Matlab Sheet 3 - Solution. Plotting in Matlab

Size: px
Start display at page:

Download "Matlab Sheet 3 - Solution. Plotting in Matlab"

Transcription

1 f(x) Faculty of Engineering Spring 217 Mechanical Engineering Department Matlab Sheet 3 - Solution Plotting in Matlab 1. a. Estimate the roots of the following equation by plotting the equation. x 3 3x 2 + 5x sin ( πx 4 5π 4 ) + 3 = b. Use the estimates found in part a to find the roots more accurately with the fzero function. row clc; clear;clf x = (-2:.1:4); y=x.^3-3*x.^2+5*x.*sin(pi*x/4-5*pi/4)+3; plot(x,y) xlabel('x'),ylabel('f(x)'),grid z=fzero('x.^3-3*x.^2+5*x.*sin(pi*x/4-5*pi/4)+3',3.8) From the plot with either method we can estimate the roots to be x =.5, 1.1, and 3.8. b) Then use the fzero function as follows, for the point x = 3.8. Repeating these steps for the estimates at.5 and 1.1, all of these methods give the roots x =.4795, , and In Command Window: z = x Dr./ Ahmed Nagib Elmekawy 1 of 21 Matlab Sheet 3 Solution

2 Force (Newtons) Faculty of Engineering Spring 217 Mechanical Engineering Department 2. Plot columns 2 and 3 of the following matrix A versus column 1. The data in column 1 are time (seconds). The data in columns 2 and 3 are force (newtons). A = [,-7,6;5,-4,3;1,-1,9;15,1,;2,2,-1]; plot(a(:,1),a(:,2:3)) xlabel('time (seconds)'), ylabel('force (Newtons)') gtext('column 1'),gtext('Column 2') Column Column Time (seconds) Dr./ Ahmed Nagib Elmekawy 2 of 21 Matlab Sheet 3 Solution

3 Percent Error x and sin(x) Error: sin(x) - x Faculty of Engineering Spring 217 Mechanical Engineering Department 3. Many applications use the following small angle approximation for the sine to obtain a simpler model that is easy to understand and analyze. This approximation states that sin x x, where x must be in radians. Investigate the accuracy of this approximation by creating three plots. For the first, plot sin x and x versus x for x 1. For the second, plot the approximation error sin x - x versus x for x 1. For the third, plot the relative error [sin(x) - x]/sin(x) versus x for x 1. How small must x be for the approximation to be accurate within 5 percent? x = :.1:1; subplot(2,2,1) plot(x,sin(x),x,x) xlabel('x (radians)'),ylabel('x and sin(x)') gtext('x'),gtext('sin(x)') subplot(2,2,2) plot(x,abs(sin(x)-x)) xlabel('x (radians)'),ylabel('error: sin(x) - x') subplot(2,2,3) plot(x,abs(1*(sin(x)-x))./sin(x)),xlabel('x (radians)'),... ylabel('percent Error'),grid 1.5 x sin(x) x (radians).5 1 x (radians) x (radians) Dr./ Ahmed Nagib Elmekawy 3 of 21 Matlab Sheet 3 Solution

4 Left and Right Sides Faculty of Engineering Spring 217 Mechanical Engineering Department 4. You can use trigonometric identities to simplify the equations that appear in many applications. Confirm the identity tan(2x) = 2 tan x/(1 - tan 2 x) by plotting both the left and the right sides versus x over the range x 2π. x =:.1:2*pi; left = tan(2*x); right = 2*tan(x)./(1-tan(x).^2); plot(x,left,'-rs',x,right) xlabel('x (radians)') ylabel('left and Right Sides') legend('left','right','location', 'best') Left Right x (radians) Dr./ Ahmed Nagib Elmekawy 4 of 21 Matlab Sheet 3 Solution

5 x(t), y(t) Faculty of Engineering Spring 217 Mechanical Engineering Department 5. The following functions describe the oscillations in electric circuits and the vibrations of machines and structures. Plot these functions on the same plot. Because they are similar, decide how best to plot and label them to avoid confusion. x(t) = 1 e.5t sin(3t + 2) y(t) = 7 e.4t cos(5t 3) t = :.2:1; x = 1*exp(-.5*t).*sin(3*t+2); y = 7*exp(-.4*t).*cos(5*t-3); plot(t,x,t,y,':') xlabel('t'),ylabel('x(t), y(t)') legend('x(t)','y(t)') 1 8 x(t) y(t) t Dr./ Ahmed Nagib Elmekawy 5 of 21 Matlab Sheet 3 Solution

6 Displacement y (Inches) Faculty of Engineering Spring 217 Mechanical Engineering Department 6. In certain kinds of structural vibrations, a periodic force acting on the structure will cause the vibration amplitude to repeatedly increase and decrease with time. This phenomenon, called beating, also occurs in musical sounds. A particular structure s displacement is described by y(t) = 1 f 1 2 f 2 2 [cos(f 2t) cos(f 1 t)] where y is the displacement in mm and t is the time in seconds. Plot y versus t over the range t 2 for f 1 = 8 rad/sec andf 2 = 1 rad/sec. Be sure to choose enough points to obtain an accurate plot. t = :.2:2; y = (1/(64-1))*(cos(8*t)-cos(t)); plot(t,y) xlabel('t (seconds)') ylabel('displacement y (Inches)') t (seconds) Dr./ Ahmed Nagib Elmekawy 6 of 21 Matlab Sheet 3 Solution

7 Faculty of Engineering Spring 217 Mechanical Engineering Department 7. Oscillations in mechanical structures and electric circuits can often be t τ y(t) = e sin(ωt + φ) where t is time and ω is the oscillation frequency in radians per unit time. The oscillations have a period of 2π/ω, and their amplitudes decay in time at a rate determined by τ, which is called the time constant. The smaller τ is, the faster the oscillations die out. a. Use these facts to develop a criterion for choosing the spacing of the t values and the upper limit on t to obtain an accurate plot of y(t). (Hint: Consider two cases: 4τ > 2π ω and 4τ < 2π ω) b. Apply your criterion, and plot y(t) for τ = 1, ω = π and φ = 2. c. Apply your criterion, and plot y(t) for τ =.1, ω = π and φ = 2. % Part a t = :.2:4; y = exp(-t/1).*sin(pi*t+2); plot(t,y) xlabel('t'),ylabel('y') title('part a') %Part b figure(2) t2 = :.1:.4; y2 = exp(-t2/.1).*sin(8*pi*t2+2); plot(t2,y2) xlabel('t'),ylabel('y') title('part b') Dr./ Ahmed Nagib Elmekawy 7 of 21 Matlab Sheet 3 Solution

8 y y Faculty of Engineering Spring 217 Mechanical Engineering Department s: 1 Part a t 1 Part b t Dr./ Ahmed Nagib Elmekawy 8 of 21 Matlab Sheet 3 Solution

9 Faculty of Engineering Spring 217 Mechanical Engineering Department 8. The vibrations of the body of a helicopter due to the periodic force applied by the rotation of the rotor can be modeled by a frictionless spring-mass-damper system subjected to an external periodic force. The position x(t) of the mass is given by the equation: x(t) = 2f o ω 3 n ω 3 sin (ω n ω 2 t) sin ( ω n + ω 2 where F(t) = F sin ωt, and f = F /m, ω is the frequency of the applied force, and ω n is the natural frequency of the helicopter. When the value of ω is close to the value of ω n, the vibration consists of fast oscillation with slowly changing amplitude called beat. Use f = 12 N/kg, ω n =1 rad/s, and ω=12 rad/s to plot x(t) as a function of t for t 1 s. t) clc; clear;clf f=12; wn=1; w=12; t=:.1:1; x=2*f/(wn^3-w^3)*sin((wn-w)*t/2).*... sin((wn+w)*t/2) plot(t,x) title('helicopter Body Vibrations') xlabel('time, s') ylabel('displacement, m') Dr./ Ahmed Nagib Elmekawy 9 of 21 Matlab Sheet 3 Solution

10 Displacement, m Faculty of Engineering Spring 217 Mechanical Engineering Department.4 Helicopter Body Vibrations Time, s Dr./ Ahmed Nagib Elmekawy 1 of 21 Matlab Sheet 3 Solution

11 Faculty of Engineering Spring 217 Mechanical Engineering Department 9. A railroad bumper is designed to slow down a rapidly moving railroad car. After a 2, kg railroad car traveling at 2 m/s engages the bumper, its displacement x (in meters) and velocity v (in m/s) as a function of time t (in seconds) is given by: Plot the displacement and the velocity as a function of time for t 4 s. Make two plots on one page. t=:.1:4; x=4.219*(exp(-1.58*t)-exp(-6.32*t)); v=26.67*exp(-6.32*t)-6.67*exp(-1.58*t); subplot(2,1,1) plot(t,x) title('railroad Bumper Response') ylabel('position, m') subplot(2,1,2) plot(t,v) ylabel('speed, m/s') xlabel('time, s') Dr./ Ahmed Nagib Elmekawy 11 of 21 Matlab Sheet 3 Solution

12 Speed, m/s Position, m Faculty of Engineering Spring 217 Mechanical Engineering Department 2 Railroad Bumper Response Time, s Dr./ Ahmed Nagib Elmekawy 12 of 21 Matlab Sheet 3 Solution

13 Faculty of Engineering Spring 217 Mechanical Engineering Department 1. The curvilinear motion of a particle is defined by the following parametric equations: The velocity of the particle is given by, where v x = dx dt and v y = dy dt. x = 52t 9t 2 m and y = 125t 5t 2 m v = v x 2 + v y 2 For t 5 s make one plot that shows the position of the particle (y versus x), and a second plot (on the same page) of the velocity of the particle as a function of time. In addition, by using MATLAB s min function, determine the time at which the velocity is the lowest, and the corresponding position of the particle. Using an asterisk marker, show the position of the particle in the first plot. For time use a vector with spacing of.1 s. t=:.1:5; x=52*t-9*t.^2; y=125-5*t.^2; vx=52-18*t; vy=-1*t; v=sqrt(vx.^2+vy.^2); [vmin indx]=min(v); tmin=t(indx); subplot(2,1,1) plot(x,y,x(indx),y(indx),'*') title('particle Dynamics') xlabel('x(m)') Dr./ Ahmed Nagib Elmekawy 13 of 21 Matlab Sheet 3 Solution

14 speed(m/s) y(m) Faculty of Engineering Spring 217 Mechanical Engineering Department ylabel('y(m)') text(4,8,['time of min speed = ',... num2str(tmin,'%.1f'),' s']) subplot(2,1,2) plot(t,v) xlabel('time(s)') ylabel('speed(m/s)') 15 Particle Dynamics 1 5 time of min speed = 2.2 s x(m) time(s) Dr./ Ahmed Nagib Elmekawy 14 of 21 Matlab Sheet 3 Solution

15 speed(m/s) Faculty of Engineering Spring 217 Mechanical Engineering Department 11. The demand for water during a fire is often the most important factor in the design of distribution storage tanks and pumps. For communities with populations less than 2,, the demand Q (in gallons/min) can be calculated by: where P is the population in thousands. Plot the water demand Q as a function of the population P (in thousands) for P 2. Label the axes and provide a title for the plot. P=:2; Q=12*sqrt(P).*(1-.1*sqrt(P)); plot(p,q) title('small Community Fire Fighting Water Needs') xlabel('population, Thousands') ylabel('water Demand, gal/min') ylabel('speed(m/s)') 14 Small Community Fire Fighting Water Needs Population, Thousands Dr./ Ahmed Nagib Elmekawy 15 of 21 Matlab Sheet 3 Solution

16 Faculty of Engineering Spring 217 Mechanical Engineering Department 12. A In a typical tension test a dog bone shaped specimen is pulled in a machine. During the test, the force F needed to pull the specimen and the length L of a gauge section are measured. This data is used for plotting a stress-strain diagram of the material. Two definitions, engineering and true, exist for stress and strain. The engineering stress and strain are defined by σ e = F A and ε e = L L o L o where L o and A o are the initial gauge length and the initial cross-sectional area of the specimen, respectively. The true stress σ t and strain ε t are defined by σ t = F and ε A L t = ln L. o L o L The following are measurements of force and gauge length from a tension test with an aluminum specimen. The specimen has a round cross section with radius 6.4 mm (before the test). The initial gauge length is L o =25 mm. Use the data to calculate and generate the engineering and true stress-strain curves, both on the same plot. Label the axes and use a legend to identify the curves. Units: When the force is measured in newtons (N) and the area is calculated in m 2, the unit of the stress is pascals (Pa). L=.254; r=.64; A=pi*r^2; F=[ ]; L=[ ]/1; sigmae=f/a; ee=(l-l)/l; sigmat=f.*l/(a*l); et=log(l/l); Dr./ Ahmed Nagib Elmekawy 16 of 21 Matlab Sheet 3 Solution

17 Stress, Pa Faculty of Engineering Spring 217 Mechanical Engineering Department plot(ee,sigmae,et,sigmat,'--') title('stress-strain Definitions') legend('engineering','true','location','southeast') xlabel('strain') ylabel('stress, Pa') 3.5 x 18 Stress-Strain Definitions Engineering True Strain Dr./ Ahmed Nagib Elmekawy 17 of 21 Matlab Sheet 3 Solution

18 Height, m Faculty of Engineering Spring 217 Mechanical Engineering Department 13. The shape of a symmetrical four-digit NACA airfoil is described by the equation where c is the cord length and t is the maximum thickness as a fraction of the cord length ( tc= maximum thickness). Symmetrical four-digit NACA airfoils are designated NACA XX, where XX is 1t (i.e., NACA 12 has t=.12 ). Plot the shape of a NACA 2 airfoil with a cord length of 1.5 m. t=.2; c=1.5; xc=:.1:1; y1=t*c/.2*(.2969*sqrt(xc)-.126*xc *xc.^ *xc.^3-.115*xc.^4); y2=-y1; plot(xc*c,y1,xc*c,y2) axis equal title('naca 2 Airfoil') xlabel('width, m') ylabel('height, m') NACA 2 Airfoil Width, m Dr./ Ahmed Nagib Elmekawy 18 of 21 Matlab Sheet 3 Solution

19 Faculty of Engineering Spring 217 Mechanical Engineering Department 14. The position as a function of time of a squirrel running on a grass field is given in polar coordinates by: Plot the trajectory (position) of the squirrel for t 2 s. clc; clear;clf t=:.1:2; r=25+3*(1-exp(sin(.7*t))); theta=2*pi*(1-exp(-.2*t)); polar(theta,r) title('squirrel Trajectory (m)') Squirrel Trajectory (m) Dr./ Ahmed Nagib Elmekawy 19 of 21 Matlab Sheet 3 Solution

20 y z Faculty of Engineering Spring 217 Mechanical Engineering Department 15. Obtain the surface and contour plots for the function showing the minimum at x = y =. z = x 2 2xy + 4y 2 [X,Y] = meshgrid(-4:.4:4); Z = X.^2-2*X.*Y+4*Y.^2; subplot(2,1,1) mesh(x,y,z) xlabel('x'),ylabel('y') zlabel('z'),grid subplot(2,1,2) contour(x,y,z),xlabel('x'), ylabel('y') y x x Dr./ Ahmed Nagib Elmekawy 2 of 21 Matlab Sheet 3 Solution

21 y T Faculty of Engineering Spring 217 Mechanical Engineering Department 16. A square metal plate is heated to 8 C at the corner corresponding to x = y =1. The temperature distribution in the plate is described by T = 8 e (x 1)2 e 3(y 1)2 Obtain the surface and contour plots for the temperature. Label each axis. What is the temperature at the corner corresponding to x = y =? [X,Y] = meshgrid(:.1:1); T = 8*exp(-(X-1).^2).*exp(-3*(Y-1).^2); subplot(2,1,1) mesh(x,y,t) xlabel('x'),ylabel('y') zlabel('t'),grid subplot(2,1,2) contour(x,y,t) xlabel('x'), ylabel('y') T(1,1) In Command Window: ans = y.2 x x Dr./ Ahmed Nagib Elmekawy 21 of 21 Matlab Sheet 3 Solution

Matlab Sheet 3. Plotting in Matlab

Matlab Sheet 3. Plotting in Matlab Matlab Sheet 3 Plotting in Matlab 1. a. Estimate the roots of the following equation by plotting the equation. x 3 3x 2 + 5x sin ( πx 4 5π 4 ) + 3 = 0 b. Use the estimates found in part a to find the roots

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam MATH 51 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam A collection of previous exams could be found at the coordinator s web: http://www.math.psu.edu/tseng/class/m51samples.html

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

MA26600 FINAL EXAM INSTRUCTIONS December 13, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA26600 FINAL EXAM INSTRUCTIONS December 13, You must use a #2 pencil on the mark sense sheet (answer sheet). MA266 FINAL EXAM INSTRUCTIONS December 3, 2 NAME INSTRUCTOR. You must use a #2 pencil on the mark sense sheet (answer sheet). 2. On the mark-sense sheet, fill in the instructor s name (if you do not know,

More information

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations June 20 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations The topics covered in this exam can be found in An introduction to differential equations

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

Ordinary Differential equations

Ordinary Differential equations Chapter 1 Ordinary Differential equations 1.1 Introduction to Ordinary Differential equation In mathematics, an ordinary differential equation (ODE) is an equation which contains functions of only one

More information

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 You can work this exercise in either matlab or mathematica. Your choice. A simple harmonic oscillator is constructed from a mass m and a spring

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Chapter One Introduction to Oscillations

Chapter One Introduction to Oscillations Chapter One Introduction to Oscillations This chapter discusses simple oscillations. This chapter also discusses simple functions to model oscillations like the sine and cosine functions. Part One Sine

More information

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 1. AP Physics C Summer Homework NAME: Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 2. Fill in the radian conversion of each angle and the trigonometric

More information

Solving systems of first order equations with ode Systems of first order differential equations.

Solving systems of first order equations with ode Systems of first order differential equations. A M S 20 MA TLA B NO T E S U C S C Solving systems of first order equations with ode45 c 2015, Yonatan Katznelson The M A T L A B numerical solver, ode45 is designed to work with first order differential

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Traveling Harmonic Waves

Traveling Harmonic Waves Traveling Harmonic Waves 6 January 2016 PHYC 1290 Department of Physics and Atmospheric Science Functional Form for Traveling Waves We can show that traveling waves whose shape does not change with time

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed.

Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed. Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed. Part A: (SHORT ANSWER QUESTIONS) Do the following problems. Write the answer in the space provided. Only the answers

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

Waves Part 1: Travelling Waves

Waves Part 1: Travelling Waves Waves Part 1: Travelling Waves Last modified: 15/05/2018 Links Contents Travelling Waves Harmonic Waves Wavelength Period & Frequency Summary Example 1 Example 2 Example 3 Example 4 Transverse & Longitudinal

More information

Matlab Sheet 2. Arrays

Matlab Sheet 2. Arrays Matlab Sheet 2 Arrays 1. a. Create the vector x having 50 logarithmically spaced values starting at 10 and ending at 1000. b. Create the vector x having 20 logarithmically spaced values starting at 10

More information

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable.

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable. 1.1 Signals and Systems Signals convey information. Systems respond to (or process) information. Engineers desire mathematical models for signals and systems in order to solve design problems efficiently

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

More information

MATH1910Chapter2TestReview

MATH1910Chapter2TestReview Class: Date: MATH1910Chapter2TestReview Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the slope m of the line tangent to the graph of the function

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

Name: ID: Math 233 Exam 1. Page 1

Name: ID: Math 233 Exam 1. Page 1 Page 1 Name: ID: This exam has 20 multiple choice questions, worth 5 points each. You are allowed to use a scientific calculator and a 3 5 inch note card. 1. Which of the following pairs of vectors are

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Math Exam 02 Review

Math Exam 02 Review Math 10350 Exam 02 Review 1. A differentiable function g(t) is such that g(2) = 2, g (2) = 1, g (2) = 1/2. (a) If p(t) = g(t)e t2 find p (2) and p (2). (Ans: p (2) = 7e 4 ; p (2) = 28.5e 4 ) (b) If f(t)

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Homework 1 Solutions

Homework 1 Solutions 18-9 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 18 Homework 1 Solutions Part One 1. (8 points) Consider the DT signal given by the algorithm: x[] = 1 x[1] = x[n] = x[n 1] x[n ] (a) Plot

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

Dynamic Modeling. For the mechanical translational system shown in Figure 1, determine a set of first order

Dynamic Modeling. For the mechanical translational system shown in Figure 1, determine a set of first order QUESTION 1 For the mechanical translational system shown in, determine a set of first order differential equations describing the system dynamics. Identify the state variables and inputs. y(t) x(t) k m

More information

Vectors and Projectile Motion on the TI-89

Vectors and Projectile Motion on the TI-89 1 Vectors and Projectile Motion on the TI-89 David K. Pierce Tabor Academy Marion, Massachusetts 2738 dpierce@taboracademy.org (58) 748-2 ext. 2243 This paper will investigate various properties of projectile

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

Simulation, Transfer Function

Simulation, Transfer Function Max Force (lb) Displacement (in) 1 ME313 Homework #12 Simulation, Transfer Function Last Updated November 17, 214. Repeat the car-crash problem from HW#6. Use the Matlab function lsim with ABCD format

More information

Example force problems

Example force problems PH 105 / LeClair Fall 2015 Example force problems 1. An advertisement claims that a particular automobile can stop on a dime. What net force would actually be necessary to stop a 850 kg automobile traveling

More information

1. (10 points) Find the general solution to the following second-order differential equation:

1. (10 points) Find the general solution to the following second-order differential equation: Math 307A, Winter 014 Midterm Solutions Page 1 of 8 1. (10 points) Find the general solution to the following second-order differential equation: 4y 1y + 9y = 9t. To find the general solution to this nonhomogeneous

More information

PHYSICS ADMISSIONS TEST Thursday, 2 November Time allowed: 2 hours

PHYSICS ADMISSIONS TEST Thursday, 2 November Time allowed: 2 hours PHYSICS ADMISSIONS TEST Thursday, 2 November 2017 Time allowed: 2 hours For candidates applying to Physics, Physics and Philosophy, Engineering, or Materials Total 23 questions [100 Marks] Answers should

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

. CALCULUS AB. Name: Class: Date:

. CALCULUS AB. Name: Class: Date: Class: _ Date: _. CALCULUS AB SECTION I, Part A Time- 55 Minutes Number of questions -8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems, using

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

x gm 250 L 25 L min y gm min

x gm 250 L 25 L min y gm min Name NetID MATH 308 Exam 2 Spring 2009 Section 511 Hand Computations P. Yasskin Solutions 1 /10 4 /30 2 /10 5 /30 3 /10 6 /15 Total /105 1. (10 points) Tank X initially contains 250 L of sugar water with

More information

Lecture 6: Differential Equations Describing Vibrations

Lecture 6: Differential Equations Describing Vibrations Lecture 6: Differential Equations Describing Vibrations In Chapter 3 of the Benson textbook, we will look at how various types of musical instruments produce sound, focusing on issues like how the construction

More information

Virginia Tech Math 1226 : Past CTE problems

Virginia Tech Math 1226 : Past CTE problems Virginia Tech Math 16 : Past CTE problems 1. It requires 1 in-pounds of work to stretch a spring from its natural length of 1 in to a length of 1 in. How much additional work (in inch-pounds) is done in

More information

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) 8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) So far we have seen some different possibilities of what can happen in two-dimensional systems (local and global attractors and bifurcations)

More information

State Space Representation

State Space Representation ME Homework #6 State Space Representation Last Updated September 6 6. From the homework problems on the following pages 5. 5. 5.6 5.7. 5.6 Chapter 5 Homework Problems 5.6. Simulation of Linear and Nonlinear

More information

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS Differential Equations and Linear Algebra Exercises Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS CHAPTER 1 Linear second order ODEs Exercises 1.1. (*) 1 The following differential

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

Session 3. Question Answers

Session 3. Question Answers Session 3 Question Answers Question 1 Enter the example code and test the program. Try changing the step size 0.01 and see if you get a better results. The code for the example %Using Euler's method to

More information

FLUIDS Problem Set #3 SOLUTIONS 10/27/ v y = A A = 0. + w z. Y = C / x

FLUIDS Problem Set #3 SOLUTIONS 10/27/ v y = A A = 0. + w z. Y = C / x FLUIDS 2009 Problem Set #3 SOLUTIONS 10/27/2009 1.i. The flow is clearly incompressible because iu = u x + v y + w z = A A = 0 1.ii. The equation for a streamline is dy dx = Y. Guessing a solution of the

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2016/2017 ENGINEERING PRINCIPLES 2

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2016/2017 ENGINEERING PRINCIPLES 2 UNIVERSITY OF BOLTON OCD15 WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 016/017 ENGINEERING PRINCIPLES MODULE NO: AME4053 Date: Wednesday 4 May 017 Time:

More information

Chapter 16 Solutions

Chapter 16 Solutions Chapter 16 Solutions 16.1 Replace x by x vt = x 4.5t to get y = 6 [(x 4.5t) + 3] 16. y (c) y (c) y (c) 6 4 4 4 t = s t = 1 s t = 1.5 s 0 6 10 14 x 0 6 10 14 x 0 6 10 14 x y (c) y (c) 4 t =.5 s 4 t = 3

More information

Chapter 15 Oscillations

Chapter 15 Oscillations Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = -kx x SHM in vertical

More information

1) SIMPLE HARMONIC MOTION/OSCILLATIONS

1) SIMPLE HARMONIC MOTION/OSCILLATIONS 1) SIMPLE HARMONIC MOTION/OSCILLATIONS 1.1) OSCILLATIONS Introduction: - An event or motion that repeats itself at regular intervals is said to be periodic. Periodicity in Space is the regular appearance

More information

Ï ( ) Ì ÓÔ. Math 2413 FRsu11. Short Answer. 1. Complete the table and use the result to estimate the limit. lim x 3. x 2 16x+ 39

Ï ( ) Ì ÓÔ. Math 2413 FRsu11. Short Answer. 1. Complete the table and use the result to estimate the limit. lim x 3. x 2 16x+ 39 Math 43 FRsu Short Answer. Complete the table and use the result to estimate the it. x 3 x 3 x 6x+ 39. Let f x x.9.99.999 3.00 3.0 3. f(x) Ï ( ) Ô = x + 5, x Ì ÓÔ., x = Determine the following it. (Hint:

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

QUESTION 1: Find the derivatives of the following functions. DO NOT TRY TO SIMPLIFY.

QUESTION 1: Find the derivatives of the following functions. DO NOT TRY TO SIMPLIFY. QUESTION 1: Find the derivatives of the following functions. DO NOT TRY TO SIMPLIFY. (a) f(x) =tan(1/x) (b) f(x) =sin(e x ) (c) f(x) =(1+cos(x)) 1/3 (d) f(x) = ln x x +1 QUESTION 2: Using only the definition

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question MA 114 Calculus II Spring 2013 Final Exam 1 May 2013 Name: Section: Last 4 digits of student ID #: This exam has six multiple choice questions (six points each) and five free response questions with points

More information

a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules.

a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules. Lab #1 - Free Vibration Name: Date: Section / Group: Procedure Steps (from lab manual): a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules. b. Locate the various springs and

More information

1.1. BASIC ANTI-DIFFERENTIATION 21 + C.

1.1. BASIC ANTI-DIFFERENTIATION 21 + C. .. BASIC ANTI-DIFFERENTIATION and so e x cos xdx = ex sin x + e x cos x + C. We end this section with a possibly surprising complication that exists for anti-di erentiation; a type of complication which

More information

1 Oscillations MEI Conference 2009

1 Oscillations MEI Conference 2009 1 Oscillations MEI Conference 2009 Some Background Information There is a film clip you can get from Youtube of the Tacoma Narrows Bridge called Galloping Gertie. This shows vibrations in the bridge increasing

More information

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following

More information

Introduction Course Goals Review Topics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 1 Fall 2017

Introduction Course Goals Review Topics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 1 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 1 Fall 2017 Outline Introduction 1 Introduction Vibration Problems in Engineering 2 3 Vibration Problems in Engineering Vibration

More information

Exam 2 Spring 2014

Exam 2 Spring 2014 95.141 Exam 2 Spring 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all work. Show

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

Math 2413 General Review for Calculus Last Updated 02/23/2016

Math 2413 General Review for Calculus Last Updated 02/23/2016 Math 243 General Review for Calculus Last Updated 02/23/206 Find the average velocity of the function over the given interval.. y = 6x 3-5x 2-8, [-8, ] Find the slope of the curve for the given value of

More information

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics). Math 132. Practice Questions From Calculus II I. Topics Covered in Test I 0. State the following calculus rules (these are many of the key rules from Test 1 topics). (Trapezoidal Rule) b a f(x) dx (Fundamental

More information

Thursday, August 4, 2011

Thursday, August 4, 2011 Chapter 16 Thursday, August 4, 2011 16.1 Springs in Motion: Hooke s Law and the Second-Order ODE We have seen alrealdy that differential equations are powerful tools for understanding mechanics and electro-magnetism.

More information

MATH2351 Introduction to Ordinary Differential Equations, Fall Hints to Week 07 Worksheet: Mechanical Vibrations

MATH2351 Introduction to Ordinary Differential Equations, Fall Hints to Week 07 Worksheet: Mechanical Vibrations MATH351 Introduction to Ordinary Differential Equations, Fall 11-1 Hints to Week 7 Worksheet: Mechanical Vibrations 1. (Demonstration) ( 3.8, page 3, Q. 5) A mass weighing lb streches a spring by 6 in.

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Problem Weight Total 100

Problem Weight Total 100 EE 350 Problem Set 3 Cover Sheet Fall 2016 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: Submission deadlines: Turn in the written solutions by 4:00 pm on Tuesday September

More information

Do not write below here. Question Score Question Score Question Score

Do not write below here. Question Score Question Score Question Score MATH-2240 Friday, May 4, 2012, FINAL EXAMINATION 8:00AM-12:00NOON Your Instructor: Your Name: 1. Do not open this exam until you are told to do so. 2. This exam has 30 problems and 18 pages including this

More information

Differential Equations

Differential Equations Differential Equations A differential equation (DE) is an equation which involves an unknown function f (x) as well as some of its derivatives. To solve a differential equation means to find the unknown

More information

Solutions to the Homework Replaces Section 3.7, 3.8

Solutions to the Homework Replaces Section 3.7, 3.8 Solutions to the Homework Replaces Section 3.7, 3.8 1. Our text (p. 198) states that µ ω 0 = ( 1 γ2 4km ) 1/2 1 1 2 γ 2 4km How was this approximation made? (Hint: Linearize 1 x) SOLUTION: We linearize

More information

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website: Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

More information

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ 1. A ball is thrown vertically upward from the Earth s surface and falls back to Earth. Which of the graphs below best symbolizes its speed v(t) as a function of time, neglecting air resistance: The answer

More information

MATH 151, SPRING 2018

MATH 151, SPRING 2018 MATH 151, SPRING 2018 COMMON EXAM II - VERSIONBKEY LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited. 2. TURN OFF

More information

The most up-to-date version of this collection of homework exercises can always be found at bob/math365/mmm.pdf.

The most up-to-date version of this collection of homework exercises can always be found at   bob/math365/mmm.pdf. Millersville University Department of Mathematics MATH 365 Ordinary Differential Equations January 23, 212 The most up-to-date version of this collection of homework exercises can always be found at http://banach.millersville.edu/

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

SOLUTIONS TO MIXED REVIEW

SOLUTIONS TO MIXED REVIEW Math 16: SOLUTIONS TO MIXED REVIEW R1.. Your graphs should show: (a) downward parabola; simple roots at x = ±1; y-intercept (, 1). (b) downward parabola; simple roots at, 1; maximum at x = 1/, by symmetry.

More information

RED. Physics 105 Final Exam Hess Colton CID NO TIME LIMIT. CLOSED BOOK/NOTES. 1 m 3 = 1000 L stress = F/A; strain = L/L. g=9.

RED. Physics 105 Final Exam Hess Colton CID NO TIME LIMIT. CLOSED BOOK/NOTES. 1 m 3 = 1000 L stress = F/A; strain = L/L. g=9. Fall 007 Physics 105 Final Exam Hess -108 Colton -3669 NO IME LIMI. CLOSED BOOK/NOES g=9.80 m/s b b 4ac If ax bx c 0, x a 1 x xo vot at v vo ax xo w = mg, PE g = mgy f = N (or f N, for static friction)

More information