Session 3. Question Answers

Size: px
Start display at page:

Download "Session 3. Question Answers"

Transcription

1 Session 3 Question Answers Question 1 Enter the example code and test the program. Try changing the step size 0.01 and see if you get a better results. The code for the example %Using Euler's method to solve y'(t) = f(t,y) y(0) = y0 %1. Initialize the values % 1.1 set the initial value of y. y = 1; % 1.2 set the start and end value of t tstart = 0; tend = 1; % 1.3 set the step size (using dt for delta t) dt = 0.1; % 1.4 Initialise vectors to store the data to plot T = tstart:dt:tend; % Vector of values of t. n = length(t); % Find the total number of point Y = zeros(1,n); % Vector to store the values of y. %2. Repeat for each time step for k = 1:n %3. Store the current values for plotting later Y(k) = y; %4. Evaluate the current value of f(t,y) f = -y; %5. User Euler's formula to evaluate y for the next step y = y + dt*f; end %6. End repeat 1

2 %7. Plot the date plot(t,y,'r') xlabel('t') ylabel('y') grid %Plot the actual result as a comparison Y2 = exp(-t); hold on plot(t,y2,'b'); legend({'euler's Method','Actual value'}) dt = 0.1 dt =

3 Question 2 (a) Write a program that solves. dy dt = f (t, y) = cos(t) y (0)= y 0 =0 For 0 t 2π with a step size δ t = 0.01 (b) Compare the solution above with the analytic solution. y (t)=sin(t) Hint : To start, copy the previous program. Answer %Using Euler's method to solve y'(t) = f(t,y) y(0) = y0 %1. Initialize the values % 1.1 set the initial value of y. y = 0; % 1.2 set the start and end value of t tstart = 0; tend = 2*pi; % 1.3 set the step size (using dt for delta t) dt = 0.01; % 1.4 Initialise vectors to store the data to plot T = tstart:dt:tend; % Vector of values of t. n = length(t); % Find the total number of point Y = zeros(1,n); % Vector to store the values of y. %2. Repeat for each time step for k = 1:n %3. Store the current values for plotting later Y(k) = y; %4. Evaluate the current value of f(t,y) f = cos(t(k)); %5. User Euler's formula to evaluate y for the next step y = y + dt*f; end %6. End repeat 3

4 %7. Plot the date plot(t,y,'r') xlabel('t') ylabel('y') grid %Plot the actual result as a comparison Y2 = sin(t); hold on plot(t,y2,'b'); legend({'eulers Method','Actual value'}) 4

5 Question 3 (a) The velocity of the object dropped from hight is defined by the differential equation dv dt = g c m v2 v(0)=0 Where The acceleration due to gravity g = 9.81 m/s 2 The drag constant c = 0.3 Ns 2 /m 2 The mass m = 80 kg Write a program that uses Euler's method to calculate the velocity of the object. For 0 t 25 with a step size δ t = 0.01 Answer %Using Euler's method to solve V'(t) = g c/m v^2 v(0) = 0 % Model Parameters c = 0.3; % The drag coefficient Nm ^2s^-2 g = 9.81; % Acceleration due to gravity m/s^2 m = 80; % The mass of the object in kg %1. Initialize the values % 1.1 set the initial value of v. v = 0; % 1.2 set the start and end value of t tstart = 0; tend = 25; % 1.3 set the step size (using dt for delta t) dt = 0.01; % 1.4 Initialise vectors to store the data to plot T = tstart:dt:tend; % Vector of values of t. n = length(t); % Find the total number of point V = zeros(1,n); % Vector to store the values of v. 5

6 %2. Repeat for each time step for k = 1:n %3. Store the current values for plotting later V(k) = v; %4. Evaluate the current value of f(t,v) f = g - c * v.^2 /m; %5. User Euler's formula to evaluate v for the next step v = v + dt*f; end %6. End repeat %7. Plot the date plot(t,v,'r') title('velocity of a dropped object') xlabel('t') ylabel('v') grid 6

7 (b) Use the data cursor to measure the velocity after 25 seconds. The velocity should approach, but not be greater than the terminal velocity. dv is zero at when v = terminal velocity. dt Calculate the terminal velocity and compare it with v(25). dv dt = g c m v2 = 0 v 2 = m g c v = m g c v = = m/s Where v is the terminal velocity. The acceleration due to gravity g = 9.81 m/s 2 The drag constant c = 0.3 Ns 2 /m 2 The mass m = 80 kg On the graph, the data cursor, shows that v(25) = m/s 7

8 Question 4 Use the above top down design to write a program to plot the velocity and hight of the ball. The acceleration is a constant a = m/s 2. The initial value of v = 25 m/s. The initial value of y = 0. Plot both v and y in separate graphs on the same figure. Each graph should be labelled. The height should be an inverted parabola. The ball should hit the ground before 6 seconds. Answer %Using Euler,s Method to Plot a Ball Thrown Upwards. %1. Initialize the values % Model Parameters a = -9.81; % Acceleration m/s^2 % 1.1 set the initial value of v and y. v = 25; % The initial velocity m/s y = 0; % The initial height meters % 1.2 set the start and end value of t tstart = 0; tend = 6; % 1.3 set the step size (using dt for delta t) dt = 0.01; % 1.4 Initialise vectors to store the data to plot T = tstart:dt:tend; % Vector of values of t. n = length(t); % Find the total number of point V = zeros(1,n); % Vector to store the values of v. Y = zeros(1,n); % Vector to store the values of y. 8

9 %2. Repeat for each time step for k = 1:n %3. Store the current values of both y and v for plotting later V(k) = v; Y(k) = y; %4. Use Euler's method to find the position at the next step y = y + dt * v; %5. Use Euler's method to find the velocity at the next step v = v + dt * a; end %6. End of repeat %7. Plot the date % height Graph subplot(2,1,1) plot(t,y,'b') title ('Height') xlabel('t') ylabel('y') grid % Velocity Graph subplot(2,1,2) plot(t,v,'r') title ('Velocity') xlabel('t') ylabel('v') grid %Top Graph % Bottom Graph 9

10 10

Section 1.3 Integration

Section 1.3 Integration Section 1.3 Integration Key terms: Integral Constant of integration Fundamental theorem of calculus First order DE One parameter family of solutions General solution Initial value problem Particular solution

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

First Order ODEs (cont). Modeling with First Order ODEs

First Order ODEs (cont). Modeling with First Order ODEs First Order ODEs (cont). Modeling with First Order ODEs September 11 15, 2017 Bernoulli s ODEs Yuliya Gorb Definition A first order ODE is called a Bernoulli s equation iff it is written in the form y

More information

Math 210 Differential Equations Mock Final Dec *************************************************************** 1. Initial Value Problems

Math 210 Differential Equations Mock Final Dec *************************************************************** 1. Initial Value Problems Math 210 Differential Equations Mock Final Dec. 2003 *************************************************************** 1. Initial Value Problems 1. Construct the explicit solution for the following initial

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

The Effect of Air Resistance Harvey Gould Physics 127 2/06/07

The Effect of Air Resistance Harvey Gould Physics 127 2/06/07 1 The Effect of Air Resistance Harvey Gould Physics 127 2/06/07 I. INTRODUCTION I simulated the motion of a falling body near the earth s surface in the presence of gravity and air resistance. I used the

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Matlab homework assignments for modeling dynamical systems

Matlab homework assignments for modeling dynamical systems Physics 311 Analytical Mechanics - Matlab Exercises C1.1 Matlab homework assignments for modeling dynamical systems Physics 311 - Analytical Mechanics Professor Bruce Thompson Department of Physics Ithaca

More information

Math 307 A - Spring 2015 Final Exam June 10, 2015

Math 307 A - Spring 2015 Final Exam June 10, 2015 Name: Math 307 A - Spring 2015 Final Exam June 10, 2015 Student ID Number: There are 8 pages of questions. In addition, the last page is the basic Laplace transform table. Make sure your exam contains

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions Print Your Name Print Your Partners' Names Instructions Before lab, read the Introduction, and answer the Pre-Lab Questions on the last page of this

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

Gravitational Energy using Gizmos

Gravitational Energy using Gizmos Name: Date: Gravitational Energy using Gizmos Using your Gizmo app, open the Potential energy on shelves Gizmo Vocabulary: gravitational energy, Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

1) Explain in complete sentences how to solve the following equation using the factoring method. Y=7x

1) Explain in complete sentences how to solve the following equation using the factoring method. Y=7x TEST 13 REVIEW Quadratics 1) Explain in complete sentences how to solve the following equation using the factoring method. Y=7x 2 +28. 2) Find the domain and range if the points in the table are discrete

More information

Experiment 2. F r e e F a l l

Experiment 2. F r e e F a l l Suggested Reading for this Lab Experiment F r e e F a l l Taylor, Section.6, and standard deviation rule in Taylor handout. Review Chapters 3 & 4, Read Sections 8.1-8.6. You will also need some procedures

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

Free Fall. v gt (Eq. 4) Goals and Introduction

Free Fall. v gt (Eq. 4) Goals and Introduction Free Fall Goals and Introduction When an object is subjected to only a gravitational force, the object is said to be in free fall. This is a special case of a constant-acceleration motion, and one that

More information

2.2 Average vs. Instantaneous Description

2.2 Average vs. Instantaneous Description 2 KINEMATICS 2.2 Average vs. Instantaneous Description Name: 2.2 Average vs. Instantaneous Description 2.2.1 Average vs. Instantaneous Velocity In the previous activity, you figured out that you can calculate

More information

Physics Exam 2 October 11, 2007

Physics Exam 2 October 11, 2007 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Newton s Second Law of Motion Force and Acceleration

Newton s Second Law of Motion Force and Acceleration Chapter 3 Reading Guide: Newton s Second Law of Motion Force and Acceleration Complete the Explore! Activity (p.37) 1. Compare the rate at which the book and paper fell when they were side-by-side: Name:

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds.

a. Determine the sprinter's constant acceleration during the first 2 seconds. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

α m ! m or v T v T v T α m mass

α m ! m or v T v T v T α m mass FALLING OBJECTS (WHAT TO TURN IN AND HOW TO DO SO) In the real world, because of air resistance, objects do not fall indefinitely with constant acceleration. One way to see this is by comparing the fall

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

AdvAlg6.4GraphingQuadratics.notebook. March 07, Newton s Formula h(t) = 1 gt 2 + v o t + h o 2. time. initial upward velocity

AdvAlg6.4GraphingQuadratics.notebook. March 07, Newton s Formula h(t) = 1 gt 2 + v o t + h o 2. time. initial upward velocity Notes Lesson 6 4 Applications of Quadratic Functions Newton s Formula h(t) = 1 gt 2 + v o t + h o 2 Height of object time Constant (accel. due to gravity) *32 ft/sec 2 *9.8 m/sec 2 **MEMORIZE THESE** initial

More information

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ). Section 1.1 Direction Fields Key Terms/Ideas: Mathematical model Geometric behavior of solutions without solving the model using calculus Graphical description using direction fields Equilibrium solution

More information

ALGEBRA UNIT 11-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION (DAY 1)

ALGEBRA UNIT 11-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION (DAY 1) ALGEBRA UNIT 11-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION (DAY 1) The Quadratic Equation is written as: ; this equation has a degree of. Where a, b and c are integer coefficients (where a 0)

More information

Chapter 8 ~ Quadratic Functions and Equations In this chapter you will study... You can use these skills...

Chapter 8 ~ Quadratic Functions and Equations In this chapter you will study... You can use these skills... Chapter 8 ~ Quadratic Functions and Equations In this chapter you will study... identifying and graphing quadratic functions transforming quadratic equations solving quadratic equations using factoring

More information

Find the orthogonal trajectories for the family of curves.

Find the orthogonal trajectories for the family of curves. Exercises, Section 2.4 Exercises 2.4.1 Find the orthogonal trajectories for the family of curves. 1. y = Cx 3. 2. x = Cy 4. 3. y = Cx 2 +2. 4. y 2 =2(C x). 5. y = C cos x 6. y = Ce x 7. y = ln(cx) 8. (x

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

March 5, 2009 Name The problems count as marked. The total number of points available is 131. Throughout this test, show your work.

March 5, 2009 Name The problems count as marked. The total number of points available is 131. Throughout this test, show your work. March 5, 2009 Name The problems count as marked. The total number of points available is 131. Throughout this test, show your work. 1. (12 points) Consider the cubic curve f(x) = 2x 3 + 3x + 2. (a) What

More information

Multiple Choice Solutions 1. E (2003 AB25) () xt t t t 2. A (2008 AB21/BC21) 3. B (2008 AB7) Using Fundamental Theorem of Calculus: 1

Multiple Choice Solutions 1. E (2003 AB25) () xt t t t 2. A (2008 AB21/BC21) 3. B (2008 AB7) Using Fundamental Theorem of Calculus: 1 Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

MAT135 Review for Test 4 Dugopolski Sections 7.5, 7.6, 8.1, 8.2, 8.3, 8.4

MAT135 Review for Test 4 Dugopolski Sections 7.5, 7.6, 8.1, 8.2, 8.3, 8.4 Sections 7.5, 7.6, 8.1, 8., 8., 8.4 1. Use the discriminant to determine the number and type(s) of solutions for 4x 8x 4 0. One real solution B. One complex solution Two real solutions Two complex solutions.

More information

As in the previous problem, the height of a object thrown straight up is given by

As in the previous problem, the height of a object thrown straight up is given by WebAssign Lesson 2-1 Basic Hw (Homework) Current Score : / 36 Due : Wednesday, January 29 2014 07:30 AM MST Shari Dorsey Sp 14 Math 170, section 001, Spring 2014 Instructor: Doug Bullock 1. /2 points An

More information

Name: Total Points: Physics 201. Midterm 1

Name: Total Points: Physics 201. Midterm 1 Physics 201 Midterm 1 QUESTION 1 [25 points] An object moves in 1 dimension It starts at rest and uniformly accelerates at 5m/s 2 for 2s It then moves with constant velocity for 4s It then uniformly accelerates

More information

Solution. Your sketch should show both x and y axes marked from 5 to 5 and circles of radius 1, 3, and 5 centered at the origin.

Solution. Your sketch should show both x and y axes marked from 5 to 5 and circles of radius 1, 3, and 5 centered at the origin. Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 208, Professor David Levermore () (a) Sketch the graph that would be produced by the following Matlab command. fplot(@(t) 2/t,

More information

Chapter B - Problems

Chapter B - Problems Chapter B - Problems Blinn College - Physics 45 - Terry Honan Problem B.1 x HmL 8 4 3 7 t HsL (a) What is the average velocity between 0 s and s, between 3 s and 7 s, between s and 7 s? (b) What is the

More information

Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 2017, Professor David Levermore

Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 2017, Professor David Levermore Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 207, Professor David Levermore () (a) Give the integral being evaluated by the following Matlab command. int( x/(+xˆ4), x,0,inf)

More information

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II) MATH 8, FALL 7 - PROBLEM SET #5 SOLUTIONS (PART II (Oct ; Antiderivatives; + + 3 7 points Recall that in pset 3A, you showed that (d/dx tanh x x Here, tanh (x denotes the inverse to the hyperbolic tangent

More information

Horizontal Motion 1 An object is said to be at rest, if the position of the object does not change with time with respect to its surroundings An object is said to be in motion, if its position changes

More information

Worksheet for Exploration 6.1: An Operational Definition of Work

Worksheet for Exploration 6.1: An Operational Definition of Work Worksheet for Exploration 6.1: An Operational Definition of Work This Exploration allows you to discover how work causes changes in kinetic energy. Restart. Drag "handy" to the front and/or the back of

More information

Mathematics - Course 221

Mathematics - Course 221 221. 20-3 Mathematics - Course 221 SIMPLE APPLICATIONS OF DERIVATIVES I Equations of Tangent and Normal to a Curve This exercise is included to consolidate the trainee's concept of derivative as tangent

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MATLAB sessions: Laboratory 4 MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals Antiderivatives and Indefinite Integrals MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this lesson we will be able to use the definition

More information

Final Exam Sample Problems, Math 246, Spring 2018

Final Exam Sample Problems, Math 246, Spring 2018 Final Exam Sample Problems, Math 246, Spring 2018 1) Consider the differential equation dy dt = 9 y2 )y 2. a) Find all of its stationary points and classify their stability. b) Sketch its phase-line portrait

More information

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving 6: Ampere s Law and Faraday s Law Section Table Names Hand in one copy per group at the end of the Friday Problem Solving

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time VELOCITY If you have a graph of position and you take the derivative, what would the derivative represent? Position Time Average rate of Change What is the average rate of change of temperature over the

More information

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t =

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t = PH 2213 : Chapter 02 Homework Solutions Problem 2.6 : You are driving home from school steadily at 90 km/hr for 130 km. It then begins to rain and you slow to 50 km/hr. You arrive home after driving 3

More information

AMS 27L LAB #6 Winter 2009

AMS 27L LAB #6 Winter 2009 AMS 27L LAB #6 Winter 2009 Symbolically Solving Differential Equations Objectives: 1. To learn about the MATLAB Symbolic Solver 2. To expand knowledge of solutions to Diff-EQs 1 Symbolically Solving Differential

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

Student Exploration: Free-Fall Laboratory

Student Exploration: Free-Fall Laboratory Name: Date: Student Exploration: Free-Fall Laboratory Vocabulary: acceleration, air resistance, free fall, instantaneous velocity, terminal velocity, velocity, vacuum Prior Knowledge Questions (Do these

More information

Name Class. (a) (b) (c) 4 t4 3 C

Name Class. (a) (b) (c) 4 t4 3 C Chapter 4 Test Bank 77 Test Form A Chapter 4 Name Class Date Section. Evaluate the integral: t dt. t C (a) (b) 4 t4 C t C C t. Evaluate the integral: 5 sec x tan x dx. (a) 5 sec x tan x C (b) 5 sec x C

More information

y ax bx c OR 0 then either a = 0 OR b = 0 Steps: 1) if already factored, set each factor in ( ) = 0 and solve

y ax bx c OR 0 then either a = 0 OR b = 0 Steps: 1) if already factored, set each factor in ( ) = 0 and solve Algebra 1 SOL Review: Quadratics Name 67B Solving Quadratic equations using Zero-Product Property. Quadratic equation: ax bx c 0 OR y ax bx c OR f ( x ) ax bx c Zero-Product Property: if a b 0 then either

More information

Ms. Peralta s IM3 HW 5.4. HW 5.4 Solving Quadratic Equations. Solve the following exercises. Use factoring and/or the quadratic formula.

Ms. Peralta s IM3 HW 5.4. HW 5.4 Solving Quadratic Equations. Solve the following exercises. Use factoring and/or the quadratic formula. HW 5.4 HW 5.4 Solving Quadratic Equations Name: Solve the following exercises. Use factoring and/or the quadratic formula. 1. 2. 3. 4. HW 5.4 5. 6. 4x 2 20x + 25 = 36 7. 8. HW 5.4 9. 10. 11. 75x 2 30x

More information

Massachusetts Institute of Technology Department of Mechanical Engineering

Massachusetts Institute of Technology Department of Mechanical Engineering Massachusetts Institute of Technology Department of Mechanical Engineering 2.003J/1.053J Dynamics & Control I Fall 2007 Homework 3 Solution Problem 3.1 : Calculate the trajectory of a ball dropping and

More information

1) Solve the quadratic equation Y=5x*+3 where *=2 A. x = (Y-3) B. x = (3+Y) C. x = (3+Y) 2 D. x = (Y-3) 2

1) Solve the quadratic equation Y=5x*+3 where *=2 A. x = (Y-3) B. x = (3+Y) C. x = (3+Y) 2 D. x = (Y-3) 2 TEST 13 REVIEW Quadratics 1) Solve the quadratic equation Y=5x*+3 where *=2 A. x = (Y-3) B. x = (3+Y) C. x = (3+Y) 2 D. x = (Y-3) 2 2) Explain in complete sentences how to solve the following equation

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

Solution. It is evaluating the definite integral r 1 + r 4 dr. where you can replace r by any other variable.

Solution. It is evaluating the definite integral r 1 + r 4 dr. where you can replace r by any other variable. Solutions of Sample Problems for First In-Class Exam Math 246, Fall 202, Professor David Levermore () (a) Give the integral being evaluated by the following MATLAB command. int( x/(+xˆ4), x,0,inf) Solution.

More information

Unit 6: Quadratics. Contents

Unit 6: Quadratics. Contents Unit 6: Quadratics Contents Animated gif Program...6-3 Setting Bounds...6-9 Exploring Quadratic Equations...6-17 Finding Zeros by Factoring...6-3 Finding Zeros Using the Quadratic Formula...6-41 Modeling:

More information

Question Details Secant Formula 1 [ ]

Question Details Secant Formula 1 [ ] 13: Derivatives (6105641) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Instructions Read today's Notes and Learning Goals 1. Question Details Secant Formula 1 [2852835] An object is thrown straight up. Its

More information

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation.

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation. Section.3.5.3, #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation dq = 1 4 (1 + sin(t) ) + Q, Q(0) = 50. (1) 100 (a) The differential equation given

More information

Introduction to the P5 Computing Laboratory. Eric Peasley Department of Engineering Science

Introduction to the P5 Computing Laboratory. Eric Peasley Department of Engineering Science Introduction to the P5 Computing Laboratory Eric Peasley Department of Engineering Science Design, Build and Test Session 3, DBT Part A Simulating a Rocket Launch Informal Assessment (No marks) Session

More information

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes Resisted Motion 34.3 Introduction This Section returns to the simple models of projectiles considered in Section 34.1. It explores the magnitude of air resistance effects and the effects of including simple

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for solving higher order ODEs and

More information

1. (a) (4 points) Four students see this function: f(t) = 7 4t. Which student has written the derivative correctly? Circle the student s name.

1. (a) (4 points) Four students see this function: f(t) = 7 4t. Which student has written the derivative correctly? Circle the student s name. Math 170 - Spring 016 - Common Exam 1 Name: Part 1: Short Answer The first five (5) pages are short answer. You don t need to show work. Partial credit will be rare. When appropriate answers must include

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

Solving systems of first order equations with ode Systems of first order differential equations.

Solving systems of first order equations with ode Systems of first order differential equations. A M S 20 MA TLA B NO T E S U C S C Solving systems of first order equations with ode45 c 2015, Yonatan Katznelson The M A T L A B numerical solver, ode45 is designed to work with first order differential

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 75 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP. Use MATLAB solvers for solving higher order ODEs and systems

More information

Question Details Secant Formula 1 [ ]

Question Details Secant Formula 1 [ ] Derivatives (10862385) Due: Mon Aug 28 2017 07:31 AM MDT Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Instructions Read today's Notes and Learning Goals 1. Question Details Secant Formula 1 [2852835] An object

More information

The Princeton Review AP Calculus BC Practice Test 2

The Princeton Review AP Calculus BC Practice Test 2 0 The Princeton Review AP Calculus BC Practice Test CALCULUS BC SECTION I, Part A Time 55 Minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each

More information

1. Without the use of your calculator, evaluate each of the following quadratic functions for the specified input values. (c) ( )

1. Without the use of your calculator, evaluate each of the following quadratic functions for the specified input values. (c) ( ) Name: Date: QUADRATIC FUNCTION REVIEW FLUENCY Algebra II 1. Without the use of our calculator, evaluate each of the following quadratic functions for the specified input values. (a) g( x) g g ( 5) ( 3)

More information

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes Q Scheme Marks AOs Pearson 1a States or uses I = F t M1 1.2 TBC I = 5 0.4 = 2 N s Answer must include units. 1b 1c Starts with F = m a and v = u + at Substitutes to get Ft = m(v u) Cue ball begins at rest

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

PHY 221 Lab 2. Acceleration and Uniform Motion

PHY 221 Lab 2. Acceleration and Uniform Motion PHY 221 Lab 2 Name: Partner: Partner: Acceleration and Uniform Motion Introduction: Recall the previous lab During Lab 1, you were introduced to computer aided data acquisition. You used a device called

More information

9-4. Quadratics and Projectiles. Vocabulary. Equations for the Paths of Projectiles. Activity. Lesson

9-4. Quadratics and Projectiles. Vocabulary. Equations for the Paths of Projectiles. Activity. Lesson Chapter 9 Lesson 9-4 Quadratics and Projectiles Vocabulary force of gravity initial upward velocity initial height BIG IDEA Assuming constant gravity, both the path of a projectile and the height of a

More information

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics Trigonometry I Pythagorean theorem: Trigonometry II 90 180 270 360 450 540 630 720 sin(x) and cos(x) are mathematical functions that describe oscillations. This will be important later, when we talk about

More information

These will be no tutorials for Math on Tuesday April 26.

These will be no tutorials for Math on Tuesday April 26. Worksheet The purpose of this worksheet is 1. To understand how the differential equation describing simple harmonic motion is derived. 2. To explore how to predict what the solution to this differential

More information

Laplace Transform Problems

Laplace Transform Problems AP Calculus BC Name: Laplace Transformation Day 3 2 January 206 Laplace Transform Problems Example problems using the Laplace Transform.. Solve the differential equation y! y = e t, with the initial value

More information

Topics for the test and Sample Problems

Topics for the test and Sample Problems Topics for the test and Sample Problems Be able to Rearrange Every Motion Equation on the Equation Page x = v t x f = x i + vt v=a t v f = v i + at x f = x i + v i t + ½ at v f - v i = a (x f -x i ) Δx

More information

Experiment 4 Free Fall

Experiment 4 Free Fall PHY9 Experiment 4: Free Fall 8/0/007 Page Experiment 4 Free Fall Suggested Reading for this Lab Bauer&Westfall Ch (as needed) Taylor, Section.6, and standard deviation rule ( t < ) rule in the uncertainty

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

PART A CALCULATOR ACTIVE: Maximum Time: 35 Minutes

PART A CALCULATOR ACTIVE: Maximum Time: 35 Minutes Algebra II: Chapter 5 Unit Test 2 Name: PART A CALCULATOR ACTIVE: Maximum Time: 35 Minutes Fill in the blanks: Put answers in the space provided. 1. The value of k that makes x 2 + kx + 25 4 a perfect

More information

Chapter 3 Lecture. Pearson Physics. Acceleration and Accelerated Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 3 Lecture. Pearson Physics. Acceleration and Accelerated Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 3 Lecture Pearson Physics Acceleration and Accelerated Motion Prepared by Chris Chiaverina Chapter Contents Acceleration Motion with Constant Acceleration Position-Time Graphs with Constant Acceleration

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

AP Calculus. Particle Motion. Student Handout

AP Calculus. Particle Motion. Student Handout AP Calculus Particle Motion Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright 016

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

Hour Exam #2 Math 3 Oct. 31, 2012

Hour Exam #2 Math 3 Oct. 31, 2012 Hour Exam #2 Math 3 Oct. 31, 2012 Name (Print): Last First On this, the second of the two Math 3 hour-long exams in Fall 2012, and on the final examination I will work individually, neither giving nor

More information

To study the motion of an object under the influence

To study the motion of an object under the influence L A B 3 FALLING OBJECTS First and Second Derivatives To study the motion of an object under the influence of gravity, we need equipment to track the motion of the object. We can use calculus to analyze

More information

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion MOTION (Chapter 2) https://www.youtube.com/watch?v=oxc-hhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL

More information

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers. Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

More information

NO CREDIT DO NOT USE IT

NO CREDIT DO NOT USE IT 1. Liela is standing on the opponents 40 yard line. She throws a pass toward the goal line. The ball is 2 meters above the ground when she lets go. It follows a parabolic path, reaching its highest point,

More information

Chapter 5: Limits and Derivatives

Chapter 5: Limits and Derivatives Chapter 5: Limits and Derivatives Chapter 5 Overview: Introduction to Limits and Derivatives In a later chapter, maximum and minimum points of a curve will be found both by calculator and algebraically.

More information

Matlab Sheet 3 - Solution. Plotting in Matlab

Matlab Sheet 3 - Solution. Plotting in Matlab f(x) Faculty of Engineering Spring 217 Mechanical Engineering Department Matlab Sheet 3 - Solution Plotting in Matlab 1. a. Estimate the roots of the following equation by plotting the equation. x 3 3x

More information

Question Details Secant Formula 1 [ ]

Question Details Secant Formula 1 [ ] 13: Derivatives (6532783) Due: Mon Jan 19 2015 09:01 AM MST Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Instructions Read today's Notes and Learning Goals 1. Question Details Secant Formula 1 [2852835] An

More information

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion Physics 11a Motion along a straight line Motion Position and Average velocity and average speed Instantaneous velocity and speed Acceleration Constant acceleration: A special case Free fall acceleration

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

One Dimensional Collisions 1 Fall 2018

One Dimensional Collisions 1 Fall 2018 One Dimensional Collisions 1 Fall 2018 Name: Partners: Introduction The purpose of this experiment is to perform experiments to learn about momentum, impulse and collisions in one dimension. Write all

More information