Physics 202 Laboratory 3. Root-Finding 1. Laboratory 3. Physics 202 Laboratory

Size: px
Start display at page:

Download "Physics 202 Laboratory 3. Root-Finding 1. Laboratory 3. Physics 202 Laboratory"

Transcription

1 Physics 202 Laboratory 3 Root-Finding 1 Laboratory 3 Physics 202 Laboratory The fundamental question answered by this week s lab work will be: Given a function F (x), find some/all of the values {x i } n i=1 for which F (x i) = 0. It s a modest goal, and we will use a simple method to solve the problem. But, as we shall see, there are a wide range of physical problems that have, at their heart, just such a question. We ll start in the simplest, polynomial setting, and work our way up to the shooting method. 3.1 Physical Problems We ll set up some direct applications of root-finding with familiar physical examples, and then shift gears and define a numerical root-finding routine that can be used to solve a very different set of problems Orbital Motion In two-dimensions, with a spherically symmetric potential energy (meaning here that V (x, y, z) = V (r), a function of a single variable, r x 2 + y 2 + z 2, the distance to the origin) we can use circular coordinates to write the total energy of a test particle moving under the influence of this potential as E = 1 2 m (ṙ 2 + r 2 φ2 ) + V (r). (3.1) Conservation of momentum tells us that the z-component of angular momentum is conserved, with L z = (r p) z = m r 2 φ, so we can rewrite the 1 Some of this material appears in Computational Methods for Physics by Joel Franklin, Cambridge University Press, 2013 and is used with the author s permission. 1

2 3.1. PHYSICAL PROBLEMS Laboratory 3 energy as: E = 1 2 m ṙ2 + 1 L 2 z 2 m r 2 + V (r) }{{} U(r) (3.2) where U(r) defines an effective potential energy we have turned a twodimensional problem into a one-dimensional problem for the coordinate r, and an effective potential that governs the motion in this setting. Since we know the energy of the system in terms of r, we can invert (3.2) to get: ṙ 2 = 2 E U(r) F (r). (3.3) m Now we can ask for the turning points of orbital motion (if/when they exist), those points at which ṙ = 0 the answer is provided by radial locations r i for which: F (r i ) = 0, (3.4) precisely the sort of root-finding problem of interest. In cases like Newtonian gravity, where V (r) 1/r, the resulting F (r) is just a polynomial (in fact, quadratic), so we don t need any fancy numerical solutions. But for more complicated potentials, root-finding can be used efficiently to isolate, at least numerically, the zeroes of the function F (r) Area Minimization Many minimization problems end in functions that require numerical rootfinding. As a simple example of this type of problem, consider a surface connecting two rings of equal radii, R, separated a distance L as shown in Figure 3.1. We want to find the surface with minimal area soap films find these minimal surfaces automatically, there the soap film is taking advantage of a minimal energy configuration, leading to a stable equilibrium. The immediate goal is a function s(z) that gives the radius of the surface as a function of height. We ll take z = 0 at the bottom ring, then z = L is the height at the top ring. Our area expression follows from the azimuthal symmetry for a platelet extending from z to z + dz and going around an infinitesimal angle dφ, the area is: da = s dφ dz 2 + s (z) 2 dz 2, (3.5) 2

3 3.1. PHYSICAL PROBLEMS Laboratory 3 R s(z) L Figure 3.1: We want to find the function s(z), the radius as a function of height, associated with a surface connecting two rings of radius R, separated a distance L, that has minimal surface area. as can be seen in Figure 3.2. If we integrate this expression for the area in both φ and z, we get the total area of the surface: A = 2 π L 0 s(z) 1 + s (z) 2 dz. (3.6) This formula is nice, but it proceeds from a given function of s(z). There is a general method for taking such a functional (here A is a number that depends on the function s(z), so A is itself a function of the function s(z) we call those functionals) and minimizing it the result is an ODE for s(z) that can be used to find s(z) 2. When we carry out the minimization procedure in this problem, we get the following ODE, with appropriate boundary conditions: The general solution is: 1 + s 2 s s = 0 s(0) = R s(l) = R. (3.7) ( ) z β s(z) = cosh, (3.8) for independent real constants and β (with what dimensions?). Now for the z = 0 boundary, we have: ( ) β s(0) = cosh = R (3.9) 2 This procedure will become familiar to you in classical mechanics, it is an application of variational calculus. 3

4 3.1. PHYSICAL PROBLEMS Laboratory 3 s(z + dz) s(z + dz) s(z) s (z) dz s(z) dz dz2 + s (z) 2 dz 2 Figure 3.2: Calculating the infinitesimal hypotenuse for the platelet extending from z z + dz and going around an arc of s(z) dφ. and we must simultaneously solve: ( ) L β s(l) = cosh = R. (3.10) From the first equation, we can write β = cosh 1 ( ) R, and then the second equation becomes: ( ( )) L R cosh cosh 1 = R. (3.11) Define the function: ( ( )) L R F (x) x cosh x cosh 1 R (3.12) x it is clear that we are interested in the roots, those define the final constant of integration for our solution: F () = 0. Note the importance of actually plotting F (x) not all functions F (x) have roots E&M For the time-dependent fields in electricity and magnetism, we know that information (in that setting, the magnitude and direction of E and B at a particular point r = x ˆx + y ŷ + z ẑ at time t) travels at a finite and 4

5 3.1. PHYSICAL PROBLEMS Laboratory 3 specific speed: c. The immediate implication is that if we would like to know the electric field at our observation point (and time) due to a charge that is moving along some prescribed trajectory: w(t), we need to evaluate the location of the particle not at time t, but at some earlier time t r (the retarded time). The setup is shown in Figure 3.3 the particle of charge q is at w(t) at time t, but it is the earlier location w(t r ) that has information traveling at c to the observation point r at time t. ẑ q w(t) w(t r ) ˆx r at t ŷ Figure 3.3: A particle with charge q moves along the prescribed curve w(t). For the point r at time t, field information comes from the earlier time t r, when the charge was at w(t r ). The time it takes for the information from w(t r ) to reach r is t t r, and during that interval, the field information travels at c, so the distance travelled is c (t t r ). At the same time, the distance between r and w(t r ) is, geometrically, r w(t r ) putting these together, we have the defining equation for the retarded time: c (t t r ) = r w(t r ). (3.13) Notice that the retarded time t r is a function of t and r (the observation time and location), and is defined implicitly in terms of w(t r ). We may or 5

6 3.2. SHOOTING Laboratory 3 may not be able to solve this equation for t r given w (cannot be done for all but the simplest trajectories), but we can define a root-finding problem: F (T ) = c (t T ) r w(t ). (3.14) The roots of F (T ) will provide the retarded time. 3.2 Shooting We have a cannon that can fire projectiles with speed v at an angle θ. Question: What angle θ should we use to force our cannon to hit a target a distance R away? Here, we know the answer automatically the trajectory of the slug is given by: x(t) = v cos θ t y(t) = v sin θ t 1 2 g (3.15) t2, and we can solve for y as a function of x, since t = v cos θ, then y(x) = tan θ x 1 ( 2 g x ) 2. (3.16) v cos θ Now the range R is the location of x when y = 0, a root-finding issue, of course, but in this case, we can solve directly: R = v2 g sin(2 θ) θ = 1 ( ) R g 2 sin 1 v 2. (3.17) Notice that one important element of this calculation was our ability to make the height, y, a function of x. We can do this pretty generically starting from Newton s second law if y(t) y(x(t)), then dy dt = dy(x) dx dx dt = y (x) v x, so that we take d dt v x d dx, then F x = m v x dv x dx F y = m v x [ dvx dx dy dx + v x x d 2 ] y dy dx 2 = F x dx + m d 2 (3.18) y v2 x dx 2, and in this form, we can start with almost any force, and develop the ODE version of the range formula with height parametrized by x. 6

7 3.2. SHOOTING Laboratory 3 As a check, take F x = 0, and F y = m g, then the above reads: dv x dx = 0 y (x) = g vx 2, (3.19) and v x is a constant, equal to v cos θ for us, so y g (x) = v 2 cos 2 θ y(x) = tan θ x 1 2 g x 2 v 2 cos 2 θ, (3.20) as before. This time, the tan θ term comes up naturally, since the x derivative is related to the time derivative at zero: ẏ(0) = y (0)v x (0), and v x (0) = ẋ(0) = v cos θ, so we have ẏ(0) = y (0) ẋ(0), and then y (0) = ẏ(0)/ẋ(0) = tan θ. Suppose, for fun, we try introducing wind-resistance, a drag term of the form: F g = γ v v. This gives us an additional force in both directions, and Newton s second law tells us that: m ẍ = γ ẋ 2 + ẏ 2 ẋ m ÿ = m g γ ẋ 2 + ẏ 2 ẏ, (3.21) from which we learn, using (3.18), that: v x(x) = γ 1 + y m (x) 2 v x (x) y (x) = g v x (x) 2. (3.22) There is no longer any simple answer, but we can still imagine solving this equation numerically; it is, after all, a second order ODE, and we have a method for solving those. Suppose we ask the same question, in this context: Given v, find θ so that a projectile hits a target a distance R away from the starting point. Our initial conditions are v x (0) = v cos θ, and y (0) = tan θ. Define the function: Verlet(θ) to be the numerical solution for y(r) given an angle θ, then we have a function whose zero is precisely the correct θ, i.e. we want to find the roots of: F (θ) = Verlet(θ), (3.23) those roots will be the values of θ for which y = 0 at x = R. So we can define a numerical function of a single variable, and perform our (numerical) root-finding on that. 7

8 3.3. BISECTION Laboratory Bisection Finally, we come to the relevant numerical method we will use bisection to find a zero of a function F (x) lying in between two initial points, x l and x r. How do we know that there is a root between those two points? What if there is more than one root in there? The easiest thing to do is to plot F (x), always an option, and see roughly where the zero crossings are. Then bookend a particular zero of interest, and hone in on it using the bisection routine. Bisection itself is almost entirely defined by its name. We start with two locations, x l and x r, we evaluate F (x l ) and F (x r ) if a root lies between these two, then one will be positive, and the other negative. Now, we evaluate the function F at the midpoint x m 1 2 (x l + x r ). If F (x m ) has the same sign as F (x l ), then the root lies between x m and x r if F (x m ) has the same sign as F (x r ), then the root lies between x l and x m. In either case, we update the labels x l and x r appropriately, so that the root now lies in an interval half as large as the original one. We continue this process until F (x m ) is as small as we want (set by some external tolerance ɛ or so). A schematic of the first few steps of the process is shown in Figure 3.4. F (x) 2 4 x x 1 l x 1 r x 2 l x 2 r x 3 l x 3 r Figure 3.4: The successive bisections for the function F (x). Here, x n l and x n r refer to the left and right endpoints of the interval for the n th iteration of the bisection. 8

9 3.3. BISECTION Laboratory 3 Lab In this lab, you will implement the bisection routine sketched in the notes. You can use either a While loop, or a recursive approach. The first problem should ensure that your routine is working properly. Don t forget, in all cases, to plot the function whose roots you are trying to find that will allow you to successively bracket them for bisection honing. Problem 3.1 Write your bisection function it should take, as arguments, a function F (the function whose roots we are interested in), an initial bracketing, a pair xl and xr, and a tolerance eps that specifies how close to zero we should be before exiting (when F (x m ) < ɛ, i.e. when the midpoint value gives an F that is close to zero). Try your bisection routine on F (x) = x 3 π x 2 2 x + 5. (3.24) Find all three roots, using eps= 10 8 (use this value of ɛ for the remaining problems as well), and record your results below (show five digits): 9

10 3.3. BISECTION Laboratory 3 Problem 3.2 Find the minimum surface area solution using (3.12) with L = 1/2, R = 1. The total area is given by [ ( ) ( )] 2 β L L A = π L + cosh sinh. (3.25) Sketch s(z) for each of the two roots of (3.12) and identify the area-minimizing one does its magnitude make sense (provide a rough estimate)? Problem 3.3 For a charge q moving in a circle in the ˆx ŷ plane: w(t) = R cos(ωt) ˆx + R sin(ωt) ŷ, find the retarded time to the point r = R ˆx at time t = 0 for R = 10 9 m, ω = 1 2 c/r. What is the location of the charge at this time? What does this location imply for the existence of circular motion for a pair of equal and oppositely charged particles? 10

Numerical Methods 1. February 20, Joel Franklin, Cambridge University Press, 2013 and is used with the author s permission.

Numerical Methods 1. February 20, Joel Franklin, Cambridge University Press, 2013 and is used with the author s permission. Numerical Methods 1 February 20, 2017 1 Some of this material appears in Computational Methods for Physics by Joel Franklin, Cambridge University Press, 2013 and is used with the author s permission. 1.1

More information

Lagrangian for Central Potentials

Lagrangian for Central Potentials Physics 411 Lecture 2 Lagrangian for Central Potentials Lecture 2 Physics 411 Classical Mechanics II August 29th 2007 Here we will review the Lagrange formulation in preparation for the study of the central

More information

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory Physics 2 Lecture 4 Integration Lecture 4 Physics 2 Laboratory Monday, February 21st, 211 Integration is the flip-side of differentiation in fact, it is often possible to write a differential equation

More information

Vectors and Coordinate Systems

Vectors and Coordinate Systems Vectors and Coordinate Systems In Newtonian mechanics, we want to understand how material bodies interact with each other and how this affects their motion through space. In order to be able to make quantitative

More information

Circular motion. Aug. 22, 2017

Circular motion. Aug. 22, 2017 Circular motion Aug. 22, 2017 Until now, we have been observers to Newtonian physics through inertial reference frames. From our discussion of Newton s laws, these are frames which obey Newton s first

More information

Lecture 17 - Gyroscopes

Lecture 17 - Gyroscopes Lecture 17 - Gyroscopes A Puzzle... We have seen throughout class that the center of mass is a very powerful tool for evaluating systems. However, don t let yourself get carried away with how useful it

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

The Principle of Least Action

The Principle of Least Action The Principle of Least Action In their never-ending search for general principles, from which various laws of Physics could be derived, physicists, and most notably theoretical physicists, have often made

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Hamiltonian Solution I

Hamiltonian Solution I Physics 4 Lecture 5 Hamiltonian Solution I Lecture 5 Physics 4 Classical Mechanics II September 7th 2007 Here we continue with the Hamiltonian formulation of the central body problem we will uncover the

More information

MATHEMATICAL MODELLING, MECHANICS AND MOD- ELLING MTHA4004Y

MATHEMATICAL MODELLING, MECHANICS AND MOD- ELLING MTHA4004Y UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 MATHEMATICAL MODELLING, MECHANICS AND MOD- ELLING MTHA4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 and 2, and ONE other

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Module 10 - Lecture 24 Kinematics of a particle moving on a curve Today,

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics September 1, 2005 Chapter

More information

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory Physics 202 Laboratory 5 Linear Algebra Laboratory 5 Physics 202 Laboratory We close our whirlwind tour of numerical methods by advertising some elements of (numerical) linear algebra. There are three

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

The Shooting Method for Boundary Value Problems

The Shooting Method for Boundary Value Problems 1 The Shooting Method for Boundary Value Problems Consider a boundary value problem of the form y = f(x, y, y ), a x b, y(a) = α, y(b) = β. (1.1) One natural way to approach this problem is to study the

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES Overview Throughout the first few weeks of the semester, we have studied vector calculus using almost exclusively the familiar Cartesian x,y,z coordinate

More information

Physics 351 Wednesday, February 14, 2018

Physics 351 Wednesday, February 14, 2018 Physics 351 Wednesday, February 14, 2018 HW4 due Friday. For HW help, Bill is in DRL 3N6 Wed 4 7pm. Grace is in DRL 2C2 Thu 5:30 8:30pm. Respond at pollev.com/phys351 or text PHYS351 to 37607 once to join,

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Question 1: Spherical Pendulum

Question 1: Spherical Pendulum Question 1: Spherical Pendulum Consider a two-dimensional pendulum of length l with mass M at its end. It is easiest to use spherical coordinates centered at the pivot since the magnitude of the position

More information

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df Physics 106a, Caltech 1 November, 2018 Lecture 10: Hamiltonian Mechanics I The Hamiltonian In the Hamiltonian formulation of dynamics each second order ODE given by the Euler- Lagrange equation in terms

More information

Two- and Three-Dimensional Motion (Symon Chapter Three)

Two- and Three-Dimensional Motion (Symon Chapter Three) Two- and Three-Dimensional Motion (Symon Chapter Three) Physics A300 Spring 2006 Contents 1 Vector Analysis 3 11 Definitions 3 111 Notation 3 12 Basic Vector Arithmetic 3 121 Equality 3 122 Magnitude 4

More information

Orbital Motion in Schwarzschild Geometry

Orbital Motion in Schwarzschild Geometry Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

Leaving Cert Applied Maths: Some Notes

Leaving Cert Applied Maths: Some Notes Leaving Cert Applied Maths: Some Notes Golden Rule of Applied Maths: Draw Pictures! Numbered equations are in the tables. Proportionality: Figure 1: Note that P = kq y = mx + c except c = 0 the line goes

More information

Practice Problems for Final Exam

Practice Problems for Final Exam Math 1280 Spring 2016 Practice Problems for Final Exam Part 2 (Sections 6.6, 6.7, 6.8, and chapter 7) S o l u t i o n s 1. Show that the given system has a nonlinear center at the origin. ẋ = 9y 5y 5,

More information

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016 Physics 3323, Fall 26 Problem Set 2 due Sep 9, 26. What s my charge? A spherical region of radius R is filled with a charge distribution that gives rise to an electric field inside of the form E E /R 2

More information

Arc Length and Riemannian Metric Geometry

Arc Length and Riemannian Metric Geometry Arc Length and Riemannian Metric Geometry References: 1 W F Reynolds, Hyperbolic geometry on a hyperboloid, Amer Math Monthly 100 (1993) 442 455 2 Wikipedia page Metric tensor The most pertinent parts

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

Figure 21:The polar and Cartesian coordinate systems.

Figure 21:The polar and Cartesian coordinate systems. Figure 21:The polar and Cartesian coordinate systems. Coordinate systems in R There are three standard coordinate systems which are used to describe points in -dimensional space. These coordinate systems

More information

Physics 20 Homework 2 SIMS 2016

Physics 20 Homework 2 SIMS 2016 Physics 20 Homework 2 SIMS 2016 Due: Saturday, August 20 th 1. In class, we ignored air resistance in our discussion of projectile motion. Now, let s derive the relevant equation of motion in the case

More information

PHYSICS 311: Classical Mechanics Final Exam Solution Key (2017)

PHYSICS 311: Classical Mechanics Final Exam Solution Key (2017) PHYSICS 311: Classical Mechanics Final Exam Solution Key (017) 1. [5 points] Short Answers (5 points each) (a) In a sentence or two, explain why bicycle wheels are large, with all of the mass at the edge,

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

dx dt = x 2 x = 120

dx dt = x 2 x = 120 Solutions to Review Questions, Exam. A child is flying a kite. If the kite is 90 feet above the child s hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the

More information

Integration by substitution

Integration by substitution Roberto s Notes on Integral Calculus Chapter : Integration methods Section 1 Integration by substitution or by change of variable What you need to know already: What an indefinite integral is. The chain

More information

Components of a Vector

Components of a Vector Vectors (Ch. 1) A vector is a quantity that has a magnitude and a direction. Examples: velocity, displacement, force, acceleration, momentum Examples of scalars: speed, temperature, mass, length, time.

More information

Projectile Motion and 2-D Dynamics

Projectile Motion and 2-D Dynamics Projectile Motion and 2-D Dynamics Vector Notation Vectors vs. Scalars In Physics 11, you learned the difference between vectors and scalars. A vector is a quantity that includes both direction and magnitude

More information

MATH 18.01, FALL PROBLEM SET # 8

MATH 18.01, FALL PROBLEM SET # 8 MATH 18.01, FALL 01 - PROBLEM SET # 8 Professor: Jared Speck Due: by 1:45pm on Tuesday 11-7-1 (in the boxes outside of Room -55 during the day; stick it under the door if the room is locked; write your

More information

Two-Body Problem. Central Potential. 1D Motion

Two-Body Problem. Central Potential. 1D Motion Two-Body Problem. Central Potential. D Motion The simplest non-trivial dynamical problem is the problem of two particles. The equations of motion read. m r = F 2, () We already know that the center of

More information

Classical Mechanics Ph.D. Qualifying Examination. 8 January, :00 to 12:00

Classical Mechanics Ph.D. Qualifying Examination. 8 January, :00 to 12:00 UNIVERSITY OF ILLINOIS AT CHICAGO DEPARTMENT OF PHYSICS Classical Mechanics Ph.D. Qualifying Examination 8 January, 2013 9:00 to 12:00 Full credit can be achieved from completely correct answers to 4 questions.

More information

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension 105A Practice Final Solutions March 13, 01 William Kelly Problem 1: Lagrangians and Conserved Quantities Consider the following action for a particle of mass m moving in one dimension S = dtl = mc dt 1

More information

Variational Principles

Variational Principles Part IB Variational Principles Year 218 217 216 215 214 213 212 211 21 218 Paper 1, Section I 4B 46 Variational Principles Find, using a Lagrange multiplier, the four stationary points in R 3 of the function

More information

MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y

MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2014 2015 MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 AND 2 and

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

21.60 Worksheet 8 - preparation problems - question 1:

21.60 Worksheet 8 - preparation problems - question 1: Dynamics 190 1.60 Worksheet 8 - preparation problems - question 1: A particle of mass m moes under the influence of a conseratie central force F (r) =g(r)r where r = xˆx + yŷ + zẑ and r = x + y + z. A.

More information

A645/A445: Exercise #1. The Kepler Problem

A645/A445: Exercise #1. The Kepler Problem A645/A445: Exercise #1 The Kepler Problem Due: 2017 Sep 26 1 Numerical solution to the one-degree-of-freedom implicit equation The one-dimensional implicit solution is: t = t o + x x o 2(E U(x)). (1) The

More information

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm.

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm. Applied Mathematics Masters Examination Fall 16, August 18, 1 4 pm. Each of the fifteen numbered questions is worth points. All questions will be graded, but your score for the examination will be the

More information

Module 2: Reflecting on One s Problems

Module 2: Reflecting on One s Problems MATH55 Module : Reflecting on One s Problems Main Math concepts: Translations, Reflections, Graphs of Equations, Symmetry Auxiliary ideas: Working with quadratics, Mobius maps, Calculus, Inverses I. Transformations

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve MATH 280 Multivariate alculus Fall 2012 Definition Integrating a vector field over a curve We are given a vector field F and an oriented curve in the domain of F as shown in the figure on the left below.

More information

University of California, Berkeley Department of Mechanical Engineering ME 104, Fall Midterm Exam 1 Solutions

University of California, Berkeley Department of Mechanical Engineering ME 104, Fall Midterm Exam 1 Solutions University of California, Berkeley Department of Mechanical Engineering ME 104, Fall 2013 Midterm Exam 1 Solutions 1. (20 points) (a) For a particle undergoing a rectilinear motion, the position, velocity,

More information

Physics 351 Monday, February 26, 2018

Physics 351 Monday, February 26, 2018 Physics 351 Monday, February 26, 2018 You just read the first half ( 10.1 10.7) of Chapter 10, which we ll probably start to discuss this Friday. The midterm exam (March 26) will cover (only!) chapters

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson.

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson. in a : Exam Question 6/8 (HL/OL): Circular and February 1, 2017 in a This lecture pertains to material relevant to question 6 of the paper, and question 8 of the Ordinary Level paper, commonly referred

More information

Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 3, 2017

Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 3, 2017 Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 3, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at positron.hep.upenn.edu/q351

More information

PHYSICS I. Lecture 1. Charudatt Kadolkar. Jul-Nov IIT Guwahati

PHYSICS I. Lecture 1. Charudatt Kadolkar. Jul-Nov IIT Guwahati PHYSICS I Lecture 1 Charudatt Kadolkar IIT Guwahati Jul-Nov 2014 Section 1 Introduction to the Course Syllabus Topics Classical Mechanics: Kinetic Energy rest mass energy Syllabus Topics Classical Mechanics:

More information

CHAPTER 1. 1 FORMS. Rule DF1 (Linearity). d(αu + βv) = αdu + βdv where α, β R. Rule DF2 (Leibniz s Rule or Product Rule). d(uv) = udv + vdu.

CHAPTER 1. 1 FORMS. Rule DF1 (Linearity). d(αu + βv) = αdu + βdv where α, β R. Rule DF2 (Leibniz s Rule or Product Rule). d(uv) = udv + vdu. CHAPTER 1. 1 FORMS 1. Differentials: Basic Rules Differentials, usually regarded as fanciful objects, but barely mentioned in elementary calculus textbooks, are now receiving our full attention as they

More information

Analytical Mechanics - Extra Problems

Analytical Mechanics - Extra Problems Analytical Mechanics - Extra Problems Physics 105, F17 (R) are review problems. Review problems are those that have already been covered in prior courses, mostly Intro to Physics I and II. Some are math

More information

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects:

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects: 1. Become familiar with a definition of and terminology involved with differential equations Calculus - Santowski. Solve differential equations with and without initial conditions 3. Apply differential

More information

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 1. AP Physics C Summer Homework NAME: Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 2. Fill in the radian conversion of each angle and the trigonometric

More information

Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 6, 2015

Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 6, 2015 Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 6, 2015 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at positron.hep.upenn.edu/q351

More information

Department of Physics, Korea University Page 1 of 8

Department of Physics, Korea University Page 1 of 8 Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine)

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine) Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine Physics A301 Spring 2005 Contents 1 Lagrangian Mechanics 3 1.1 Derivation of the Lagrange Equations...................... 3 1.1.1 Newton s Second

More information

Review for the First Midterm Exam

Review for the First Midterm Exam Review for the First Midterm Exam Thomas Morrell 5 pm, Sunday, 4 April 9 B9 Van Vleck Hall For the purpose of creating questions for this review session, I did not make an effort to make any of the numbers

More information

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Happy April Fools Day Example / Worked Problems What is the ratio of the

More information

Physics Final Exam Formulas

Physics Final Exam Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Tutorial Exercises: Geometric Connections

Tutorial Exercises: Geometric Connections Tutorial Exercises: Geometric Connections 1. Geodesics in the Isotropic Mercator Projection When the surface of the globe is projected onto a flat map some aspects of the map are inevitably distorted.

More information

Physics 331, Classical Mechanics Homework 1

Physics 331, Classical Mechanics Homework 1 Physics 331, Classical Mechanics Homework 1 Chapter 1 The text s 1.1, 1.11, 1.14, and 1.25 are suggested for practice, but will not be collected. Section 1.5 1.A Objects 1 slams into stationary object

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Classical Mechanics [Taylor, J.R.] Solution Manual. Written by JGSK

Classical Mechanics [Taylor, J.R.] Solution Manual. Written by JGSK Written by JGSK Last Updated December 1, 216 Contents 1 Newton s Laws of Motion 2 2 Projectiles and Charged Particles 3 3 Momentum and Angular Momentum 4 4 Energy 5 5 Oscillations 6 6 Calculus of Variations

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

Advanced Higher Mathematics of Mechanics

Advanced Higher Mathematics of Mechanics Advanced Higher Mathematics of Mechanics Course Outline (2016-2017) Block 1: Change of timetable to summer holiday Assessment Standard Assessment 1 Applying skills to motion in a straight line (Linear

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Calculus of Variations

Calculus of Variations ECE 68 Midterm Exam Solution April 1, 8 1 Calculus of Variations This exam is open book and open notes You may consult additional references You may even discuss the problems (with anyone), but you must

More information

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Name: Student ID#: Section: Final Exam Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Show your work on every problem. orrect answers with no supporting work will not receive full credit. Be

More information

Accelerated Observers

Accelerated Observers Accelerated Observers In the last few lectures, we ve been discussing the implications that the postulates of special relativity have on the physics of our universe. We ve seen how to compute proper times

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

Mechanics Lecture Notes

Mechanics Lecture Notes Mechanics Lecture Notes Lectures 0 and : Motion in a circle. Introduction The important result in this lecture concerns the force required to keep a particle moving on a circular path: if the radius of

More information

Physics 351, Spring 2015, Homework #6. Due at start of class, Friday, February 27, 2015

Physics 351, Spring 2015, Homework #6. Due at start of class, Friday, February 27, 2015 Physics 351, Spring 2015, Homework #6. Due at start of class, Friday, February 27, 2015 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line.

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line. Assignment Goldstein.3 Prove that the shortest distance between two points in space is a straight line. The distance between two points is given by the integral of the infinitesimal arclength: s = = =

More information

Physics 20 Lecture Notes

Physics 20 Lecture Notes Physics 20 Lecture Notes Keith Fratus SIMS 2015 2 Contents 1 Vectors 5 1.1 The Philosophy of Physics...................... 5 1.2 Vectors................................ 7 1.3 Coordinate Systems.........................

More information

Apr 14, Calculus with Algebra and Trigonometry II Lecture 20More physics Aprapplications

Apr 14, Calculus with Algebra and Trigonometry II Lecture 20More physics Aprapplications Calculus with Algebra and Trigonometry II Lecture 20 More physics applications Apr 14, 2015 14, 2015 1 / 14 Motion in two dimensions A particle s motion can be described by specifying how the coordinates

More information

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c. PHYS122 - Electricity and Magnetism Integration Reminder Integration is the reverse of the process of differentiation. In the usual notation f (x)dx = f(x) + constant The derivative of the RHS gives you

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

INTRODUCTION. Introduction. Discrete charges: Electric dipole. Continuous charge distributions. Flux of a vector field

INTRODUCTION. Introduction. Discrete charges: Electric dipole. Continuous charge distributions. Flux of a vector field Chapter 2 THE ELECTRC FELD ntroduction Discrete charges: Electric dipole Continuous charge distributions Flux of a vector field Flux of an electric field for a spherical Gaussian surface concentric to

More information

Things you should have learned in Calculus II

Things you should have learned in Calculus II Things you should have learned in Calculus II 1 Vectors Given vectors v = v 1, v 2, v 3, u = u 1, u 2, u 3 1.1 Common Operations Operations Notation How is it calculated Other Notation Dot Product v u

More information

2. Two Dimensional Kinematics

2. Two Dimensional Kinematics . Two Dimensional Kinematics A) Overview We will begin by introducing the concept of vectors that will allow us to generalize what we learned last time in one dimension to two and three dimensions. In

More information

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Peter Young (Dated: April 14, 2009) I. INTRODUCTION One frequently obtains detailed dynamical

More information

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016 MA34 Geometry and Motion Selected answers to Sections A and C Dwight Barkley 26 Example Sheet d n+ = d n cot θ n r θ n r = Θθ n i. 2. 3. 4. Possible answers include: and with opposite orientation: 5..

More information

P442 Analytical Mechanics - II

P442 Analytical Mechanics - II Solutions to Problem Set Wednesday - January 8, 6 Written or last updated: January 8, 6 P44 Analytical Mechanics - II Alex R. Dzierba Problem - Problem 9. in the text. Solution Assume that the base of

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following Math 2-08 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = 2 (ex e x ) cosh x = 2 (ex + e x ) tanh x = sinh

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Physics 8.02 Exam Two Equation Sheet Spring 2004

Physics 8.02 Exam Two Equation Sheet Spring 2004 Physics 8.0 Exam Two Equation Sheet Spring 004 closed surface EdA Q inside da points from inside o to outside I dsrˆ db 4o r rˆ points from source to observer V moving from a to b E ds 0 V b V a b E ds

More information

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Tomi Johnson 1 Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Prepare full solutions to the problems with a self assessment of your progress on a cover

More information