ERRATA TO: STRAPDOWN ANALYTICS, FIRST EDITION PAUL G. SAVAGE PARTS 1 AND 2 STRAPDOWN ASSOCIATES, INC. 2000

Size: px
Start display at page:

Download "ERRATA TO: STRAPDOWN ANALYTICS, FIRST EDITION PAUL G. SAVAGE PARTS 1 AND 2 STRAPDOWN ASSOCIATES, INC. 2000"

Transcription

1 ERRATA TO: STRAPDOWN ANAYTICS, FIRST EDITION PAU G. SAVAGE PARTS 1 AND 2 STRAPDOWN ASSOCIATES, INC Corrections Reported From April 2004 To Present Pg Section , first paragraph - Frequency folding is when the oscillation frequency is a multiple of the sample frequency, not the inverse as in the book. Sections and The section titles are interchanged. The Section title should be "E FRAME DEFINED ERROR PARAMETER RATE EQUATIONS FROM N FRAME DEFINED PARAMETER RATE EQUATIONS". The Section title should be "N FRAME DEFINED ERROR PARAMETER RATE EQUATIONS FROM E FRAME DEFINED PARAMETER RATE EQUATIONS". Pg The equation in the last sentence should be ( ). Corrections Reported From January 2004 To April 2004 Pg Delete the minus sign in front of 1 2 g in the μ zy equation. Corrections Reported From November 2003 To January 2004 Pg. B-2 (Volumes 1 and 2) - Add following Attitude: "Average of Averages filter " Pg. B-7 (Volumes 1 and 2) - Add to Quantization error (on inertial sensor outputs), Defined: " " -1-

2 Corrections Reported From June 2003 To November 2003 Pg , Table Axis Along Outer Rotation Fixture Axis for SEQUENCE NUMBER 20 should be -Y. Pg Equation ( ) should be: Conditions For Zero x Coupling Into Δx, Δy: x = I x * Φ xx or H x * = Hx = Φ xx Φ yx = 0 H x * = Hx ( ) or x = Diagonal H x * = Hx * If x (i=j, j) 1 Then Φ xx(i,j) = Φxx (i,j) And Φ yx (i,j) = 0 For All i Corrections Reported From 2000 To June 2003 Pg. 3-44, last line - Should be: "From Equation ( ), the conclusion following ( ), and the above definitions we have:" Pgs. 7-33, 7-34, 7-58, 7-59, 7-60, and Correction To The Navigation Frame Rotation Compensation Terms In The Velocity And Position Integration Algorithms The following is a revision to pages dealing with the small correction applied during acceleration transformation operations to account for rotation of the Frame during the m cycle. I(m) The term of concern is C I(n-1) I(n-1) - I Δv SFm in Equation ( ) which is incorrect in the form shown. The correct term is developed by rederiving Equation ( ). Using the matrix chain rule and integration by parts: -2-

3 Δv SFm I(m) = Δv SFm (t) = C I(m-1) I(m-1) I(n-1) C CB C B(t) asf dt I(m) = C I(m-1) (t) - C I(m-1) I(m-1) I(n-1) C CB I(m-1) I(n-1) C CB t C B(τ) asf dτ dt ( ) (t) Assuming C I(m-1) is approximately constant and linearly over the m cycle we then get: t C B(τ) asf dτ changes approximately Δv SFm I(m) C I(m-1) I(m-1) I(n-1) C CB - 1 I(m) C T - I m I(m-1) I(m-1) I(n-1) C CB t m t - t C B(τ) asf dτ m-1 T m dt I(m) = C I(m-1) I(m-1) I(n-1) C CB C I(m) I(m-1) = 1 2 C I(m) I(m-1) = 1 2 C I(m) I(n-1) I(m-1) I(n-1) - I C CB I(m-1) I(n-1) + I C CB I(m-1) I(n-1) + C CB ( a) With this result, Equations ( ) and ( ) are unchanged but Equation ( ) becomes: Δv SFm = 1 2 C I(m) I(n-1) I(m-1) I(n-1) + C ΔvSFm I(n-1) I(n-1) 1 = Δv SFm + 2 C I(m) I(m-1) I(n-1) - I + C I(n-1) - I ΔvSFm I(n-1) ( ) -3-

4 I(m) In the fifth line of Section , the analytical term C I(n-1) 1 2 C I(m) I(m-1) I(n-1) - I + C I(n-1) - I ΔvSFm I(n-1) I(m) Also change C I(n-1) I(n-1) - I Δv SFm should then be: - I in the sixth line of Section to the previous expression. For the position update in Section 7.3.3, the Δv SF(t) equation in ( ) should be: and the ΔR SFm 1 Δv SF(t) = 2 C (t) + C (m-1) (n-1)(t) I(n-1) (n-1) ΔvSF = 1 2 C (t) (m-1) = 1 2 C (t) (m-1) = 1 2 C (m) - I t - t m-1 (m-1) T m = 1 2 C (m) (m-1) = 1 2 C (m) (n-1) + I C (m-1) (n-1)(t) (n-1) ΔvSF - I C (m-1) (n-1)(t) (n-1) ΔvSF + (m-1) (n-1)(t) C(n-1) ΔvSF C (m-1) (n-1) t - t m-1 ΔvSFm (n-1) T m + C (m-1) (n-1)(t) (n-1) ΔvSF - I C (m-1) (n-1) t - t 2 m-1 ΔvSFm (n-1) + C (m-1) (n-1)(t) 2 (n-1) ΔvSF T m - C (m-1) (n-1) t - t 2 m-1 ΔvSFm (n-1) + C (m-1) (n-1)(t) 2 (n-1) ΔvSF T m equation in ( ) becomes: ΔR SFm = ζ (n-1) n-1,m - ζ n-1,m-1 Δv SFm Tm + C (m-1) (n-1) B CB(m-1) (n-1) ΔR SFm The effect on the Chapter 17 trajectory generator is: C m 1 m-1 I - 2 ζ v m ( ) ΔR SFm = ζ m-1 v m Δv SFm Tm + C B m-1 ΔR B SF m ( ) The previous corrections should also be applied to the equivalent terms in Equations ( ) and ( ). -4-

5 Pg. 8-6, last line - Should be replaced by: "δω Bias is determined by first writing from ( ):" Pg In the first sentence add "then" before "yields". The line preceding Equation ( ) should read: "Applying ( ) in ( ) also obtains for K Bias in alternate compensation Equations ( ):" Pg. 8-8, paragraph following Equation ( ) - Add at the end: "Equations ( ) and ( ) can then be used to obtain Ω Wt and K Mis in alternate compensation Equations ( )." Pg. 8-30, first definition following Equation ( ) - Delete: "(or pulse count)". Pg Include the F(Ω) equation from ( ) in the ( ) summary equation set. Pg , Equations ( ) - The following should replace the equivalent terms in the original version: Iω YR = ω c sin β 1 φ cos φ - cos α Iω ZR = - ω c sin β 1 φ sin φ - sin α Pg Add to the end of the first sentence following the Equation ( ) N definitions: " premultiplied by C." Pg , definition at top of page - Delete: "(positive in the plus φ direction)". Pgs and Change ( ) to: I ψ TMis I I = C B - CB0 δk TMis ( ) I Delete the Δψ TMis definition following ( ) and add the following in place of the last sentence beginning on page 13-24: "The same effect holds for any coordinate frame in which ψ is being evaluated, not only the I Frame, provided that rotation of the frame is properly taken into account. For example, for the local level Frame, Equation ( ) becomes: ψ TMis I I = C I CB - CB0 δk TMis = C B - I CB I0 δk TMis = C B - I I0 I C C I0 CB I I0 δk TMis = C B - I I0 C C I0 B δktmis I0 ( a) = C B - I C C 0 I0 B0 δktmis -5-

6 where 0 = Frame orientation in inertial space at time t = 0. and for more specificity, I = Discrete attitude of the Frame in non-rotating inertial space at the current time. BI0, I0 = Discrete attitudes of the B and Frames in non-rotating inertial space at time t = 0. I The previous notation is introduced to clearly denote C as being a relative attitude matrix I0 between two time points evaluated in the I Frame. Without the I notation (e.g., C 0) the matrix would have different values depending on the coordinate frame in which it was evaluated. For example, contrast Equations ( ) and ( ) with ( ) and ( ) (substituting for N) while recognizing that ρ ω EN = ω E." Pg , Paragraph following table - Should read: "We see from the table that the maximum for the error function occurs near q 2 / q 3 = 3 for which the error is % (i.e., the approximate sum solution P ΩSum is 10.9% smaller than the true solution P ΩSimult ). The standard deviation of P ΩSum the Ω Sum error at q 2 / q 3 = 3 (i.e., the square root ratio compared to one) is - 5.6%. P ΩSimult For large or small values of q 2 / q 3 the error in the P ΩSum solution is zero. Thus, we see that use of P ΩSum as an approximation to P ΩSimult has little error over the full range of q 2 / q 3." Pg Delete the last paragraph. Pg Add the following at the beginning of the first sentence following Equation ( ): "Under horizontal maneuvering, " Pg Add the following at the end of the second paragraph: "Also note that by E N continuously updating C N during the alignment process, ε is implicitly controlled to zero, thereby validating the ε N = 0 approximation of the previous paragraph." Pg to The first equation in ( ) and Equation ( ) should be: ψ N = C N B B ωib δ α ψ Quant + δ α ψ VQuant + G PψV = 1 2 C N B 1 B ωib 2 C N B B ωib N N 0 - a SF CB ( ) -6-

7 The 1/2 factor in the previous expressions is the ratio between the velocity and attitude update frequencies and is needed because there is 1 contribution of δ α ψ Quant and 1 contribution of δ α ψ VQuant (i.e., = 2 quantization noise contributions) to the attitude update cycle for each velocity update cycle. Equation ( ) provided in the book is consistent with this change. The same effect also applies to Equation ( ) which becomes: G PVR = - 1 r N B C B ωib CB N - 1 r N B C B ωib 0 C B N CB N ( ) The 1/r multiplier in ( ) arises because there are r-1 contributions of δυ VQuant and 1 contribution of δυ VRQuant (i.e., r = r quantization noise contributions) to the velocity update cycle for each position update cycle. Equation ( ) provided in the book is consistent with the previous change. Move the r definition following Equation ( ) up to the definition group following Equation ( ). Pg Delete the fourth bullet line. Pg At the end of the second sentence following the top of page definition, change "divided by the velocity." to "divided by the great circle angular velocity. The angular velocity equals the velocity along the great circle divided by the great circle radius." Change Equation ( ) to: T S/GC = R Avg θ GC/Range ( ) V GC Add the following definition at the bottom of the page: R Avg = Average distance to earth's center over the θ GC/Range angle (See Table R calculation). Can be approximated as R at the start of the trajectory segment. Pg In the second sentence in the second paragraph, change "velocity" to "velocity magnitude". Pg Add the following at the start of the first sentence: "Recognizing that during the turn V V V V u XV is horizontal, perpendicular to the vertical u Z, hence u Z u XV is a unit vector," Pg Add a closing bracket to the first equation in ( ). Pg. B-1 (Volumes 1 and 2) - Add to Accelerometer error characteristics: "12.4" -7-

8 Pg. B-2 (Volumes 1 and 2) - Add to Angular rate sensor error characteristics: "12.4" Pg. B-4 (Volumes 1 and 2) - Under Free azimuth coordinates (defined), change "2.2" to "4.5" Pg. B-7 (Volumes 1 and 2) - Add to Schuler, Dr. Maximilian: "13.2.2" Pg. B-9 (Volumes 1 and 2) - Under Wander azimuth coordinates (defined), change "2.2" to "4.5" Page (Part 2): The first IF statement under the DO loop should be changed to: IF j is less than or equal to the specified Φ λy expansion order, THEN: The indentation for the last two lines in the DO loop should be the same as for the preceding line: T IF j is equal to the specified Φ λy expansion order: B = Φ λy Φ λλ j M λλ j Φ λλ j-1 = M λλ ΔΦλλm j j! M j λλ = Φ λλ -8-

Errata for Instructor s Solutions Manual for Gravity, An Introduction to Einstein s General Relativity 1st printing

Errata for Instructor s Solutions Manual for Gravity, An Introduction to Einstein s General Relativity 1st printing Errata for Instructor s Solutions Manual for Gravity, An Introduction to Einstein s General Relativity st printing Updated 7/7/003 (hanks to Scott Fraser who provided almost all of these.) Statement of

More information

Errata and Updates for ASM Exam MAS-I (First Edition) Sorted by Date

Errata and Updates for ASM Exam MAS-I (First Edition) Sorted by Date Errata for ASM Exam MAS-I Study Manual (First Edition) Sorted by Date 1 Errata and Updates for ASM Exam MAS-I (First Edition) Sorted by Date Practice Exam 5 Question 6 is defective. See the correction

More information

Errata and Updates for ASM Exam MAS-I (First Edition) Sorted by Page

Errata and Updates for ASM Exam MAS-I (First Edition) Sorted by Page Errata for ASM Exam MAS-I Study Manual (First Edition) Sorted by Page 1 Errata and Updates for ASM Exam MAS-I (First Edition) Sorted by Page Practice Exam 5 Question 6 is defective. See the correction

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Error Mechanization (ECEF) Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA April 11, 2013 Attitude Velocity Gravity Position Summary

More information

Errata 1. p. 5 The third line from the end should read one of the four rows... not one of the three rows.

Errata 1. p. 5 The third line from the end should read one of the four rows... not one of the three rows. Errata 1 Front inside cover: e 2 /4πɛ 0 should be 1.44 10 7 ev-cm. h/e 2 should be 25800 Ω. p. 5 The third line from the end should read one of the four rows... not one of the three rows. p. 8 The eigenstate

More information

Discrete Wavelet Transformations: An Elementary Approach with Applications

Discrete Wavelet Transformations: An Elementary Approach with Applications Discrete Wavelet Transformations: An Elementary Approach with Applications Errata Sheet March 6, 009 Please report any errors you find in the text to Patrick J. Van Fleet at pjvanfleet@stthomas.edu. The

More information

Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased)

Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased) Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased) Updated December 6, 2017 by Harold P. Boas This list includes all errors known

More information

Aided Navigation: GPS with High Rate Sensors Errata list. Jay A. Farrell University of California, Riverside

Aided Navigation: GPS with High Rate Sensors Errata list. Jay A. Farrell University of California, Riverside Aided Navigation: GPS with High Rate Sensors Errata list Jay A. Farrell University of California, Riverside February 19, 16 Abstract. This document records and corrects errors in the book Aided Navigation:

More information

NAWCWPNS TM 8128 CONTENTS. Introduction Two-Dimensinal Motion Three-Dimensional Motion Nonrotating Spherical Earth...

NAWCWPNS TM 8128 CONTENTS. Introduction Two-Dimensinal Motion Three-Dimensional Motion Nonrotating Spherical Earth... CONTENTS Introduction... 3 Two-Dimensinal Motion... 3 Three-Dimensional Motion... 5 Nonrotating Spherical Earth...10 Rotating Spherical Earth...12 WGS84...14 Conclusion...14 Appendixes: A. Kalman Filter...15

More information

Errata in The Explanatory Supplement to the Astronomical Almanac (3rd edition, 1st printing)

Errata in The Explanatory Supplement to the Astronomical Almanac (3rd edition, 1st printing) Errata in The Explanatory Supplement to the Astronomical Almanac (3rd edition, 1st printing) Last update: 24 April 2018 Pg. xxxiii, Contributing Authors: For Barnard Guinot, read Bernard Guinot. Pg. 11,

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications

A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications ISAAC SKOG Master of Science Thesis Stockholm, Sweden 2005-03-09 IR-SB-EX-0506 1 Abstract In this report an approach for integration

More information

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5 BS Transport Phenomena 2e Revised: Chapter 2 - Problem 2B11 Page 1 of 5 Problem 2B11 The cone-and-plate viscometer (see Fig 2B11 A cone-and-plate viscometer consists of a flat plate and an inverted cone,

More information

1 Introduction. Position Estimation 4: 1.1 History

1 Introduction. Position Estimation 4: 1.1 History 1.1History 1 Introduction 1.1 History 1 Inertial Navigation Systems Name comes from use of inertial principles (Newton s Laws). Historical roots in German Peenemunde Group. Modern form credited to Charles

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Engineering Dynamics: A Comprehensive Introduction Errata. N. Jeremy Kasdin & Derek A. Paley

Engineering Dynamics: A Comprehensive Introduction Errata. N. Jeremy Kasdin & Derek A. Paley Engineering Dynamics: A Comprehensive Introduction Errata N. Jeremy Kasdin & Derek A. Paley Last updated November 10, 2017 PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Chapter 2: i) [First printing

More information

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4)

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4) Dr. Alain Brizard Electromagnetic Theory I PY ) Magnetostatics III Magnetic Vector Potential Griffiths Chapter 5: Section ) Vector Potential The magnetic field B was written previously as Br) = Ar), 1)

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. Rotational Motion Chapter 4 P. J. Grandinetti Chem. 4300 Sep. 1, 2017 P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. 1, 2017 1 / 76 Angular Momentum The angular momentum of a particle with respect

More information

Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System Abstract and Applied Analysis Volume 213, Article ID 359675, 7 pages http://dx.doi.org/1.1155/213/359675 Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of

More information

Errata for Conquering the Physics GRE, edition 2

Errata for Conquering the Physics GRE, edition 2 Errata for Conquering the Physics GRE, edition 2 March 12, 217 This document contains corrections to Conquering the Physics GRE, edition 2. It includes errata that are present in both all printings of

More information

Errata for Quantum Mechanics by Ernest Abers August 1, 2004

Errata for Quantum Mechanics by Ernest Abers August 1, 2004 Errata for Quantum Mechanics by Ernest Abers August, 004 Preface Page xv: Add a sentence at the end of the next-to-last paragraph: Rudaz (University of Minnesota, and several anonymous reviewers. My special

More information

ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 23, 2018

ERRATA AND ADDITIONS FOR ENGINEERING NOISE CONTROL 4th Edn. First printing April 23, 2018 ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 3, 08 p4, Eq..3 should not have the ± symbol on the RHS p36, 3 lines from the bottom of the page, replace cos b with cos

More information

4 Orbits in stationary Potentials (BT 3 to page 107)

4 Orbits in stationary Potentials (BT 3 to page 107) -313see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts13-c-1-313see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts13-c Orbits in stationary Potentials (BT 3 to page 17) Now we have seen how

More information

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal Waves waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 i Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 Errata, Version 1.02, August 8, 2006 This errata applies to the first printing

More information

B2.III Revision notes: quantum physics

B2.III Revision notes: quantum physics B.III Revision notes: quantum physics Dr D.M.Lucas, TT 0 These notes give a summary of most of the Quantum part of this course, to complement Prof. Ewart s notes on Atomic Structure, and Prof. Hooker s

More information

Baro-INS Integration with Kalman Filter

Baro-INS Integration with Kalman Filter Baro-INS Integration with Kalman Filter Vivek Dadu c,b.venugopal Reddy a, Brajnish Sitara a, R.S.Chandrasekhar a & G.Satheesh Reddy a c Hindustan Aeronautics Ltd, Korwa, India. a Research Centre Imarat,

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination University of Illinois at Chicago Department of Physics Electricity & Magnetism Qualifying Examination January 7, 28 9. am 12: pm Full credit can be achieved from completely correct answers to 4 questions.

More information

Lab #4 - Gyroscopic Motion of a Rigid Body

Lab #4 - Gyroscopic Motion of a Rigid Body Lab #4 - Gyroscopic Motion of a Rigid Body Last Updated: April 6, 2007 INTRODUCTION Gyroscope is a word used to describe a rigid body, usually with symmetry about an axis, that has a comparatively large

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Error Mechanization (Tangential) Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

1.3 Translational Invariance

1.3 Translational Invariance 1.3. TRANSLATIONAL INVARIANCE 7 Version of January 28, 2005 Thus the required rotational invariance statement is verified: [J, H] = [L + 1 Σ, H] = iα p iα p = 0. (1.49) 2 1.3 Translational Invariance One

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Aided INS Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical and Computer

More information

DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA. Page 10, Table 1.1: The upper limit of the summation should be K.

DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA. Page 10, Table 1.1: The upper limit of the summation should be K. DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA Printing #1 Page vii, line 4 : Replace Geophysicists by Geoscientists. Page 1, Table 1.1: The upper limit of the summation should

More information

Vectors and Geometry

Vectors and Geometry Vectors and Geometry Vectors In the context of geometry, a vector is a triplet of real numbers. In applications to a generalized parameters space, such as the space of random variables in a reliability

More information

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team Catapult tests for microgravity characterization of the MICROSCOPE accelerometers Manuel Rodrigues mrodrig@onera.fr On behalf ONERA & ZARM team 1 Instrument Description SU sqm Sensor Unit (SU) = differential

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Error Mechanization (ECEF) Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering

More information

Corrections to the First Printing: Chapter 6. This list includes corrections and clarifications through November 6, 1999.

Corrections to the First Printing: Chapter 6. This list includes corrections and clarifications through November 6, 1999. June 2,2 1 Corrections to the First Printing: Chapter 6 This list includes corrections and clarifications through November 6, 1999. We should have mentioned that our treatment of differential forms, especially

More information

GPS Geodesy - LAB 7. Neglecting the propagation, multipath, and receiver errors, eq.(1) becomes:

GPS Geodesy - LAB 7. Neglecting the propagation, multipath, and receiver errors, eq.(1) becomes: GPS Geodesy - LAB 7 GPS pseudorange position solution The pseudorange measurements j R i can be modeled as: j R i = j ρ i + c( j δ δ i + ΔI + ΔT + MP + ε (1 t = time of epoch j R i = pseudorange measurement

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Newton-Euler formulation) Dimitar Dimitrov Örebro University June 8, 2012 Main points covered Newton-Euler formulation forward dynamics inverse dynamics

More information

GRE Exam Cram. Copyright 2006 by Que Publishing. International Standard Book Number: Warning and Disclaimer

GRE Exam Cram. Copyright 2006 by Que Publishing. International Standard Book Number: Warning and Disclaimer GRE Exam Cram Copyright 2006 by Que Publishing International Standard Book Number: 0789734133 Warning and Disclaimer Every effort has been made to make this book as complete and as accurate as possible,

More information

Errata for Gravity: An Introduction to Einstein s General Relativity, 1st and 2nd Printing

Errata for Gravity: An Introduction to Einstein s General Relativity, 1st and 2nd Printing Errata for Gravity: An Introduction to Einstein s General Relativity, 1st and 2nd Printing Updated 3/24/2004 Thanks are due to Richard Cook, Scott Fraser, Peter Milonni, John North, and Rolf Riklund who

More information

MAC 2311 Calculus I Spring 2004

MAC 2311 Calculus I Spring 2004 MAC 2 Calculus I Spring 2004 Homework # Some Solutions.#. Since f (x) = d dx (ln x) =, the linearization at a = is x L(x) = f() + f ()(x ) = ln + (x ) = x. The answer is L(x) = x..#4. Since e 0 =, and

More information

Physics 202 Laboratory 3. Root-Finding 1. Laboratory 3. Physics 202 Laboratory

Physics 202 Laboratory 3. Root-Finding 1. Laboratory 3. Physics 202 Laboratory Physics 202 Laboratory 3 Root-Finding 1 Laboratory 3 Physics 202 Laboratory The fundamental question answered by this week s lab work will be: Given a function F (x), find some/all of the values {x i }

More information

Investigation of the Attitude Error Vector Reference Frame in the INS EKF

Investigation of the Attitude Error Vector Reference Frame in the INS EKF Investigation of the Attitude Error Vector Reference Frame in the INS EKF Stephen Steffes, Jan Philipp Steinbach, and Stephan Theil Abstract The Extended Kalman Filter is used extensively for inertial

More information

Robot Control Basics CS 685

Robot Control Basics CS 685 Robot Control Basics CS 685 Control basics Use some concepts from control theory to understand and learn how to control robots Control Theory general field studies control and understanding of behavior

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A uniform lamina ABC of mass m is in the shape of an isosceles triangle with AB = AC = 5a and BC = 8a. (a) Show, using integration, that the moment of inertia of the lamina about an axis through A,

More information

A Study on Fault Diagnosis of Redundant SINS with Pulse Output WANG Yinana, REN Zijunb, DONG Kaikaia, CHEN kaia, YAN Jiea

A Study on Fault Diagnosis of Redundant SINS with Pulse Output WANG Yinana, REN Zijunb, DONG Kaikaia, CHEN kaia, YAN Jiea nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 6) A Study on Fault Diagnosis of Redundant SINS with Pulse Output WANG Yinana, REN Ziunb, DONG Kaikaia,

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

Goldstein Problem 2.17 (3 rd ed. # 2.18)

Goldstein Problem 2.17 (3 rd ed. # 2.18) Goldstein Problem.7 (3 rd ed. #.8) The geometry of the problem: A particle of mass m is constrained to move on a circular hoop of radius a that is vertically oriented and forced to rotate about the vertical

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

Lagging Pendulum. Martin Ga

Lagging Pendulum. Martin Ga 02 Lagging Pendulum Martin Ga 1 Task A pendulum consists of a strong thread and a bob. When the pivot of the pendulum starts moving along a horizontal circumference, the bob starts tracing a circle which

More information

Classical electric dipole radiation

Classical electric dipole radiation B Classical electric dipole radiation In Chapter a classical model was used to describe the scattering of X-rays by electrons. The equation relating the strength of the radiated to incident X-ray electric

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Navigation Equations: Nav Mechanization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

Classical Mechanics and Statistical/Thermodynamics. January 2015

Classical Mechanics and Statistical/Thermodynamics. January 2015 Classical Mechanics and Statistical/Thermodynamics January 2015 1 Handy Integrals: Possibly Useful Information 0 x n e αx dx = n! α n+1 π α 0 0 e αx2 dx = 1 2 x e αx2 dx = 1 2α 0 x 2 e αx2 dx = 1 4 π α

More information

Rotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body

Rotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125 cm bead

More information

APM1612. Tutorial letter 203/1/2018. Mechanics 2. Semester 1. Department of Mathematical Sciences APM1612/203/1/2018

APM1612. Tutorial letter 203/1/2018. Mechanics 2. Semester 1. Department of Mathematical Sciences APM1612/203/1/2018 APM6/03//08 Tutorial letter 03//08 Mechanics APM6 Semester Department of Mathematical Sciences IMPORTANT INFORMATION: This tutorial letter contains solutions to assignment 3, Sem. BARCODE Define tomorrow.

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

EE 565: Position, Navigation, and Timing

EE 565: Position, Navigation, and Timing EE 565: Position, Navigation, and Timing Kalman Filtering Example Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

Errata for Robot Vision

Errata for Robot Vision Errata for Robot Vision This is a list of known nontrivial bugs in Robot Vision 1986) by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-6-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. If you

More information

Refinements to the General Methodology Behind Strapdown Airborne Gravimetry

Refinements to the General Methodology Behind Strapdown Airborne Gravimetry Refinements to the General Methodology Behind Strapdown Airborne Gravimetry AE 8900 MS Special Problems Report Space Systems Design Lab (SSDL) Guggenheim School of Aerospace Engineering Georgia Institute

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

VN-100 Velocity Compensation

VN-100 Velocity Compensation VN-100 Velocity Compensation Velocity / Airspeed Aiding for AHRS Applications Application Note Abstract This application note describes how the VN-100 can be used in non-stationary applications which require

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information

Vectors, metric and the connection

Vectors, metric and the connection Vectors, metric and the connection 1 Contravariant and covariant vectors 1.1 Contravariant vectors Imagine a particle moving along some path in the 2-dimensional flat x y plane. Let its trajectory be given

More information

SOFTWARE ALGORITHMS FOR LOW-COST STRAPDOWN INERTIAL NAVIGATION SYSTEMS OF SMALL UAV

SOFTWARE ALGORITHMS FOR LOW-COST STRAPDOWN INERTIAL NAVIGATION SYSTEMS OF SMALL UAV TWMS J. Pure Appl. Math., V.7, N.2, 2016, pp.146-166 SOFTWARE ALGORITHMS FOR LOW-COST STRAPDOWN INERTIAL NAVIGATION SYSTEMS OF SMALL UAV V.B. LARIN 1, A.A. TUNIK 2 Abstract. This review involves the scope

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

The Kepler Problem and the Isotropic Harmonic Oscillator. M. K. Fung

The Kepler Problem and the Isotropic Harmonic Oscillator. M. K. Fung CHINESE JOURNAL OF PHYSICS VOL. 50, NO. 5 October 01 The Kepler Problem and the Isotropic Harmonic Oscillator M. K. Fung Department of Physics, National Taiwan Normal University, Taipei, Taiwan 116, R.O.C.

More information

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Lab 1: Simple Pendulum 1 The Pendulum Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Physics 15c; REV 0 1 January 31, 2007 1 Introduction Most oscillating systems behave like

More information

Oscillatory Motion. Solutions of Selected Problems

Oscillatory Motion. Solutions of Selected Problems Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and

More information

ERRATA Discrete-Time Signal Processing, 3e A. V. Oppenheim and R. W. Schafer

ERRATA Discrete-Time Signal Processing, 3e A. V. Oppenheim and R. W. Schafer ERRATA Discrete-Time Signal Processing, 3e A. V. Oppenheim and R. W. Schafer The following were corrected in the second printing; i.e., they are errors found only in the first printing. p.181 In the third

More information

arxiv: v1 [quant-ph] 8 Sep 2010

arxiv: v1 [quant-ph] 8 Sep 2010 Few-Body Systems, (8) Few- Body Systems c by Springer-Verlag 8 Printed in Austria arxiv:9.48v [quant-ph] 8 Sep Two-boson Correlations in Various One-dimensional Traps A. Okopińska, P. Kościk Institute

More information

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester Physics 121, March 25, 2008. Rotational Motion and Angular Momentum. Physics 121. March 25, 2008. Course Information Topics to be discussed today: Review of Rotational Motion Rolling Motion Angular Momentum

More information

Heating, Ventilating, Air Conditioning and Refrigerating, Sixth Edition, First Printing ERRATA

Heating, Ventilating, Air Conditioning and Refrigerating, Sixth Edition, First Printing ERRATA 1 Heating, Ventilating, Air Conditioning and Refrigerating, Sixth Edition, First Printing ERRATA (Items in blue added August 14, 2007; previous revision was December 3, 2004) Inside Front Cover: Conversion

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

Errata for Robot Vision

Errata for Robot Vision Errata for Robot Vision This is a list of known nontrivial bugs in Robot Vision 1986) by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-6-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. Thanks

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

dt Now we will look at the E&M force on moving charges to explore the momentum conservation law in E&M.

dt Now we will look at the E&M force on moving charges to explore the momentum conservation law in E&M. . Momentum Conservation.. Momentum in mechanics In classical mechanics p = m v and nd Newton s law d p F = dt If m is constant with time d v F = m = m a dt Now we will look at the &M force on moving charges

More information

Physics 42 Exam 3 Spring 2016 Name: M T W

Physics 42 Exam 3 Spring 2016 Name: M T W Physics 42 Exam 3 Spring 2016 Name: M T W Conceptual Questions & Shorty (2 points each) 1. Which magnetic field causes the observed force? 2. If released from rest, the current loop will move a. upward

More information

Homework 7: # 4.22, 5.15, 5.21, 5.23, Foucault pendulum

Homework 7: # 4.22, 5.15, 5.21, 5.23, Foucault pendulum Homework 7: # 4., 5.15, 5.1, 5.3, Foucault pendulum Michael Good Oct 9, 4 4. A projectile is fired horizontally along Earth s surface. Show that to a first approximation the angular deviation from the

More information

Lecture D21 - Pendulums

Lecture D21 - Pendulums J. Peraire 16.07 Dynamics Fall 2004 Version 1.1 ecture D21 - Pendulums A pendulum is a rigid body suspended from a fixed point (hinge) which is offset with respect to the body s center of mass. If all

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

Stabilization of Angular Velocity of Asymmetrical Rigid Body. Using Two Constant Torques

Stabilization of Angular Velocity of Asymmetrical Rigid Body. Using Two Constant Torques Stabilization of Angular Velocity of Asymmetrical Rigid Body Using Two Constant Torques Hirohisa Kojima Associate Professor Department of Aerospace Engineering Tokyo Metropolitan University 6-6, Asahigaoka,

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

Conveyor Equipment Manufacturers Association

Conveyor Equipment Manufacturers Association Conveyor Equipment Manufacturers Association 567 Strand Ct., Suite, Naples, Florida 34110 Tel: (39) - 514-3441 Fax: (39) - 514-3470 Web Site: http://www.cemanet.org Belt Book, 7th Edition Errata items

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

Measurement of Structural Intensity Using an Angular Rate Sensor

Measurement of Structural Intensity Using an Angular Rate Sensor Measurement of Structural Intensity Using an Angular Rate Sensor Nobuaki OMATA 1 ; Hiroki NAKAMURA ; Yoshiyuki WAKI 3 ; Atsushi KITAHARA 4 and Toru YAMAZAKI 5 1,, 5 Kanagawa University, Japan 3, 4 BRIDGESTONE,

More information

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Peter Young (Dated: April 14, 2009) I. INTRODUCTION One frequently obtains detailed dynamical

More information

Errata for Gravity: An Introduction to Einstein s General Relativity, Printings 1-3, B: typos, etc.

Errata for Gravity: An Introduction to Einstein s General Relativity, Printings 1-3, B: typos, etc. Errata for Gravity: An Introduction to Einstein s General Relativity, Printings 1-3, B: typos, etc. Updated 11/18/2004 The errata that were not corrected in the in the first three printings have been divided

More information

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0 ! Revised Friday, April 19, 2013! 1 Inertial Stability and Instability David Randall Introduction Inertial stability and instability are relevant to the atmosphere and ocean, and also in other contexts

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information