Chapter 6 Section Antiderivatives and Indefinite Integrals

Size: px
Start display at page:

Download "Chapter 6 Section Antiderivatives and Indefinite Integrals"

Transcription

1 Chapter 6 Section Antiderivatives and Indefinite Integrals Objectives: The student will be able to formulate problems involving antiderivatives. The student will be able to use the formulas and properties of antiderivatives and indefinite integrals. The student will be able to solve applications using antiderivatives and indefinite integrals. The Antiderivative Many operations in mathematics have inverses. For example, division is the inverse of multiplication. The inverse operation of finding a derivative, called the antiderivative, will now command our attention. A function F is an antiderivative of a function f if F (x) = f (x). A function F(x) is an antiderivative of f(x) if the derivative ( ) ( ) Ex: Let s find some antiderivatives of 2x: Uniqueness of Antiderivatives The following theorem says that antiderivatives are almost unique. Theorem 1: If a function has more than one antiderivative, then the antiderivatives differ by at most a constant. Indefinite Integrals Let f (x) be a function. The family of all functions that are antiderivatives of f (x) is called the indefinite integral and has the symbol ( ) The symbol is called an integral sign, and the function f (x) is called the integrand. The symbol dx indicates that anti-differentiation is performed with respect to the variable x. By the previous theorem, if F(x) is any antiderivative of f, then The arbitrary constant C is called the constant of integration. 1 P a g e

2 Notation: Let ( ) be the entire set of antidervatives of the function f(x). That is [ ( ) ] ( ) We write. ( ) ( ) Integration symbol Integrand Indicates the variable of integration Constant of integration Integrate f(x) Find the antiderivative of f(x) The and the dx indicate that antidifferentiation with respect to x on f(x) Lets use our knowledge of derivatives to find some antiderivatives. (Integrate) Indefinite Integral Formulas and Properties x e n x n 1 x dx C, n 1 dx e C 1 dx ln x C x x n 1 k f ( x) dx k f ( x) dx f ( x) g( x) dx f ( x) dx g( x) dx It is important to note that property 4 states that a constant factor can be moved across an integral sign. A variable factor cannot be moved across an integral sign. 2 P a g e

3 Examples: ( ) ( ) 3 P a g e

4 Application In spite of the prediction of a paperless computerized office, paper and paperboard production in the United States has steadily increased. In 1990 the production was 80.3 million short tons, and since 1970 production has been growing at a rate given by f (x) = 0.048x , where x is years after Find f (x), and the production levels in 1970 and P a g e

5 Section Integration by Substitution Objectives : The student will be able to integrate by reversing the chain rule and by using integration by substitution. The student will be able to use additional substitution techniques. The student will be able to solve applications. Reversing the Chain Rule Recall the chain rule: Reading it backwards, this implies that Special Cases Differentials If y = f (x) is a differentiable function, then 1. The differential dx of the independent variable x is any arbitrary real number. 2. The differential dy of the dependent variable y is defined as dy = f (x) dx A differential equation in x and y is an equation that involves x, and the derivatives of y A function f(x) is a solution of a differential equation if it satisfies the equation. So to solve a differential equation means to find all solutions. Sometimes in addition to the differential equation we may know certain values of f or f, called initial conditions. 5 P a g e

6 Examples: 1. If y = f (x) = x 5 2, then dy = f (x) dx = 5x 4 dx 2. If y = f (x) = e 5x, then dy = f (x) dx = 5e 5x dx 3. If y = f (x) = ln (3x 5), then dy = f (x) dx = dx Ex: Solve the differential equation ( ) subject to the initial condition f(0) = 2 Ex: Solve the differential equation ( ) subject to the initial condition f(1) = 5 6 P a g e

7 Ex: Solve the differential equation ( ) subject to the initial condition ( ) and f(1)=3 General Indefinite Integral Formulas u e n u n 1 u du C, n 1 du e C 1 du ln u C u u n 1 Integration by Substitution Step 1. Select a substitution that appears to simplify the integrand. In particular, try to select u so that du is a factor of the integrand. Step 2. Express the integrand entirely in terms of u and du, completely eliminating the original variable. Step 3. Evaluate the new integral, if possible. Step 4. Express the antiderivative found in step 3 in terms of the original variable. (Reverse the substitution.) Learn by Example: ****In many substitutions the substitution is the inside expression**** ( ) 7 P a g e

8 ( ) **Sometimes the substitution is correct but we are off by a constant: Luckily this type of adjustment is easy ( ) ( ) 8 P a g e

9 The natural logarithm function: Integration We know that call this the log rule There are many rational functions that can be integrated using u substitutions followed by the log rule Look for quantities in which the numerator is the derivative if the denominator Ex: * let u = denominator If a rational function has a numerator degree greater than or equal to that of the denominator, then long division may reveal a form to which you can apply the log rule Ex: 9 P a g e

10 = ( ) 10 P a g e

11 Application The marginal price of a supply level of x bottles of baby shampoo per week is given by ( ) ( ) Find the price-supply equation if the distributor of the shampoo is willing to supply 75 bottles a week at a price of $1.60 per bottle. 11 P a g e

12 Section The Definite Integral Objectives: 1. The student will be able to approximate areas by using left and right sums. 2. The student will be able to compute the definite integral as a limit of sums. 3. The student will be able to apply the properties of the definite integral. Introduction We have been studying the indefinite integral or antiderivative of a function. We now introduce the definite integral. This integral will be the area bounded by f (x), the x axis, and the vertical lines x = a and x = b, with notation ( ) Where b is the upper limit of integration and a is the lower limit of integration ( ) is called the definite integral of f from a to b The definition of the definite integral is closely related to the area under the graph of the function. Suppose we wish to find the area of the shaded region We will disuse two ways of doing this 1. inscribed rectangles 2. circumscribed rectangles Example: Under the graph of f(x) x and above the x-axis between 0 and 2 12 P a g e

13 Inscribed Rectangles: The height of each rectangle is the minimum value of f(x) in the subinterval. Every rectangle lies completely under the graph of f(x). The area of the inscribed rectangles will under estimate the area of the region. Let n = number of rectangles let n meaning that you let the width of the rectangles get very small Circumscribed Rectangles: Every rectangle lies above the graph of f(x). The area of the circumscribed rectangles will overestimate the area of the region. Let n = number of rectangles let n meaning that you let the width of the rectangles get very small 13 P a g e

14 Fact 1: If we let the n = we will be able to get the precise area. Fact 2: The area of the inscribed rectangles is less than the area of the region. The area of the circumscribed rectangles is more than the area of the region. But as n, these areas inscribed and circumscribed approach the same number. And that is the true area. Definition: Area of a region Let f be continuous and non-negative on the interval [a,b]. The area of the region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is given by: ( ) Height Width Add up the areas of the rectangles Where Our accuracy can be improved if we increase the number or rectangles, and let x get smaller. The error in our process can be calculated if the function is monotone. That is, if the function is only increasing or only decreasing. Let L n and R n be the approximate areas, using n rectangles of equal width, and the left or right endpoints, respectively. If the function is increasing, convince yourself by looking at the picture that L n < Area < R n If f is decreasing, the inequalities go the other way. If you use L n to estimate the area, then Error = Area L n < R n L n. If you use R n to estimate the area, then Error = Area R n < R n L n. Either way you get the same error bound. Theorem 1 It is not hard to show that R n L n = f (b) f (a) x, and that for n equal subintervals, Theorem 2 If f (x) is either increasing or decreasing on [a, b], then its left and right sums approach the same real number I as n. This number I is the area between the graph of f and the x axis from x = a to x = b. 14 P a g e

15 Definite Integral as Limit of Sums We now come to a general definition of the definite integral. Let f be a function on interval [a, b]. Partition [a, b] into n subintervals at points a = x 0 < x 1 < x 2 < < x n 1 < x n = b. The width of the k th subinterval is x k = (x k x k 1 ). In each subinterval, choose an arbitrary point c k Such that x k 1 < c k < x k. Then define S n is called a Riemann sum. Notice that L n and R n are both special cases of a Riemann sum. A Visual Presentation of a Riemann Sum 15 P a g e

16 Summation Notation = Sigma Notation This is a way of expressing sums of many numbers compactly. i is called the index of summation is the i th term of the summation Upper and lower bounds of the summation are 1 and n Properties of Summation ( ) Summation Formulas ( ) ( )( ) ( ) Ex: ( ) 16 P a g e

17 The Definite Integral Theorem 3. Let f be a continuous function on [a, b], then the Riemann sums for f on [a, b] approach a real number limit I as n. This limit I of the Riemann sums for f on [a, b] is called the definite integral of f from a to b, denoted ( ) The integrand is f (x), the lower limit of integration is a, and the upper limit of integration is b. Negative Values If f (x) is positive for some values of x on [a, b] and negative for others, then the definite integral symbol ( ) represents the cumulative sum of the signed areas between the graph of f (x) and the x axis, where areas above are positive and areas below negative. Ex: Calculate the definite integrals by referring to the figure with the indicated areas. Find the following: b f(x)dx a c f(x)dx b = = c f(x)dx a = 17 P a g e

18 Definite Integral Properties Ex: Assume we know that Find the following: ( ) 18 P a g e

19 Sec The Fundamental Theorem of Calculus Objectives: The student will be able to evaluate definite integrals. The student will be able to calculate the average value of a function using the definite integral. Fundamental Theorem of Calculus If f is a continuous function on the closed interval [a, b], and F is any antiderivative of f, then b a f ( x) dx F( x) b a F( b) F( a) Evaluating Definite Integrals By the fundamental theorem we can evaluate We simply calculate F( b) F( a) b a f ( x) dx easily and exactly. Using the Fundamental Theorem of Calculus : 1. We don t have to use limit definition to evaluate a definite integral (as long as we can find an antiderivative of f) 2. The theorem says ( ) can be evaluated like this: ( ( ) ) ( ( ) ) 3. If is not necessary to include a constant of integration (+c) Definite Integral Properties 19 P a g e

20 Ex: Find the following using the fundamental theorem of calculus 20 P a g e

21 ( ) ( ) 21 P a g e

22 Change of variables (u- substitution) for definite integrals When using u-substitutions with a definite integral it is often convenient to determine the limits of integration for the variable u. Ex: From past records a management service determined that the rate of increase in maintenance cost for an apartment building (in dollars per year) is given by M (x) = 90x 2 + 5,000, where M(x) is the total accumulated cost of maintenance for x years. Write a definite integral that will give the total maintenance cost from the end of the second year to the end of the seventh year. Evaluate the integral. 22 P a g e

23 Definition: An application of definite integral. If f is integrable on a closed interval [a,b] then the average value of f on the interval is: ( ) Note this is the area under the curve divided by the width. Hence, the result is the average height or average value. Ex: The total cost (in dollars) of printing x dictionaries is C(x) = 20, x a) Find the average cost per unit if 1000 dictionaries are produced. b) Find the average value of the cost function over the interval [0, 1000]. 23 P a g e

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

The Integral of a Function. The Indefinite Integral

The Integral of a Function. The Indefinite Integral The Integral of a Function. The Indefinite Integral Undoing a derivative: Antiderivative=Indefinite Integral Definition: A function is called an antiderivative of a function on same interval,, if differentiation

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Section 6-1 Antiderivatives and Indefinite Integrals

Section 6-1 Antiderivatives and Indefinite Integrals Name Date Class Section 6-1 Antiderivatives and Indefinite Integrals Goal: To find antiderivatives and indefinite integrals of functions using the formulas and properties Theorem 1 Antiderivatives If the

More information

RAMs.notebook December 04, 2017

RAMs.notebook December 04, 2017 RAMsnotebook December 04, 2017 Riemann Sums and Definite Integrals Estimate the shaded area Area between a curve and the x-axis How can you improve your estimate? Suppose f(x) 0 x [a, b], then the area

More information

The total differential

The total differential The total differential The total differential of the function of two variables The total differential gives the full information about rates of change of the function in the -direction and in the -direction.

More information

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals Antiderivatives and Indefinite Integrals MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this lesson we will be able to use the definition

More information

4 Integration. Copyright Cengage Learning. All rights reserved.

4 Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 4.1 Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. Objectives! Write the general solution of

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

4. Theory of the Integral

4. Theory of the Integral 4. Theory of the Integral 4.1 Antidifferentiation 4.2 The Definite Integral 4.3 Riemann Sums 4.4 The Fundamental Theorem of Calculus 4.5 Fundamental Integration Rules 4.6 U-Substitutions 4.1 Antidifferentiation

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below.

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. MAC 23. Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. (x, y) y = 3 x + 4 a. x = 6 b. x = 4 c. x = 2 d. x = 5 e. x = 3 2. Consider the area of the

More information

Calculus Honors Curriculum Guide Dunmore School District Dunmore, PA

Calculus Honors Curriculum Guide Dunmore School District Dunmore, PA Calculus Honors Dunmore School District Dunmore, PA Calculus Honors Prerequisite: Successful completion of Trigonometry/Pre-Calculus Honors Major topics include: limits, derivatives, integrals. Instruction

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

AP Calculus Curriculum Guide Dunmore School District Dunmore, PA

AP Calculus Curriculum Guide Dunmore School District Dunmore, PA AP Calculus Dunmore School District Dunmore, PA AP Calculus Prerequisite: Successful completion of Trigonometry/Pre-Calculus Honors Advanced Placement Calculus is the highest level mathematics course offered

More information

Lecture : The Indefinite Integral MTH 124

Lecture : The Indefinite Integral MTH 124 Up to this point we have investigated the definite integral of a function over an interval. In particular we have done the following. Approximated integrals using left and right Riemann sums. Defined the

More information

Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar!

Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar! Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar! See me any time B4 school tomorrow and mention to me that you have reviewed your integration notes and you

More information

() Chapter 8 November 9, / 1

() Chapter 8 November 9, / 1 Example 1: An easy area problem Find the area of the region in the xy-plane bounded above by the graph of f(x) = 2, below by the x-axis, on the left by the line x = 1 and on the right by the line x = 5.

More information

Wed. Sept 28th: 1.3 New Functions from Old Functions: o vertical and horizontal shifts o vertical and horizontal stretching and reflecting o

Wed. Sept 28th: 1.3 New Functions from Old Functions: o vertical and horizontal shifts o vertical and horizontal stretching and reflecting o Homework: Appendix A: 1, 2, 3, 5, 6, 7, 8, 11, 13-33(odd), 34, 37, 38, 44, 45, 49, 51, 56. Appendix B: 3, 6, 7, 9, 11, 14, 16-21, 24, 29, 33, 36, 37, 42. Appendix D: 1, 2, 4, 9, 11-20, 23, 26, 28, 29,

More information

Integration by Substitution

Integration by Substitution Integration by Substitution MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to use the method of integration by substitution

More information

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 175 Riemann Sums Trapezoid Approximation Area Under

More information

Math 142 (Summer 2018) Business Calculus 6.1 Notes

Math 142 (Summer 2018) Business Calculus 6.1 Notes Math 142 (Summer 2018) Business Calculus 6.1 Notes Antiderivatives Why? So far in the course we have studied derivatives. Differentiation is the process of going from a function f to its derivative f.

More information

AP Calculus AB Integration

AP Calculus AB Integration Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Slide 3 / 175 Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 2 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 203 / 55

More information

AP Calculus AB. Integration. Table of Contents

AP Calculus AB. Integration.  Table of Contents AP Calculus AB Integration 2015 11 24 www.njctl.org Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under a Curve (The Definite Integral) Antiderivatives

More information

F (x) is an antiderivative of f(x) if F (x) = f(x). Lets find an antiderivative of f(x) = x. We know that d. Any ideas?

F (x) is an antiderivative of f(x) if F (x) = f(x). Lets find an antiderivative of f(x) = x. We know that d. Any ideas? Math 24 - Calculus for Management and Social Science Antiderivatives and the Indefinite Integral: Notes So far we have studied the slope of a curve at a point and its applications. This is one of the fundamental

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Integration. 2. The Area Problem

Integration. 2. The Area Problem Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math2. Two Fundamental Problems of Calculus First

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will learn that for a continuous non-negative function f, one interpretation of the definite integral f ( x ) dx is the area of a the region bounded above by the graph of y = f(x),

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 2/03/20 Bormashenko MATH 408N PRACTICE FINAL Show your work for all the problems. Good luck! () Let f(x) = ex e x. (a) [5 pts] State the domain and range of f(x). Name: TA session: Since e x is defined

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

Chapter 6: Messy Integrals

Chapter 6: Messy Integrals Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields

More information

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find Area In order to quantify the size of a -dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using this

More information

Chapter 13: Integral Calculus. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 13: Integral Calculus. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 13: Integral Calculus SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 13: Integral Calculus Lecture 13.1: The Integrals Lecture

More information

Math Refresher Course

Math Refresher Course Math Refresher Course Columbia University Department of Political Science Fall 2007 Day 2 Prepared by Jessamyn Blau 6 Calculus CONT D 6.9 Antiderivatives and Integration Integration is the reverse of differentiation.

More information

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week The University of Sydney Math3 Integral Calculus and Modelling Semester 2 Exercises and Solutions for Week 2 2 Assumed Knowledge Sigma notation for sums. The ideas of a sequence of numbers and of the limit

More information

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc.

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc. School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml Syllabus 1 Aug 29 Pre-calculus 2 Sept 05 Rates and areas 3 Sept 12 Trapezoids

More information

Math Practice Final - solutions

Math Practice Final - solutions Math 151 - Practice Final - solutions 2 1-2 -1 0 1 2 3 Problem 1 Indicate the following from looking at the graph of f(x) above. All answers are small integers, ±, or DNE for does not exist. a) lim x 1

More information

Study 5.3 # , 157; 5.2 # 111, 113

Study 5.3 # , 157; 5.2 # 111, 113 Goals: 1. Recognize and understand the Fundamental Theorem of Calculus. 2. Use the Fundamental Theorum of Calculus to evaluate Definite Integrals. 3. Recognize and understand the Mean Value Theorem for

More information

Section 6-1 Antiderivatives and Indefinite Integrals

Section 6-1 Antiderivatives and Indefinite Integrals Name Date Class Section 6- Antiderivatives and Indefinite Integrals Goal: To find antiderivatives and indefinite integrals of functions using the formulas and properties Theorem Antiderivatives If the

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 132 final exam mainly consists of standard response questions where students

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

MTH4100 Calculus I. Bill Jackson School of Mathematical Sciences QMUL. Week 9, Semester 1, 2013

MTH4100 Calculus I. Bill Jackson School of Mathematical Sciences QMUL. Week 9, Semester 1, 2013 MTH4100 School of Mathematical Sciences QMUL Week 9, Semester 1, 2013 Concavity Concavity In the literature concave up is often referred to as convex, and concave down is simply called concave. The second

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

1 Lesson 13: Methods of Integration

1 Lesson 13: Methods of Integration Lesson 3: Methods of Integration Chapter 6 Material: pages 273-294 in the textbook: Lesson 3 reviews integration by parts and presents integration via partial fraction decomposition as the third of the

More information

Math Practice Exam 2 - solutions

Math Practice Exam 2 - solutions C Roettger, Fall 205 Math 66 - Practice Exam 2 - solutions State clearly what your result is. Show your work (in particular, integrand and limits of integrals, all substitutions, names of tests used, with

More information

Students will use appropriate models and quantitative methods to analyze data, explore relationships among variables, and find missing information.

Students will use appropriate models and quantitative methods to analyze data, explore relationships among variables, and find missing information. Master Syllabus and Course Content MATH 2261 Calculus I Georgia Highlands College Updated for Fall 2017 Course Description: Mathematics 2261: Calculus I 4-0-4. Prerequisite: MATH 1113 with a grade of C

More information

MATH : Calculus II (42809) SYLLABUS, Spring 2010 MW 4-5:50PM, JB- 138

MATH : Calculus II (42809) SYLLABUS, Spring 2010 MW 4-5:50PM, JB- 138 MATH -: Calculus II (489) SYLLABUS, Spring MW 4-5:5PM, JB- 38 John Sarli, JB-36 O ce Hours: MTW 3-4PM, and by appointment (99) 537-5374 jsarli@csusb.edu Text: Calculus of a Single Variable, Larson/Hostetler/Edwards

More information

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10 Assignment & Notes 5.2: Intro to Integrals 1. The velocity function (in miles and hours) for Ms. Hardtke s Christmas drive to see her family is shown at the right. Find the total distance Ms. H travelled

More information

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask:

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask: Integral Integration is an important concept in mathematics, specifically in the field of calculus and, more broadly, mathematical analysis. Given a function ƒ of a real variable x and an interval [a,

More information

Worksheet Week 1 Review of Chapter 5, from Definition of integral to Substitution method

Worksheet Week 1 Review of Chapter 5, from Definition of integral to Substitution method Worksheet Week Review of Chapter 5, from Definition of integral to Substitution method This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical expressions

More information

Exam 3 review for Math 1190

Exam 3 review for Math 1190 Exam 3 review for Math 9 Be sure to be familiar with the following : Extreme Value Theorem Optimization The antiderivative u-substitution as a method for finding antiderivatives Reimann sums (e.g. L 6

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

p324 Section 5.2: The Natural Logarithmic Function: Integration

p324 Section 5.2: The Natural Logarithmic Function: Integration p324 Section 5.2: The Natural Logarithmic Function: Integration Theorem 5.5: Log Rule for Integration Let u be a differentiable function of x 1. 2. Example 1: Using the Log Rule for Integration ** Note:

More information

Indefinite Integration

Indefinite Integration Indefinite Integration 1 An antiderivative of a function y = f(x) defined on some interval (a, b) is called any function F(x) whose derivative at any point of this interval is equal to f(x): F'(x) = f(x)

More information

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x)

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x) Lab 11: Numerical Integration Techniques Introduction The purpose of this laboratory experience is to develop fundamental methods for approximating the area under a curve for the definite integral. With

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.1 (differential equations), 7.2 (antiderivatives), and 7.3 (the definite integral +area) * Read these sections and study solved examples in your textbook! Homework: -

More information

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5 8.4 1 8.4 Partial Fractions Consider the following integral. 13 2x (1) x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that 13 2x (2) x 2 x 2 = 3 x 2 5 x + 1 We could then

More information

Milford Public Schools Curriculum. Department: Mathematics Course Name: Calculus Course Description:

Milford Public Schools Curriculum. Department: Mathematics Course Name: Calculus Course Description: Milford Public Schools Curriculum Department: Mathematics Course Name: Calculus Course Description: UNIT # 1 Unit Title: Limits, Continuity, and Definition of the Derivative The idea of limits is important

More information

Science One Integral Calculus. January 9, 2019

Science One Integral Calculus. January 9, 2019 Science One Integral Calculus January 9, 2019 Recap: What have we learned so far? The definite integral is defined as a limit of Riemann sums Riemann sums can be constructed using any point in a subinterval

More information

Lesson Objectives: we will learn:

Lesson Objectives: we will learn: Lesson Objectives: Setting the Stage: Lesson 66 Improper Integrals HL Math - Santowski we will learn: How to solve definite integrals where the interval is infinite and where the function has an infinite

More information

Study 5.3 #171,

Study 5.3 #171, Goals: 1. Recognize and understand the Fundamental Theorem of Calculus. 2. Use the Fundamental Theorum of Calculus to evaluate Definite Integrals. 3. Recognize and understand the Mean Value Theorem for

More information

Chapter 8: Techniques of Integration

Chapter 8: Techniques of Integration Chapter 8: Techniques of Integration Section 8.1 Integral Tables and Review a. Important Integrals b. Example c. Integral Tables Section 8.2 Integration by Parts a. Formulas for Integration by Parts b.

More information

QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve

QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve C C Moxley Samford University Brock School of Business Substitution Rule The following rules arise from the chain rule

More information

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 Math 201-203-RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 What is the Antiderivative? In a derivative problem, a function f(x) is given and you find the derivative f (x) using

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Chapter 2 Linear Equations and Inequalities in One Variable

Chapter 2 Linear Equations and Inequalities in One Variable Chapter 2 Linear Equations and Inequalities in One Variable Section 2.1: Linear Equations in One Variable Section 2.3: Solving Formulas Section 2.5: Linear Inequalities in One Variable Section 2.6: Compound

More information

Math 1501 Calc I Fall 2013 Lesson 9 - Lesson 20

Math 1501 Calc I Fall 2013 Lesson 9 - Lesson 20 Math 1501 Calc I Fall 2013 Lesson 9 - Lesson 20 Instructor: Sal Barone School of Mathematics Georgia Tech August 19 - August 6, 2013 (updated October 4, 2013) L9: DIFFERENTIATION RULES Covered sections:

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Distance and Velocity

Distance and Velocity Distance and Velocity - Unit #8 : Goals: The Integral Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite integral and

More information

FIRST YEAR CALCULUS W W L CHEN

FIRST YEAR CALCULUS W W L CHEN FIRST YER CLCULUS W W L CHEN c W W L Chen, 994, 28. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Exam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the differential equation with the appropriate slope field. 1) y = x

More information

Region 16 Board of Education AP Calculus Curriculum 2008

Region 16 Board of Education AP Calculus Curriculum 2008 Region 16 Board of Education AP Calculus Curriculum 2008 Course Description This course develops students understanding of the concepts of calculus and provides experience with its methods and applications.

More information

MATH Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz.

MATH Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz. MATH 1060 - Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz. 3 rd Edition Testable Skills Unit 3 Important Students should expect

More information

Topic Subtopics Essential Knowledge (EK)

Topic Subtopics Essential Knowledge (EK) Unit/ Unit 1 Limits [BEAN] 1.1 Limits Graphically Define a limit (y value a function approaches) One sided limits. Easy if it s continuous. Tricky if there s a discontinuity. EK 1.1A1: Given a function,

More information

Foundations of Calculus. November 18, 2014

Foundations of Calculus. November 18, 2014 Foundations of Calculus November 18, 2014 Contents 1 Conic Sections 3 11 A review of the coordinate system 3 12 Conic Sections 4 121 Circle 4 122 Parabola 5 123 Ellipse 5 124 Hyperbola 6 2 Review of Functions

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

Advanced Placement Calculus I - What Your Child Will Learn

Advanced Placement Calculus I - What Your Child Will Learn Advanced Placement Calculus I - What Your Child Will Learn I. Functions, Graphs, and Limits A. Analysis of graphs With the aid of technology, graphs of functions are often easy to produce. The emphasis

More information

Advanced Placement AB Calculus

Advanced Placement AB Calculus Advanced Placement AB Calculus Performance Objectives and Time Table Text: Calculus, 8 th edition, by Howard Anton, Irl Bivens, Stephen Davis. John Wiley & Sons, Inc. 005 FIRST NINE WEEKS SECOND NINE WEEKS

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information