RAMs.notebook December 04, 2017

Size: px
Start display at page:

Download "RAMs.notebook December 04, 2017"

Transcription

1 RAMsnotebook December 04, 2017 Riemann Sums and Definite Integrals Estimate the shaded area Area between a curve and the x-axis How can you improve your estimate? Suppose f(x) 0 x [a, b], then the area between the curve and the x-axis can be approximated by using the sum of the areas of many rectangles with bases on the x-axis and heights on the function height = f(x i ) Choosing width and height of the rectangles: Widths of each sub-interval can vary The way the interval is divided into subintervals is called a "partition", denoted P The subinterval with the longest width is the "norm" of the partition and is denoted P Ex: if [2, 10] is subdivided by {2, 3, 5, 6, 75, 10} width = Δx Height of the rectangle will be a point on the function somewhere in the closed subinterval height = f(x i ) where x i is any point in the interval Estimate the area using the intervals shown, with the height at the given point in the interval

2 RAMsnotebook December 04, 2017 Recall: "k" is the index of summation "i" is the lower limit and is the first integer substituted in for k "n" is the upper limit and is the last integer substituted in for k Summation notation for the sum of the areas of a positive function f: Let the width of a rectangle be Δx k, and let w k be some value within the k th interval so that the height of a rectangle is f(w k ), and let there be n subintervals, Then A f(w2) Δx 2 The exact area will be the limit of the sums of the area of the rectangles as the number of subintervals approaches infinity Rectangular Approximation Methods: RAMs Simplifies the choosing process Alternately, use the sum of the areas as the norm of the partitions approaches 0 Note that this is only for a function f that is non-negative in each interval, If a function has negative values then use the absolute value Partitions are often "regular", that is, each subinterval has the same width Determined by the number of subintervals (rectangles) you want Equal widths from x = a to x = b with n sub intervals will be b - a Δx = n Good choices for the height are: Right (RRAM), Left(LRAM), Middle(MRAM), Upper (maximum or circumscribed) or Lower (minimum or inscribed) Ex: If [2, 10] is to have a regular partition of 16 subintervals what is P?

3 RAMsnotebook December 04, 2017 LRAM RRAM MRAM Upper (maximum or circumscribed) Lower (minimum or inscribed) *RAM = Rectangular Approximation Method Let f(x) = x² + 1 on the interval [0, 2] and let n = 4, be the number of equal subintervals 1 Draw the RRAM, LRAM, MRAM, and find the approximate area using those rectangles Let f(x) = x² - 6x + 10 on the interval [0, 2] and let n = 4, be the number of equal subintervals 1 Draw the RRAM, LRAM, MRAM, Lower and Upper and find the approximate area using those rectangles Riemann Sums Riemann sum defines areas below the x axis as negative areas and areas above the x axis as positive areas x 0 x 1 x 2 x 5 x8 x 10 x 13 Given the partition above, the sum of the areas of each rectangle estimates the total area between the x axis and the curve The sum of the areas above the x axis minus the areas below the x axis is a Riemann Sum, [x 0, x 13]

4 RAMsnotebook December 04, 2017 The Riemann sum will be the sum of the positive and negative areas between the graph and the x-axis The exact value of the Riemann sum is a limit as P becomes negligible Alternately we can find the sum of the ± areas of the rectangles as the number of rectangles goes to infinity: This limit (provided it exists) is called the definite integral of f on the closed interval [x 0, x n ] The symbol for the definite integral of f(x) on [a, b] is where a is the lower limit, b is the upper limit, f(x) is the height of any rectangle at any x, and dx is the width of a rectangle Calculator steps: TI83: Math->9:fnInt( function,x,lower limit, upper limit) TI84: Math->9:fnInt, enter lower limit, upper limit, function and "x" after d It describes the sum of the areas above the x axis minus the sum of the areas below the x axis *Use the program provided or the website Estimate the area under the curve from x = 0 to x = 4 using 4, 10, 20 and 100 subintervals, for LRAM, RRAM and MRAM What is the best estimate of the area? 10 Suppose the areas between the graph and the x-axis are given for a function f between [a, d] 5 LRAM RRAM MRAM

5 RAMsnotebook December 04, 2017 Find LRAM, MRAM and RRAM Find LRAM and RRAM Why can't you find MRAM? Some properties, given a, b, c are constants and a < b and f and g are continuous functions, then: If f is odd then If f is even then 7 Area of f(x) in [a, b] = f(x) What is the area between the curve and the x-axis? What is the area between the x-axis and the curve?

6 RAMsnotebook December 04, 2017 Let

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus NCTM Annual Meeting and Eposition Denver, CO April 8, Presented by Mike Koehler Blue Valley North High School Overland Park, KS I. Approimations with Rectangles (Finding the Area Under Curves by Approimating

More information

Pre Calculus. Intro to Integrals.

Pre Calculus. Intro to Integrals. 1 Pre Calculus Intro to Integrals 2015 03 24 www.njctl.org 2 Riemann Sums Trapezoid Rule Table of Contents click on the topic to go to that section Accumulation Function Antiderivatives & Definite Integrals

More information

Steps for finding area using Summation

Steps for finding area using Summation Steps for finding area using Summation 1) Identify a o and a 0 = starting point of the given interval [a, b] where n = # of rectangles 2) Find the c i 's Right: Left: 3) Plug each c i into given f(x) >

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

DEFINITE INTEGRALS & NUMERIC INTEGRATION

DEFINITE INTEGRALS & NUMERIC INTEGRATION DEFINITE INTEGRALS & NUMERIC INTEGRATION Calculus answers two very important questions. The first, how to find the instantaneous rate of change, we answered with our study of the derivative. We are now

More information

AP Calculus AB Integration

AP Calculus AB Integration Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Slide 3 / 175 Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under

More information

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 175 Riemann Sums Trapezoid Approximation Area Under

More information

Chapter 6 Section Antiderivatives and Indefinite Integrals

Chapter 6 Section Antiderivatives and Indefinite Integrals Chapter 6 Section 6.1 - Antiderivatives and Indefinite Integrals Objectives: The student will be able to formulate problems involving antiderivatives. The student will be able to use the formulas and properties

More information

MA 137 Calculus 1 with Life Science Applications. (Section 6.1)

MA 137 Calculus 1 with Life Science Applications. (Section 6.1) MA 137 Calculus 1 with Life Science Applications (Section 6.1) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky December 2, 2015 1/17 Sigma (Σ) Notation In approximating

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

AP Calculus AB. Integration. Table of Contents

AP Calculus AB. Integration.  Table of Contents AP Calculus AB Integration 2015 11 24 www.njctl.org Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under a Curve (The Definite Integral) Antiderivatives

More information

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

1 Approximating area under curves and Riemann sums

1 Approximating area under curves and Riemann sums Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Approximating area under curves and Riemann sums 1 1.1 Riemann sums................................... 1 1.2 Area under the velocity curve..........................

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

() Chapter 8 November 9, / 1

() Chapter 8 November 9, / 1 Example 1: An easy area problem Find the area of the region in the xy-plane bounded above by the graph of f(x) = 2, below by the x-axis, on the left by the line x = 1 and on the right by the line x = 5.

More information

Objective SWBAT find distance traveled, use rectangular approximation method (RAM), volume of a sphere, and cardiac output.

Objective SWBAT find distance traveled, use rectangular approximation method (RAM), volume of a sphere, and cardiac output. 5.1 Estimating with Finite Sums Objective SWBAT find distance traveled, use rectangular approximation method (RAM), volume of a sphere, and cardiac output. Distance Traveled We know that pondering motion

More information

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below.

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. MAC 23. Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. (x, y) y = 3 x + 4 a. x = 6 b. x = 4 c. x = 2 d. x = 5 e. x = 3 2. Consider the area of the

More information

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement)

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement) l Hǒpital s Rule and Limits of Riemann Sums Textbook Supplement The 0/0 Indeterminate Form and l Hǒpital s Rule Some weeks back, we already encountered a fundamental 0/0 indeterminate form, namely the

More information

CALCULUS AP AB Q401.Chapter 5B Lesson 1: Fundamental Theorem (Part 1) Fundamental Theorem of Calculus (Part I)

CALCULUS AP AB Q401.Chapter 5B Lesson 1: Fundamental Theorem (Part 1) Fundamental Theorem of Calculus (Part I) CALCULUS AP AB Q401.Chapter 5B Lesson 1: Fundamental Theorem (Part 1) Fundamental Theorem of Calculus (Part I) CALCULUS AP AB Q401.Chapter 5B Lesson 1: Fundamental Theorem (Part 1) APPLICATION (1, 4) 2

More information

Integration. 2. The Area Problem

Integration. 2. The Area Problem Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math2. Two Fundamental Problems of Calculus First

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area 6.1 Area of Polygonal Regions Let's first derive formulas for the area of these shapes. 1. Rectangle 2. Parallelogram 3. Triangle 4. Trapezoid 1 Ex 1: Find the

More information

The total differential

The total differential The total differential The total differential of the function of two variables The total differential gives the full information about rates of change of the function in the -direction and in the -direction.

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

Objectives. Materials

Objectives. Materials Activity 5 Approximating Integrals with Riemann Sums Objectives Calculate Riemann sums Demonstrate when Riemann sums will overapproximate or under-approximate a definite integral Observe the convergence

More information

t dt Estimate the value of the integral with the trapezoidal rule. Use n = 4.

t dt Estimate the value of the integral with the trapezoidal rule. Use n = 4. Trapezoidal Rule We have already found the value of an integral using rectangles in the first lesson of this module. In this section we will again be estimating the value of an integral using geometric

More information

F (x) is an antiderivative of f(x) if F (x) = f(x). Lets find an antiderivative of f(x) = x. We know that d. Any ideas?

F (x) is an antiderivative of f(x) if F (x) = f(x). Lets find an antiderivative of f(x) = x. We know that d. Any ideas? Math 24 - Calculus for Management and Social Science Antiderivatives and the Indefinite Integral: Notes So far we have studied the slope of a curve at a point and its applications. This is one of the fundamental

More information

The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]?

The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]? The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]? Before we work on How we will figure out Why velocity

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will learn that for a continuous non-negative function f, one interpretation of the definite integral f ( x ) dx is the area of a the region bounded above by the graph of y = f(x),

More information

The Integral of a Function. The Indefinite Integral

The Integral of a Function. The Indefinite Integral The Integral of a Function. The Indefinite Integral Undoing a derivative: Antiderivative=Indefinite Integral Definition: A function is called an antiderivative of a function on same interval,, if differentiation

More information

Area and Integration

Area and Integration Area and Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229. Two Fundamental Problems of Calculus

More information

Distance and Velocity

Distance and Velocity Distance and Velocity - Unit #8 : Goals: The Integral Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite integral and

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6.. Worksheet Estimating with Finite Sums All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. Suppose an oil pump is producing 8 gallons per hour

More information

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline Riemann Sums Riemann Sums In MatLab Graphing

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

MATH1013 Calculus I. Edmund Y. M. Chiang. Department of Mathematics Hong Kong University of Science & Technology.

MATH1013 Calculus I. Edmund Y. M. Chiang. Department of Mathematics Hong Kong University of Science & Technology. 1 Based on Stewart, James, Single Variable Calculus, Early Transcendentals, 7th edition, Brooks/Coles, 2012 Briggs, Cochran and Gillett: Calculus for Scientists and Engineers: Early Transcendentals, Pearson

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

Foothill High School. AP Calculus BC. Note Templates Semester 1, Student Name.

Foothill High School. AP Calculus BC. Note Templates Semester 1, Student Name. Foothill High School AP Calculus BC Note Templates Semester 1, 2011-2012 Student Name Teacher: Burt Dixon bdixon@pleasanton.k12.ca.us 2.1 Limits Chap1-2 Page 1 Chap1-2 Page 2 Chap1-2 Page 3 Chap1-2 Page

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

UNC Charlotte Super Competition - Comprehensive test March 2, 2015

UNC Charlotte Super Competition - Comprehensive test March 2, 2015 March 2, 2015 1. triangle is inscribed in a semi-circle of radius r as shown in the figure: θ The area of the triangle is () r 2 sin 2θ () πr 2 sin θ () r sin θ cos θ () πr 2 /4 (E) πr 2 /2 2. triangle

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.1 (differential equations), 7.2 (antiderivatives), and 7.3 (the definite integral +area) * Read these sections and study solved examples in your textbook! Homework: -

More information

5.3 Definite Integrals and Antiderivatives

5.3 Definite Integrals and Antiderivatives 5.3 Definite Integrals and Antiderivatives Objective SWBAT use properties of definite integrals, average value of a function, mean value theorem for definite integrals, and connect differential and integral

More information

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline 1 Riemann Sums 2 Riemann Sums In MatLab 3 Graphing

More information

Chapter 5 - Integration

Chapter 5 - Integration Chapter 5 - Integration 5.1 Approximating the Area under a Curve 5.2 Definite Integrals 5.3 Fundamental Theorem of Calculus 5.4 Working with Integrals 5.5 Substitution Rule for Integrals 1 Q. Is the area

More information

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week The University of Sydney Math3 Integral Calculus and Modelling Semester 2 Exercises and Solutions for Week 2 2 Assumed Knowledge Sigma notation for sums. The ideas of a sequence of numbers and of the limit

More information

Lecture The Definite Integral (2 of 2) MTH 124

Lecture The Definite Integral (2 of 2) MTH 124 In the last lecture we saw that the area under a curve is a useful measurement and we used geometric means to estimate this area for any curve. We defined right and left Riemann sums as a systematic way

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 5. Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. Suppose an oil pump is producing 8 gallons per hour for the first 5 hours of

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

Math 131 Exam II "Sample Questions"

Math 131 Exam II Sample Questions Math 11 Exam II "Sample Questions" This is a compilation of exam II questions from old exams (written by various instructors) They cover chapters and The solutions can be found at the end of the document

More information

Problem Set Four Integration AP Calculus AB

Problem Set Four Integration AP Calculus AB Multiple Choice: No Calculator unless otherwise indicated. ) sec 2 x 2dx tan x + C tan x 2x +C tan x x + C d) 2tanxsec 2 x x + C x 2 2) If F(x)= t + dt, what is F (x) x 2 + 2 x 2 + 2x x 2 + d) 2(x2 +)

More information

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a Recitation Worksheet 6C f x = x 1 x 4 x 9 = x 14x + 49x 36. Find the intervals on which 1. Suppose ( ) ( )( )( ) 3 f ( x ) is increasing and the intervals on which f ( ). Suppose ( ) ( )( )( ) 3 x is decreasing.

More information

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x)

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x) Lab 11: Numerical Integration Techniques Introduction The purpose of this laboratory experience is to develop fundamental methods for approximating the area under a curve for the definite integral. With

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Exam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the differential equation with the appropriate slope field. 1) y = x

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Solutions to Assignment 7.6. sin. sin

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Solutions to Assignment 7.6. sin. sin Arkansas Tech University MATH 94: Calculus II Dr. Marcel B. Finan Solutions to Assignment 7.6 Exercise We have [ 5x dx = 5 ] = 4.5 ft lb x Exercise We have ( π cos x dx = [ ( π ] sin π x = J. From x =

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)... Math 55, Exam III November 5, The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for hour and 5 min. Be sure that your name is on every page in

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 6.4, 6.5, 7. Fall 6 Problem 6.4. Sketch the region enclosed by x = 4 y +, x = 4y, and y =. Use the Shell Method to calculate the volume of rotation about the x-axis SOLUTION.

More information

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer.

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer. Math 105 Final Exam 1/11/1 Name Read directions carefully and show all your work. Partial credit will be assigned based upon the correctness, completeness, and clarity of your answers. Correct answers

More information

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab Abstract This

More information

WeBWorK demonstration assignment

WeBWorK demonstration assignment WeBWorK demonstration assignment.( pt) Match the statements defined below with the letters labeling their equivalent expressions. You must get all of the answers correct to receive credit.. x is less than

More information

CALCULUS AP BC Q301CH5A: (Lesson 1-A) AREA and INTEGRAL Area Integral Connection and Riemann Sums

CALCULUS AP BC Q301CH5A: (Lesson 1-A) AREA and INTEGRAL Area Integral Connection and Riemann Sums CALCULUS AP BC Q301CH5A: (Lesson 1-A) AREA and INTEGRAL Area Integral Connection and Riemann Sums INTEGRAL AND AREA BY HAND (APPEAL TO GEOMETRY) I. Below are graphs that each represent a different f()

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

Since the exponential function is a continuous function, it suffices to find the limit: lim sin x ln x. sin x ln x = ln x

Since the exponential function is a continuous function, it suffices to find the limit: lim sin x ln x. sin x ln x = ln x Math 180 Written Homework Assignment #9 Due Tuesday, November 18th at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 180 students,

More information

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a Recitation Worksheet 6C f x = x x 4 x 9 = x 4x + 49x 36. Find the intervals on which. Suppose ( ) ( )( )( ) 3 f ( x ) is increasing and the intervals on which f ( ). Suppose ( ) ( )( )( ) 3 x is decreasing.

More information

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis?

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? Math-A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? f ( x) x x x x x x 3 3 ( x) x We call functions that are symmetric about

More information

AP Calculus AB Course Syllabus

AP Calculus AB Course Syllabus AP Calculus AB Course Syllabus Grant Community High School Mr. Rous Textbook Finney, Ross L., Franklin D. Demana, Bert K. Waits, and Daniel Kennedy. Calculus Graphical, Numerical, Algebraic, Fourth Addition,

More information

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 Limits Involving Infinity; Asymptotes of Graphs Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Definition. Formal Definition of Limits at Infinity.. We say that

More information

MATH 1271 Wednesday, 5 December 2018

MATH 1271 Wednesday, 5 December 2018 MATH 27 Wednesday, 5 December 208 Today: Review for Exam 3 Exam 3: Thursday, December 6; Sections 4.8-6. /6 Information on Exam 3 Six numbered problems First problem is multiple choice (five parts) See

More information

Science One Integral Calculus. January 8, 2018

Science One Integral Calculus. January 8, 2018 Science One Integral Calculus January 8, 2018 Last time a definition of area Key ideas Divide region into n vertical strips Approximate each strip by a rectangle Sum area of rectangles Take limit for n

More information

Science One Integral Calculus

Science One Integral Calculus Science One Integral Calculus January 018 Happy New Year! Differential Calculus central idea: The Derivative What is the derivative f (x) of a function f(x)? Differential Calculus central idea: The Derivative

More information

MATH1013 Calculus I. Introduction to Functions 1

MATH1013 Calculus I. Introduction to Functions 1 MATH1013 Calculus I Introduction to Functions 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology May 9, 2013 Integration I (Chapter 4) 2013 1 Based on Briggs,

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

Indefinite Integral. Day 1. What is Integration If the differential coefficient of a given function F(x) is given by f(x) then

Indefinite Integral. Day 1. What is Integration If the differential coefficient of a given function F(x) is given by f(x) then Chapter 1 Indefinite Integral Indefinite Integral Day 1 What is Integration If the differential coefficient of a given function F(x) is given by f(x) then The process of finding the anti derivative of

More information

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values.

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values. Polynomial functions: End behavior Solutions NAME: In this lab, we are looking at the end behavior of polynomial graphs, i.e. what is happening to the y values at the (left and right) ends of the graph.

More information

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

MATH 1070 Test 3 Spring 2015 Version A , 5.1, 5.2. Student s Printed Name: Key_&_Grading Guidelines CUID:

MATH 1070 Test 3 Spring 2015 Version A , 5.1, 5.2. Student s Printed Name: Key_&_Grading Guidelines CUID: MATH 00 Test Spring 05 Student s Printed Name: Key_&_Grading Guidelines CUID: Instructor: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any

More information

INTEGRALS. In Chapter 2, we used the tangent and velocity problems to introduce the derivative the central idea in differential calculus.

INTEGRALS. In Chapter 2, we used the tangent and velocity problems to introduce the derivative the central idea in differential calculus. INTEGRALS 5 INTEGRALS In Chapter 2, we used the tangent and velocity problems to introduce the derivative the central idea in differential calculus. INTEGRALS In much the same way, this chapter starts

More information

Article: Miscellaneous Definitions

Article: Miscellaneous Definitions THE UNIVERSITY OF AKRON The Department of Mathematical Sciences Article: Miscellaneous Definitions This article is the repository of all definitions that don t seem to fit elsewhere Table of Contents Some

More information

Burlington County Institute of Technology Curriculum Document

Burlington County Institute of Technology Curriculum Document Burlington County Institute of Technology Curriculum Document Course Title: Calculus Curriculum Area: Mathematics Credits: 5 Credits per course Board Approved: June 2017 Prepared by: Jessica Rista, John

More information

1. Peter cuts a square out of a rectangular piece of metal. accurately drawn. x + 2. x + 4. x + 2

1. Peter cuts a square out of a rectangular piece of metal. accurately drawn. x + 2. x + 4. x + 2 1. Peter cuts a square out of a rectangular piece of metal. 2 x + 3 Diagram NOT accurately drawn x + 2 x + 4 x + 2 The length of the rectangle is 2x + 3. The width of the rectangle is x + 4. The length

More information

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

56 CHAPTER 3. POLYNOMIAL FUNCTIONS 56 CHAPTER 3. POLYNOMIAL FUNCTIONS Chapter 4 Rational functions and inequalities 4.1 Rational functions Textbook section 4.7 4.1.1 Basic rational functions and asymptotes As a first step towards understanding

More information

MA123, Chapter 8: Idea of the Integral (pp , Gootman)

MA123, Chapter 8: Idea of the Integral (pp , Gootman) MA13, Chapter 8: Idea of the Integral (pp. 155-187, Gootman) Chapter Goals: Understand the relationship between the area under a curve and the definite integral. Understand the relationship between velocit

More information

Calculus for the Life Sciences

Calculus for the Life Sciences Calculus for the Life Sciences Integration Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

Calculus Unit Plan. Curriculum Area Calculus (Mathematics) Time Frame 3-4 weeks January February. Khan Academy https://www.khanacademy.

Calculus Unit Plan. Curriculum Area Calculus (Mathematics) Time Frame 3-4 weeks January February. Khan Academy https://www.khanacademy. Title of Unit Pre-Calculus Integrals Grade Level HS (11-12) Curriculum Area Calculus (Mathematics) Time Frame 3-4 weeks January February Materials Calculus AP* Edition Finney, Demana, Waits, Kennedy Chapter

More information

Chapter 8. Infinite Series

Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Note. Given a series we have two questions:. Does the series converge? 2. If it converges, what is its sum? Corollary

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) = Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

More information

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10 Assignment & Notes 5.2: Intro to Integrals 1. The velocity function (in miles and hours) for Ms. Hardtke s Christmas drive to see her family is shown at the right. Find the total distance Ms. H travelled

More information

Math Camp. September 16, 2017 Unit 2. MSSM Program Columbia University Dr. Satyajit Bose

Math Camp. September 16, 2017 Unit 2. MSSM Program Columbia University Dr. Satyajit Bose Math Camp September 16, 2017 Unit 2 MSSM Program Columbia University Dr. Satyajit Bose Math Camp Interlude Partial Derivatives Recall:The derivative f'(x) of a function f(x) is the slope of f(x). Alternatively,

More information

Quick Review Sheet for A.P. Calculus Exam

Quick Review Sheet for A.P. Calculus Exam Quick Review Sheet for A.P. Calculus Exam Name AP Calculus AB/BC Limits Date Period 1. Definition: 2. Steps in Evaluating Limits: - Substitute, Factor, and Simplify 3. Limits as x approaches infinity If

More information

Volumes of Solids of Revolution. We revolve this curve about the x-axis and create a solid of revolution.

Volumes of Solids of Revolution. We revolve this curve about the x-axis and create a solid of revolution. Volumes of Solids of Revolution Consider the function ( ) from a = to b = 9. 5 6 7 8 9 We revolve this curve about the x-axis and create a solid of revolution. - 5 6 7 8 9 - - - We want to find the volume

More information

Student s Printed Name:

Student s Printed Name: MthSc 17 Test Spring 1 Student s Printed Name: CUID: Instructor: Section # : You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell

More information