Grigori, M. Gu, J. Xia 5, S. Jardin 6, C. Sovinec 7, L.-Q.

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Chapter 1 Numerical homogenization via approximation of the solution operator

Chapter 1 Numerical homogenization via approximation of the solution operator Chapter Numerical homogenization via approximation of the solution operator A. Gillman, P. Young, and P.G. Martinsson Abstract The paper describes techniques for constructing simplified models for problems

More information

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure Page 26 of 46 A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure SHEN WANG, Department of Mathematics, Purdue University XIAOYE S. LI, Lawrence Berkeley National Laboratory

More information

A fast randomized algorithm for overdetermined linear least-squares regression

A fast randomized algorithm for overdetermined linear least-squares regression A fast randomized algorithm for overdetermined linear least-squares regression Vladimir Rokhlin and Mark Tygert Technical Report YALEU/DCS/TR-1403 April 28, 2008 Abstract We introduce a randomized algorithm

More information

GROUP THEORY IN PHYSICS

GROUP THEORY IN PHYSICS GROUP THEORY IN PHYSICS Wu-Ki Tung World Scientific Philadelphia Singapore CONTENTS CHAPTER 1 CHAPTER 2 CHAPTER 3 CHAPTER 4 PREFACE INTRODUCTION 1.1 Particle on a One-Dimensional Lattice 1.2 Representations

More information

Ann. Funct. Anal. 5 (2014), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 5 (2014), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann Funct Anal 5 (2014), no 2, 127 137 A nnals of F unctional A nalysis ISSN: 2008-8752 (electronic) URL:wwwemisde/journals/AFA/ THE ROOTS AND LINKS IN A CLASS OF M-MATRICES XIAO-DONG ZHANG This paper

More information

Chenhan D. Yu The 3rd BLIS Retreat Sep 28, 2015

Chenhan D. Yu The 3rd BLIS Retreat Sep 28, 2015 GSKS GSKNN BLIS-Based High Performance Computing Kernels in N-body Problems Chenhan D. Yu The 3rd BLIS Retreat Sep 28, 2015 N-body Problems Hellstorm Astronomy and 3D https://youtu.be/bllwkx_mrfk 2 N-body

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,  ISSN X Application of the fast multipole method to the 3-D BEM analysis of electron guns T. Nishida and K. Hayami Department of Mathematical Engineering and Information Physics, School of Engineering, University

More information

Parallel Adaptive Fast Multipole Method: application, design, and more...

Parallel Adaptive Fast Multipole Method: application, design, and more... Parallel Adaptive Fast Multipole Method: application, design, and more... Stefan Engblom UPMARC @ TDB/IT, Uppsala University PSCP, Uppsala, March 4, 2011 S. Engblom (UPMARC/TDB) Parallel Adaptive FMM PSCP,

More information

Fast Direct Methods for Gaussian Processes

Fast Direct Methods for Gaussian Processes Fast Direct Methods for Gaussian Processes Mike O Neil Departments of Mathematics New York University oneil@cims.nyu.edu December 12, 2015 1 Collaborators This is joint work with: Siva Ambikasaran Dan

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J MATRIX ANAL APPL Vol 29, No, pp 27 266 c 2007 Society for Industrial and Applied Mathematics A SUPERFAST ALGORITM FOR TOEPLITZ SYSTEMS OF LINEAR EQUATIONS S CANDRASEKARAN, M GU, X SUN, J XIA, AND

More information

An Overview of Fast Multipole Methods

An Overview of Fast Multipole Methods An Overview of Fast Multipole Methods Alexander T. Ihler April 23, 2004 Sing, Muse, of the low-rank approximations Of spherical harmonics and O(N) computation... Abstract We present some background and

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 26, No. 4, pp. 1389 1404 c 2005 Society for Industrial and Applied Mathematics ON THE COMPRESSION OF LOW RANK MATRICES H. CHENG, Z. GIMBUTAS, P. G. MARTINSSON, AND V. ROKHLIN

More information

Approximate Voronoi Diagrams

Approximate Voronoi Diagrams CS468, Mon. Oct. 30 th, 2006 Approximate Voronoi Diagrams Presentation by Maks Ovsjanikov S. Har-Peled s notes, Chapters 6 and 7 1-1 Outline Preliminaries Problem Statement ANN using PLEB } Bounds and

More information

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem Leszek Marcinkowski 1 and Nina Dokeva 2 1 Department of Mathematics, Warsaw University, Banacha 2, 02 097 Warszawa, Poland,

More information

Improved Fast Gauss Transform. Fast Gauss Transform (FGT)

Improved Fast Gauss Transform. Fast Gauss Transform (FGT) 10/11/011 Improved Fast Gauss Transform Based on work by Changjiang Yang (00), Vikas Raykar (005), and Vlad Morariu (007) Fast Gauss Transform (FGT) Originally proposed by Greengard and Strain (1991) to

More information

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Martin J. Gander and Felix Kwok Section de mathématiques, Université de Genève, Geneva CH-1211, Switzerland, Martin.Gander@unige.ch;

More information

APPROXIMATING GAUSSIAN PROCESSES

APPROXIMATING GAUSSIAN PROCESSES 1 / 23 APPROXIMATING GAUSSIAN PROCESSES WITH H 2 -MATRICES Steffen Börm 1 Jochen Garcke 2 1 Christian-Albrechts-Universität zu Kiel 2 Universität Bonn and Fraunhofer SCAI 2 / 23 OUTLINE 1 GAUSSIAN PROCESSES

More information

Fast algorithms for hierarchically semiseparable matrices

Fast algorithms for hierarchically semiseparable matrices NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2010; 17:953 976 Published online 22 December 2009 in Wiley Online Library (wileyonlinelibrary.com)..691 Fast algorithms for hierarchically

More information

Domain decomposition schemes with high-order accuracy and unconditional stability

Domain decomposition schemes with high-order accuracy and unconditional stability Domain decomposition schemes with high-order accuracy and unconditional stability Wenrui Hao Shaohong Zhu March 7, 0 Abstract Parallel finite difference schemes with high-order accuracy and unconditional

More information

A fast adaptive numerical solver for nonseparable elliptic partial differential equations

A fast adaptive numerical solver for nonseparable elliptic partial differential equations J. KSIAM Vol.2. No.1. 27-39, 1998 27 A fast adaptive numerical solver for nonseparable elliptic partial differential equations June-Yub Lee Dept of Math, Ewha Womans Univ, Seoul 120-750, KOREA jylee@math.ewha.ac.kr

More information

A fast method for solving the Heat equation by Layer Potentials

A fast method for solving the Heat equation by Layer Potentials A fast method for solving the Heat equation by Layer Potentials Johannes Tausch Abstract Boundary integral formulations of the heat equation involve time convolutions in addition to surface potentials.

More information

Block-tridiagonal matrices

Block-tridiagonal matrices Block-tridiagonal matrices. p.1/31 Block-tridiagonal matrices - where do these arise? - as a result of a particular mesh-point ordering - as a part of a factorization procedure, for example when we compute

More information

On the parity of the Wiener index

On the parity of the Wiener index On the parity of the Wiener index Stephan Wagner Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7602, South Africa Hua Wang Department of Mathematics, University of Florida,

More information

RANK REDUCTION AND BORDERED INVERSION

RANK REDUCTION AND BORDERED INVERSION Mathematical Notes, Misolc, Vol. 2., No. 2., (21), pp. 117 126 RANK REDUCTION AND BORDERED INVERSION Aurél Galántai Institute of Mathematics, University of Misolc 3515 Misolc Egyetemváros, Hungary matgal@gold.uni-misolc.hu

More information

APPLICATIONS OF THE HYPER-POWER METHOD FOR COMPUTING MATRIX PRODUCTS

APPLICATIONS OF THE HYPER-POWER METHOD FOR COMPUTING MATRIX PRODUCTS Univ. Beograd. Publ. Eletrotehn. Fa. Ser. Mat. 15 (2004), 13 25. Available electronically at http: //matematia.etf.bg.ac.yu APPLICATIONS OF THE HYPER-POWER METHOD FOR COMPUTING MATRIX PRODUCTS Predrag

More information

A Fast Direct Solver for a Class of Elliptic Partial Differential Equations

A Fast Direct Solver for a Class of Elliptic Partial Differential Equations J Sci Comput (2009) 38: 316 330 DOI 101007/s10915-008-9240-6 A Fast Direct Solver for a Class of Elliptic Partial Differential Equations Per-Gunnar Martinsson Received: 20 September 2007 / Revised: 30

More information

Boundary value problems on triangular domains and MKSOR methods

Boundary value problems on triangular domains and MKSOR methods Applied and Computational Mathematics 2014; 3(3): 90-99 Published online June 30 2014 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.1164/j.acm.20140303.14 Boundary value problems on triangular

More information

New series expansions of the Gauss hypergeometric function

New series expansions of the Gauss hypergeometric function New series expansions of the Gauss hypergeometric function José L. López and Nico. M. Temme 2 Departamento de Matemática e Informática, Universidad Pública de Navarra, 36-Pamplona, Spain. e-mail: jl.lopez@unavarra.es.

More information

Fast direct solvers for elliptic PDEs

Fast direct solvers for elliptic PDEs Fast direct solvers for elliptic PDEs Gunnar Martinsson The University of Colorado at Boulder PhD Students: Tracy Babb Adrianna Gillman (now at Dartmouth) Nathan Halko (now at Spot Influence, LLC) Sijia

More information

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Journal of Computational and Applied Mathematics 200 (2007) 749 760 www.elsevier.com/locate/cam The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Xiang-yang Peng a,b,, Xi-yan

More information

On the Relationship between Sum-Product Networks and Bayesian Networks

On the Relationship between Sum-Product Networks and Bayesian Networks On the Relationship between Sum-Product Networks and Bayesian Networks International Conference on Machine Learning, 2015 Han Zhao Mazen Melibari Pascal Poupart University of Waterloo, Waterloo, ON, Canada

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations Molecular Dynamics Simulations Dr. Kasra Momeni www.knanosys.com Outline Long-range Interactions Ewald Sum Fast Multipole Method Spherically Truncated Coulombic Potential Speeding up Calculations SPaSM

More information

Generalized fast multipole method

Generalized fast multipole method Home Search Collections Journals About Contact us My IOPscience Generalized fast multipole method This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2 IOP

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 7, No. 6, pp. 1903 198 c 006 Society for Industrial and Applied Mathematics FAST ALGORITHMS FOR SPHERICAL HARMONIC EXPANSIONS VLADIMIR ROKHLIN AND MARK TYGERT Abstract. An algorithm

More information

Randomized algorithms for the low-rank approximation of matrices

Randomized algorithms for the low-rank approximation of matrices Randomized algorithms for the low-rank approximation of matrices Yale Dept. of Computer Science Technical Report 1388 Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert

More information

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n Electronic Journal of Linear Algebra ISSN 08-380 Volume 22, pp. 52-538, May 20 THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE WEI-WEI XU, LI-XIA CAI, AND WEN LI Abstract. In this

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

Uniqueness of the Solutions of Some Completion Problems

Uniqueness of the Solutions of Some Completion Problems Uniqueness of the Solutions of Some Completion Problems Chi-Kwong Li and Tom Milligan Abstract We determine the conditions for uniqueness of the solutions of several completion problems including the positive

More information

Computing the pth Roots of a Matrix. with Repeated Eigenvalues

Computing the pth Roots of a Matrix. with Repeated Eigenvalues Applied Mathematical Sciences, Vol. 5, 2011, no. 53, 2645-2661 Computing the pth Roots of a Matrix with Repeated Eigenvalues Amir Sadeghi 1, Ahmad Izani Md. Ismail and Azhana Ahmad School of Mathematical

More information

Formulas for the Drazin Inverse of Matrices over Skew Fields

Formulas for the Drazin Inverse of Matrices over Skew Fields Filomat 30:12 2016 3377 3388 DOI 102298/FIL1612377S Published by Faculty of Sciences and Mathematics University of Niš Serbia Available at: http://wwwpmfniacrs/filomat Formulas for the Drazin Inverse of

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

V C V L T I 0 C V B 1 V T 0 I. l nk

V C V L T I 0 C V B 1 V T 0 I. l nk Multifrontal Method Kailai Xu September 16, 2017 Main observation. Consider the LDL T decomposition of a SPD matrix [ ] [ ] [ ] [ ] B V T L 0 I 0 L T L A = = 1 V T V C V L T I 0 C V B 1 V T, 0 I where

More information

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials Computational Methods for Differential Equations http://cmdetabrizuacir Vol, No, 3, pp 78-95 Numerical solution of delay differential equations via operational matrices of hybrid of bloc-pulse functions

More information

On marker set distance Laplacian eigenvalues in graphs.

On marker set distance Laplacian eigenvalues in graphs. Malaya Journal of Matematik, Vol 6, No 2, 369-374, 2018 https://doiorg/1026637/mjm0602/0011 On marker set distance Laplacian eigenvalues in graphs Medha Itagi Huilgol1 * and S Anuradha2 Abstract In our

More information

A Remark on the Fast Gauss Transform

A Remark on the Fast Gauss Transform Publ. RIMS, Kyoto Univ. 39 (2003), 785 796 A Remark on the Fast Gauss Transform By Kenta Kobayashi Abstract We propose an improvement on the Fast Gauss Transform which was presented by Greengard and Sun

More information

Fast Multipole Methods for Incompressible Flow Simulation

Fast Multipole Methods for Incompressible Flow Simulation Fast Multipole Methods for Incompressible Flow Simulation Nail A. Gumerov & Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park Support of NSF awards 0086075

More information

Analytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions and their applications

Analytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions and their applications Analytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions and their applications Yongge Tian CEMA, Central University of Finance and Economics, Beijing 100081,

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

A Generalization of Wigner s Law

A Generalization of Wigner s Law A Generalization of Wigner s Law Inna Zakharevich June 2, 2005 Abstract We present a generalization of Wigner s semicircle law: we consider a sequence of probability distributions (p, p 2,... ), with mean

More information

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula Syllabus for Math 308, Paul Smith Book: Kolman-Hill Chapter 1. Linear Equations and Matrices 1.1 Systems of Linear Equations Definition of a linear equation and a solution to a linear equations. Meaning

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Representation Conditional Random Fields Log-Linear Models Readings: KF

More information

ABSTRACT NONSINGULAR CURVES

ABSTRACT NONSINGULAR CURVES ABSTRACT NONSINGULAR CURVES Affine Varieties Notation. Let k be a field, such as the rational numbers Q or the complex numbers C. We call affine n-space the collection A n k of points P = a 1, a,..., a

More information

ETNA Kent State University

ETNA Kent State University C 8 Electronic Transactions on Numerical Analysis. Volume 17, pp. 76-2, 2004. Copyright 2004,. ISSN 1068-613. etnamcs.kent.edu STRONG RANK REVEALING CHOLESKY FACTORIZATION M. GU AND L. MIRANIAN Abstract.

More information

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind Pascal Eigenspaces and Invariant Sequences of the First or Second Kind I-Pyo Kim a,, Michael J Tsatsomeros b a Department of Mathematics Education, Daegu University, Gyeongbu, 38453, Republic of Korea

More information