Analysis of Linear State Space Models

Size: px
Start display at page:

Download "Analysis of Linear State Space Models"

Transcription

1 Max f (lb) Max y (in) 1 ME313 Homework #7 Analysis of Linear State Space Models Last Updated November 6, 213 Repeat the car-crash problem from HW#6. Use the Matlab function lsim to perform the simulation. Before the simulation, compute the eigenvalues of [A], and the time constants and frequencies of oscillation. Set the time range for the simulation to be 5 times the longest time constant. Again consider the car-crash problem. Only now, write a Matlab script that will perform a simulation for a sequence of seat-belt stiffnesses k 2 ranging from k 2 =5 lb/ft to k 2 =5 klb/ft. After each simulation, extract the maximum force exerted by the seatbelt on the occupant, and the maximum relative displacement between the occupant and car. Plot both of these quantities versus the seat-belt stiffness k 2. In your script, use ODE45 to perform each simulation and pass the masses m 1, m 2 ; stiffnesses k 1, k 2 ; and damping coefficients c 1 and c 2 in a structure from the script to your state system using anonymous function syntax. Your plots should look like k2 (klb/ft) x k2 (klb/ft)

2 2 A small gantry crane is used to move parts. A x diagram of the crane is shown at the right. The part of weight 2 lb and mass m is suspended from the gantry by a cable of length l=2 ft. The horizontal displacement of the gantry is x, and the angular rotation of the mass m relative to vertical is as shown. Using the methodology used in class to model the inverted pendulum, the dynamic model for the angular movement of the mass m is I c mglsin a( t) mlcos, o T where I o =ml 2 is the moment of inertia of the mass about the pivot point on the gantry, c T =3 lb s models rotational friction of angular motion, and a( t) x is the horizontal acceleration of the gantry. If the angular motions of the mass m are small, it is relatively accurate to replace sin and cos 1 in the model above and obtain an approximation of the dynamic model as I c mgl a( t) ml. o T Note that the first model is nonlinear, while the approximate model is linear. In the following, you are to assume that the gantry is equipped with an apparatus that allows an engineer to control the acceleration of the gantry a(t). o An engineer wishes to move the part to the right. To achieve this motion, the engineer specifies the following acceleration of the gantry, a(t)=5 ft/s 2, t<1 sec, a(t)= ft/s 2, t>1 sec. Simulate the angular movement of the mass using initial conditions of zero angular displacement and velocity. Plot the angular displacement and angular velocity over the time range t 1 sec for this maneuver with the two models cited above. The plot should look like the one shown at the top of the following page.

3 Angular Velocity (deg/sec) Angular Displacement (deg) 3 1 Accel Time=1 sec, Accel Dist=2.5 ft, Vel After Accel=5 ft/sec wn=4.125 rad/sec, z=.1547 kp= kd= Mp= ts= sec Time (sec) o At t=1 sec and t=1 sec, how far has the gantry travelled, and what is the velocity of the gantry? o From the approximate model, compute the natural frequency n and the damping ratio. o An engineer wishes to reduce the angular oscillations of the mass m after the acceleration has been applied, i.e., the time range t>1 sec. Given that sensors are installed that are capable of measuring the angular displacement and angular velocity of the mass m, the engineer installs a feedback system that sets the acceleration of the cart a(t) to a( t) k p k d, after the acceleration has been applied, i.e., when t>1 sec. In the above control law, k p and k d are the overall proportional and derivative gains for the control apparatus between measurement of the angular displacement and velocity, and the acceleration a(t) of the gantry.

4 Angular Velocity (deg/sec) Angular Displacement (deg) 4 Using the approximate linear dynamic model, choose the proportional and derivate gains so that the natural frequency and damping ratio of the controlled system will be n =1 rad/sec and =.7 respectively Perform a simulation of the system performance, including a(t)= 5 ft/s 2 for t 1 sec, and a( t) k p k d, for 1 t 1 sec. Ye response should look like the plot shown on the following page. 5 Accel Time=1 sec, Accel Dist=2.5 ft, Vel After Accel=5 ft/sec wn=1 rad/sec, z=.7 kp=167.8 kd= Mp= ts= sec Time (sec)

5 Simulation of Carcrash with lsim clear all;close all;clc; HW 7 Linear Simulation Problem ICS x1= Vehicle position x2= Vehicle velocity x3= Occupant position (inertial) x4= Occupant velocity (inertial) xo(1)=; xo(2)=-(528/36)*5; xo(3)=; xo(4)=-(528/36)*5; k1=1e3; c1=5; m1=3/32.2; k2=5e3; c2=5 ; m2=15/32.2; A=[ 1 ; -(k1+k2)/m1 -(c1+c2)/m1 k2/m1 c2/m1 ; 1 ; k2/m2 c2/m2 -k2/m2 -c2/m2]; B=[ ; ; ; ]; C=[1-1 ]; D=; [E,L]=eig(A) wn1=abs(l(1,1));z1=-real(l(1,1))/wn1;wd1=wn1*sqrt(1-z1^2);td1=(2*pi)/wd1; tau1=1/(z1*wn1); wn2=abs(l(3,3));z2=-real(l(3,3))/wn2;wd2=wn2*sqrt(1-z2^2);td2=(2*pi)/wd2; tau2=1/(z2*wn2); Set up time range tend=5*max([tau1 tau2]); N=5; t=linspace(,tend,n); dt=t(2)-t(1); Perform simulation u=zeros(1,length(t)); sys=ss(a,b,c,d); [y,t,x]=lsim(sys,u,t,xo); y=x(:,1)-x(:,3); f=(-k2*(x(:,3)-x(:,1))-c2*(x(:,4)-x(:,2))); subplot(3,1,1); plot(t,x(:,1)*12,t,x(:,3)*12) title('inertial Coordinates of Car and Occupant') axis([ tend -1*12 1*12]); legend('x1','x3'); ylabel('displacement (in)'); subplot(3,1,2); plot(t,y*12)

6 title('relative Displacement Between Car and Occupant') axis([ tend 1.1*min(y)*12 1.1*max(y)*12 ]); ylabel('displacement (in)'); subplot(3,1,3); plot(t,f) title('force of Seat-Belt on Occupant') axis([ tend 1.1*min(f) 1.1*max(f)]); ylabel('force (lb)'); xlabel('time'); Eigenvalues, frequencies of oscillation, damping ratios, time constants: L = i i i i >> wn1 wn1 = >> z1 z1 =.172 >> wd1 wd1 = >> Td1 Td1 =.1896 >> tau1 tau1 =.1729 >> wn2 wn2 = 1.94 >> z2 z2 =.2511 >> wd2

7 Force (lb) Displacement (in) Displacement (in) wd2 = >> Td2 Td2 =.6433 >> tau2 tau2 =.3946 >> 1 Inertial Coordinates of Car and Occupant x1 x Relative Displacement Between Car and Occupant Force of Seat-Belt on Occupant Time

8 Maximum Force and Displacement versus Seatbelt Stiffness clear all; close all; Compute maximum force exerted by seatbelt on occupant for a range of seatbelt stiffnesses N=5; tend=.5; t=linspace(,tend,n); dt=t(2)-t(1); k1=1e3; c1=5; m1=3/32.2; k2=5e3; c2=5 ; m2=15/32.2; P.k1=k1 ; P.c1=c1 ; P.m1=m1; P.k2=k2 ; P.c2=c2 ; P.m2=m2; Nk2=5; k2t=linspace(5,5e3,nk2); ICS x1= Vehicle position x2= Vehicle velocity x3= Occupant position (inertial) x4= Occupant velocity (inertial) xo(1)=; xo(2)=-(528/36)*5; xo(3)=; xo(4)=-(528/36)*5; for i1=1:nk2 k2=k2t(i1) ; P.k2=k2; [t,x]=ode45(@(t,x)carcrash1(t,x,p),t,xo); y=x(:,1)-x(:,3); ymax(i1)=max(abs(y)); f=(-k2*(x(:,3)-x(:,1))-c2*(x(:,4)-x(:,2))); fmax(i1)=max(abs(f)); end subplot(2,1,1); plot(k2t,ymax*12) title('maximum Occupant Displacement Versus Seatbelt Stiffness') ylabel('displacement (in)'); subplot(2,1,2); plot(k2t/1,fmax) ylabel('force (lb)'); xlabel('seatbelt Stiffness (klb/ft)')

9 Force (lb) Displacement (in) 6 Maximum Occupant Displacement Versus Seatbelt Stiffness x Seatbelt Stiffness (klb/ft)

10

11 clear all; close all; clc; Gantry Control Problem N=5; tend=1; t=linspace(,tend,n); dt=t(2)-t(1); ICS (first set are for linear problem, second set are for nonlinear problem xo(1)=; xo(2)=; xo(3)=xo(1); xo(4)=xo(2); System Parameters- Uncompensated system P.m=2/32.2; P.d=2; P.g=32.2; P.cT=3; P.Io=P.m*P.d^2;P.T=1;P.a=5; P.kp=; P.kd=; wn=sqrt((p.m*p.g*p.d)/p.io) ; z=p.ct/(2*sqrt(p.io*p.m*p.g*p.d)); Mp=1*exp(-pi*z*sqrt(1-z^2)); ts=1/(z*wn); Control gains for compensated system wn=1 ; z=.7; P.kp=(P.Io*wn^2)/(P.m*P.d)-P.g; P.kd=(P.Io/(P.m*P.d))*(2*z*wn-(P.cT/P.Io)); Mp=1*exp(-pi*z*sqrt(1-z^2)); ts=1/(z*wn); [t,x]=ode45(@(t,x) gantry(t,x,p),t,xo); subplot(2,1,1) ; plot(t,x(:,1)*(18/pi),t,x(:,3)*(18/pi)) xg=(1/2)*p.a*p.t^2; vg=p.a*p.t; title([' Accel Time=',num2str(P.T),' sec,',... ' Accel Dist=',num2str(xg),' ft,',... ' Vel After Accel=',num2str(vg),' ft/sec']) axis([ tend -1*12 1*12]); legend('x1','x3'); ylabel('angular Displacement (deg)'); grid on; xg=(1/2)*p.a*p.t^2; subplot(2,1,2);plot(t,x(:,2)*(18/pi),t,x(:,4)*(18/pi)) title([' wn=',num2str(wn),' rad/sec,',... ' z=', num2str(z),... ' kp=', num2str(p.kp),... ' kd=', num2str(p.kd),... ' Mp=', num2str(mp),... ' ts=',num2str(ts),' sec']) xlabel('time (sec)'); ylabel('angular Velocity (deg/sec)'); grid on;

12 function xdot=gantry(t,x,p) x1= Vehicle position x2= Vehicle velocity x3= Occupant position (nonlinear) x4= Occupant velocity (nonlinear) Define the parameters m=p.m; d=p.d; g=p.g; ct=p.ct; Io=P.Io;T=P.T;kp=P.kp;kd=P.kd; Define the input if (t < T) a=p.a; u=; else a=; u=kp*x(1)+kd*x(2); end Define the state equations xdot(1)=x(2); xdot(2)=(1/io)*(-m*g*d*sin(x(1))-ct*x(2)-p.m*p.d*(a+u)); xdot(3)=x(4); xdot(4)=(1/io)*(-m*g*d*x(3)-ct*x(4)-p.m*p.d*(a+u)); xdot = xdot' ;

13 Angular Velocity (deg/sec) Angular Displacement (deg) Angular Velocity (deg/sec) Angular Displacement (deg) 1 Accel Time=1 sec, Accel Dist=2.5 ft, Vel After Accel=5 ft/sec wn=4.125 rad/sec, z=.1547 kp= kd= Mp= ts= sec Time (sec) 5 Accel Time=1 sec, Accel Dist=2.5 ft, Vel After Accel=5 ft/sec wn=1 rad/sec, z=.7 kp=167.8 kd= Mp= ts= sec Time (sec)

Simulation, Transfer Function

Simulation, Transfer Function Max Force (lb) Displacement (in) 1 ME313 Homework #12 Simulation, Transfer Function Last Updated November 17, 214. Repeat the car-crash problem from HW#6. Use the Matlab function lsim with ABCD format

More information

State Space Representation

State Space Representation ME Homework #6 State Space Representation Last Updated September 6 6. From the homework problems on the following pages 5. 5. 5.6 5.7. 5.6 Chapter 5 Homework Problems 5.6. Simulation of Linear and Nonlinear

More information

Feedback Control Systems

Feedback Control Systems ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems- attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model

More information

System simulation using Matlab, state plane plots

System simulation using Matlab, state plane plots System simulation using Matlab, state plane plots his lab is mainly concerned with making state plane (also referred to as phase plane ) plots for various linear and nonlinear systems with two states he

More information

Lab 4 Numerical simulation of a crane

Lab 4 Numerical simulation of a crane Lab 4 Numerical simulation of a crane Agenda Time 10 min Item Review agenda Introduce the crane problem 95 min Lab activity I ll try to give you a 5- minute warning before the end of the lab period to

More information

ECE-320: Linear Control Systems Homework 8. 1) For one of the rectilinear systems in lab, I found the following state variable representations:

ECE-320: Linear Control Systems Homework 8. 1) For one of the rectilinear systems in lab, I found the following state variable representations: ECE-30: Linear Control Systems Homework 8 Due: Thursday May 6, 00 at the beginning of class ) For one of the rectilinear systems in lab, I found the following state variable representations: 0 0 q q+ 74.805.6469

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Torque and Simple Harmonic Motion

Torque and Simple Harmonic Motion Torque and Simple Harmonic Motion Recall: Fixed Axis Rotation Angle variable Angular velocity Angular acceleration Mass element Radius of orbit Kinematics!! " d# / dt! " d 2 # / dt 2!m i Moment of inertia

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum Kater s Pendulum The Compound Pendulum A compound pendulum is the term that generally refers to an arbitrary lamina that is allowed to oscillate about a point located some distance from the lamina s center

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

ENGR220 Dynamics. Final Exam

ENGR220 Dynamics. Final Exam Spring Semester 2006 1 ENGR220 Dynamics Final Exam Instructions: 110 minutes to complete. Closed-book, 4 exam reference sheets allowed. Turn computations and exam in to instructor at the end of the exam

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

Time Response of Dynamic Systems! Multi-Dimensional Trajectories Position, velocity, and acceleration are vectors

Time Response of Dynamic Systems! Multi-Dimensional Trajectories Position, velocity, and acceleration are vectors Time Response of Dynamic Systems Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 217 Multi-dimensional trajectories Numerical integration Linear and nonlinear systems Linearization

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil

More information

Simple Harmonic Motion

Simple Harmonic Motion Chapter 9 Simple Harmonic Motion In This Chapter: Restoring Force Elastic Potential Energy Simple Harmonic Motion Period and Frequency Displacement, Velocity, and Acceleration Pendulums Restoring Force

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Lab 6a: Pole Placement for the Inverted Pendulum

Lab 6a: Pole Placement for the Inverted Pendulum Lab 6a: Pole Placement for the Inverted Pendulum Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the Panta Rei, and she guessed it was the Pendulum

More information

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) = ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Lab 5a: Pole Placement for the Inverted Pendulum

Lab 5a: Pole Placement for the Inverted Pendulum Lab 5a: Pole Placement for the Inverted Pendulum November 1, 2011 1 Purpose The objective of this lab is to achieve simultaneous control of both the angular position of the pendulum and horizontal position

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

Kinetics of Particles

Kinetics of Particles Kinetics of Particles A- Force, Mass, and Acceleration Newton s Second Law of Motion: Kinetics is a branch of dynamics that deals with the relationship between the change in motion of a body and the forces

More information

Final Examination Thursday May Please initial the statement below to show that you have read it

Final Examination Thursday May Please initial the statement below to show that you have read it EN40: Dynamics and Vibrations Final Examination Thursday May 0 010 Division of Engineering rown University NME: General Instructions No collaboration of any kind is permitted on this examination. You may

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

The IDA-PBC Methodology Applied to a Gantry Crane

The IDA-PBC Methodology Applied to a Gantry Crane Outline Methodology Applied to a Gantry Crane Ravi Banavar 1 Faruk Kazi 1 Romeo Ortega 2 N. S. Manjarekar 1 1 Systems and Control Engineering IIT Bombay 2 Supelec Gif-sur-Yvette, France MTNS, Kyoto, 2006

More information

PHYSICS 211 LAB #8: Periodic Motion

PHYSICS 211 LAB #8: Periodic Motion PHYSICS 211 LAB #8: Periodic Motion A Lab Consisting of 6 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

Inverted Pendulum System

Inverted Pendulum System Introduction Inverted Pendulum System This lab experiment consists of two experimental procedures, each with sub parts. Experiment 1 is used to determine the system parameters needed to implement a controller.

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-1: SIMPLE HARMONIC MOTION LSN 11-: ENERGY IN THE SIMPLE HARMONIC OSCILLATOR LSN 11-3: PERIOD AND THE SINUSOIDAL NATURE OF SHM Introductory Video:

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

The area under the velocity/time curve is equal to the total change in displacement

The area under the velocity/time curve is equal to the total change in displacement Mousetrap.car.notes.problems Topics that will be studied with mousetrap cars are: motion in one dimension under constant acceleration torque and its relationship to angular and linear acceleration angular

More information

16.07 Dynamics. Problem Set 10

16.07 Dynamics. Problem Set 10 NAME :..................... Massachusetts Institute of Technology 16.07 Dynamics Problem Set 10 Out date: Nov. 7, 2007 Due date: Nov. 14, 2007 Problem 1 Problem 2 Problem 3 Problem 4 Study Time Time Spent

More information

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1 Appendix W Dynamic Models W.2 4 Complex Mechanical Systems W.2.1 Translational and Rotational Systems In some cases, mechanical systems contain both translational and rotational portions. The procedure

More information

Problem Set 9: Momentum and Collision Theory. Nov 1 Hour One: Conservation Laws: Momentum and Collision Theory. Reading: YF

Problem Set 9: Momentum and Collision Theory. Nov 1 Hour One: Conservation Laws: Momentum and Collision Theory. Reading: YF MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 9: Momentum and Collision Theory Available on-line October 29; Due: November 9 at 4:00 p.m. Please write

More information

MECHANICS LAB AM 317 EXP 8 FREE VIBRATION OF COUPLED PENDULUMS

MECHANICS LAB AM 317 EXP 8 FREE VIBRATION OF COUPLED PENDULUMS MECHANICS LAB AM 37 EXP 8 FREE VIBRATIN F CUPLED PENDULUMS I. BJECTIVES I. To observe the normal modes of oscillation of a two degree-of-freedom system. I. To determine the natural frequencies and mode

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I (A short report is required for this lab. Just fill in the worksheet, make the graphs, and provide answers to the questions. Be sure to include

More information

Final Examination Thursday May Please initial the statement below to show that you have read it

Final Examination Thursday May Please initial the statement below to show that you have read it EN40: Dynamics and Vibrations Final Examination Thursday May 0 010 Division of Engineering rown University NME: General Instructions No collaboration of any kind is permitted on this examination. You may

More information

MEAM 510 Fall 2012 Bruce D. Kothmann

MEAM 510 Fall 2012 Bruce D. Kothmann Balancing g Robot Control MEAM 510 Fall 2012 Bruce D. Kothmann Agenda Bruce s Controls Resume Simple Mechanics (Statics & Dynamics) of the Balancing Robot Basic Ideas About Feedback & Stability Effects

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8-kg block attached to a spring executes simple harmonic motion on a frictionless

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

Problem Solving Session 10 Simple Harmonic Oscillator Solutions

Problem Solving Session 10 Simple Harmonic Oscillator Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Problem Solving Session 10 Simple Harmonic Oscillator Solutions W13D3-0 Group Problem Gravitational Simple Harmonic Oscillator Two identical

More information

Ch 3.7: Mechanical & Electrical Vibrations

Ch 3.7: Mechanical & Electrical Vibrations Ch 3.7: Mechanical & Electrical Vibrations Two important areas of application for second order linear equations with constant coefficients are in modeling mechanical and electrical oscillations. We will

More information

Topic # Feedback Control

Topic # Feedback Control Topic #7 16.31 Feedback Control State-Space Systems What are state-space models? Why should we use them? How are they related to the transfer functions used in classical control design and how do we develop

More information

Prob. 1 SDOF Structure subjected to Ground Shaking

Prob. 1 SDOF Structure subjected to Ground Shaking Prob. 1 SDOF Structure subjected to Ground Shaking What is the maximum relative displacement and the amplitude of the total displacement of a SDOF structure subjected to ground shaking? magnitude of ground

More information

THE REACTION WHEEL PENDULUM

THE REACTION WHEEL PENDULUM THE REACTION WHEEL PENDULUM By Ana Navarro Yu-Han Sun Final Report for ECE 486, Control Systems, Fall 2013 TA: Dan Soberal 16 December 2013 Thursday 3-6pm Contents 1. Introduction... 1 1.1 Sensors (Encoders)...

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

Thursday March 30 Topics for this Lecture: Simple Harmonic Motion Kinetic & Potential Energy Pendulum systems Resonances & Damping.

Thursday March 30 Topics for this Lecture: Simple Harmonic Motion Kinetic & Potential Energy Pendulum systems Resonances & Damping. Thursday March 30 Topics for this Lecture: Simple Harmonic Motion Kinetic & Potential Energy Pendulum systems Resonances & Damping Assignment 11 due Friday Pre-class due 15min before class Help Room: Here,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 3: Newton's Laws of Motion, Motion: Force, Mass, and Acceleration, Vectors in Physics Solutions Problem

More information

Solution Derivations for Capa #12

Solution Derivations for Capa #12 Solution Derivations for Capa #12 1) A hoop of radius 0.200 m and mass 0.460 kg, is suspended by a point on it s perimeter as shown in the figure. If the hoop is allowed to oscillate side to side as a

More information

Energy and the Simple Harmonic Oscillator

Energy and the Simple Harmonic Oscillator OpenStax-CNX module: m42244 Energy and the Simple Harmonic Oscillator OpenStax College his wor is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Determine

More information

Digital Pendulum Control Experiments

Digital Pendulum Control Experiments EE-341L CONTROL SYSTEMS LAB 2013 Digital Pendulum Control Experiments Ahmed Zia Sheikh 2010030 M. Salman Khalid 2010235 Suleman Belal Kazi 2010341 TABLE OF CONTENTS ABSTRACT...2 PENDULUM OVERVIEW...3 EXERCISE

More information

MEAM 510 Fall 2011 Bruce D. Kothmann

MEAM 510 Fall 2011 Bruce D. Kothmann Balancing g Robot Control MEAM 510 Fall 2011 Bruce D. Kothmann Agenda Bruce s Controls Resume Simple Mechanics (Statics & Dynamics) of the Balancing Robot Basic Ideas About Feedback & Stability Effects

More information

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication

More information

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109, Class Period 13 Experiment Number 11 in the Physics 121 Lab Manual (page 65) Outline Simple harmonic motion The vertical mass-spring

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

Automatic Control EEE 2002 Tutorial Exercise IV

Automatic Control EEE 2002 Tutorial Exercise IV Automatic Control EEE Tutorial Exercise IV k A second order system is given by G() s =. as + bs + c k'. Write the transfer function as: G() s =. s + ζω ns + ωn () G s = as k = + bs + c s + k / a b s a

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1] ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

More information

Belt Tension Clamp. Drive Motor. Friction Brake. Load. Encoder 2. Drive. (4000 lines/rev incremental) Encoder 1. (4000 lines/rev incremental)

Belt Tension Clamp. Drive Motor. Friction Brake. Load. Encoder 2. Drive. (4000 lines/rev incremental) Encoder 1. (4000 lines/rev incremental) Industrial Servo System Introduction The first part this lab is to investigate how the dynamic response of a closed-loop system can be used to determine the mass moment of inertia of a model industrial

More information

MEM04: Rotary Inverted Pendulum

MEM04: Rotary Inverted Pendulum MEM4: Rotary Inverted Pendulum Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 April 8, 7 Contents Overview. Configure ELVIS and DC Motor................................ Goals..............................................3

More information

Mechatronics Assignment # 1

Mechatronics Assignment # 1 Problem # 1 Consider a closed-loop, rotary, speed-control system with a proportional controller K p, as shown below. The inertia of the rotor is J. The damping coefficient B in mechanical systems is usually

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Tenth Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Tenth Edition CHAPTER Tenth E CHAPTER 7 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California State Polytechnic University Plane Motion

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

CHAPTER 12 TIME DOMAIN: MODAL STATE SPACE FORM

CHAPTER 12 TIME DOMAIN: MODAL STATE SPACE FORM CHAPTER 1 TIME DOMAIN: MODAL STATE SPACE FORM 1.1 Introduction In Chapter 7 we derived the equations of motion in modal form for the system in Figure 1.1. In this chapter we will convert the modal form

More information

LAST TIME: Simple Pendulum:

LAST TIME: Simple Pendulum: LAST TIME: Simple Pendulum: The displacement from equilibrium, x is the arclength s = L. s / L x / L Accelerating & Restoring Force in the tangential direction, taking cw as positive initial displacement

More information

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating, trigonometry,

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Copyright 2010 Pearson Education, Inc. Force and Mass Copyright 2010 Pearson Education, Inc. Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

Problem 1 Matlab code

Problem 1 Matlab code Problem 1 Matlab code x=[.5377 1.8339-2.2588.8622.3188-1.377 -.4336.3426 3.5784 2.7694-1.3499 3.349.7254 -.631.7147 -.25]; X=fft(x) fs=1;n=16;dt=1/fs;t=n*dt; f=[ 1/T 2/T 3/T 4/T 5/T 6/T 7/T 8/T]' N=16

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

INSTRUCTIONS TO CANDIDATES:

INSTRUCTIONS TO CANDIDATES: NATIONAL NIVERSITY OF SINGAPORE FINAL EXAMINATION FOR THE DEGREE OF B.ENG ME 444 - DYNAMICS AND CONTROL OF ROBOTIC SYSTEMS October/November 994 - Time Allowed: 3 Hours INSTRCTIONS TO CANDIDATES:. This

More information

Table of Contents 1.0 OBJECTIVE APPARATUS PROCEDURE LAB PREP WORK POLE-PLACEMENT DESIGN

Table of Contents 1.0 OBJECTIVE APPARATUS PROCEDURE LAB PREP WORK POLE-PLACEMENT DESIGN LAB 4 ENGI 38: ADVANCED CONTROLS -------------------------------------------------------------------- Lab Partners: (Alphabetically) Figliomeni, Dan Malyshev, Andrey McGrath, Adam TO: WARREN PAJU ELECTRICAL

More information

Linear System Theory

Linear System Theory Linear System Theory - MATLAB Exercise Prof. Robert X. Gao Electromechanical Systems Laboratory Department of Mechanical Engineering Outline Review System Modeling Procedure Example Simple Problem Example

More information

557. Radial correction controllers of gyroscopic stabilizer

557. Radial correction controllers of gyroscopic stabilizer 557. Radial correction controllers of gyroscopic stabilizer M. Sivčák 1, J. Škoda, Technical University in Liberec, Studentská, Liberec, Czech Republic e-mail: 1 michal.sivcak@tul.cz; jan.skoda@pevnosti.cz

More information

9.6 - Energy and the Simple Harmonic Oscillator *

9.6 - Energy and the Simple Harmonic Oscillator * OpenStax-CNX module: m6040 9.6 - Energy and the Simple Harmonic Oscillator * Albert Hall Based on Energy and the Simple Harmonic Oscillator by OpenStax his wor is produced by OpenStax-CNX and licensed

More information

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion: Chapter 14 Oscillations Oscillations Introductory Terminology Simple Harmonic Motion: Kinematics Energy Examples of Simple Harmonic Oscillators Damped and Forced Oscillations. Resonance. Periodic Motion

More information

Matlab Sheet 3 - Solution. Plotting in Matlab

Matlab Sheet 3 - Solution. Plotting in Matlab f(x) Faculty of Engineering Spring 217 Mechanical Engineering Department Matlab Sheet 3 - Solution Plotting in Matlab 1. a. Estimate the roots of the following equation by plotting the equation. x 3 3x

More information

Wheel and Axle. Author: Joseph Harrison. Research Ans Aerospace Engineering 1 Expert, Monash University

Wheel and Axle. Author: Joseph Harrison. Research Ans Aerospace Engineering 1 Expert, Monash University Wheel and Axle Author: Joseph Harrison British Middle-East Center for studies & Research info@bmcsr.com http:// bmcsr.com Research Ans Aerospace Engineering 1 Expert, Monash University Introduction A solid

More information

Main Ideas in Class Today

Main Ideas in Class Today 2/4/17 Test Wed, Feb 8th 7pm, G24 Eiesland Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating,

More information

Factors Limiting Controlling of an Inverted Pendulum

Factors Limiting Controlling of an Inverted Pendulum Acta Polytechnica Hungarica Vol. 8, No. 4, 11 Factors Limiting Controlling of an nverted Pendulum Tobiáš Lazar, Peter Pástor Department of Avionics Faculty of Aeronautics Technical University of Košice

More information

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly PH1140 D09 Homework 3 Solution 1. [30] Y&F 13.48. a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly T = π L =.84 s. g b) For the displacement θ max = 30 = 0.54 rad we use

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

ECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University

ECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University ECEn 483 / ME 431 Case Studies Randal W. Beard Brigham Young University Updated: December 2, 2014 ii Contents 1 Single Link Robot Arm 1 2 Pendulum on a Cart 9 3 Satellite Attitude Control 17 4 UUV Roll

More information

Oscillations. Tacoma Narrow Bridge: Example of Torsional Oscillation

Oscillations. Tacoma Narrow Bridge: Example of Torsional Oscillation Oscillations Mechanical Mass-spring system nd order differential eq. Energy tossing between mass (kinetic energy) and spring (potential energy) Effect of friction, critical damping (shock absorber) Simple

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall Physics 231 Topic 7: Oscillations Alex Brown October 14-19 2015 MSU Physics 231 Fall 2015 1 Key Concepts: Springs and Oscillations Springs Periodic Motion Frequency & Period Simple Harmonic Motion (SHM)

More information

Physics Curriculum Map

Physics Curriculum Map 1 Kinematics Distance vs Displacement Vector Quantities The Meter Velocity and Speed Acceleration Final Velocity of a distance traveled by an object at constant acceleration Safety Lab Make your own measuring

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

CHAPTER 6 STATE SPACE: FREQUENCY RESPONSE, TIME DOMAIN

CHAPTER 6 STATE SPACE: FREQUENCY RESPONSE, TIME DOMAIN CHAPTER 6 STATE SPACE: FREQUENCY RESPONSE, TIME DOMAIN 6. Introduction Frequency Response This chapter will begin with the state space form of the equations of motion. We will use Laplace transforms to

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

Matlab-Based Tools for Analysis and Control of Inverted Pendula Systems

Matlab-Based Tools for Analysis and Control of Inverted Pendula Systems Matlab-Based Tools for Analysis and Control of Inverted Pendula Systems Slávka Jadlovská, Ján Sarnovský Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic sjadlovska@gmail.com,

More information