Digital Pendulum Control Experiments


 David Jenkins
 1 years ago
 Views:
Transcription
1 EE341L CONTROL SYSTEMS LAB 2013 Digital Pendulum Control Experiments Ahmed Zia Sheikh M. Salman Khalid Suleman Belal Kazi
2 TABLE OF CONTENTS ABSTRACT...2 PENDULUM OVERVIEW...3 EXERCISE 1 NONLINEAR MODEL...3 EXERCISE 2 LINEAR MODEL...5 EXERCISE 3 STATIC FRICTION COEFFICIENTS...6 EXERCISE 4 CART MODEL IDENTIFICATION...7 EXERCISE 5 CRANE LINEAR MODEL IDENTIFICATION...9 EXERCISE 6 INVERTED PENDULUM LINEAR MODEL IDENTIFICATION EXERCISE 7 PID CONTROL OF CART MODEL POSITION (SIMULATED) EXERCISE 8 PID CONTROL OF CART MODEL POSITION (REALTIME) EXERCISE 9 MODEL SWING UP CONTROL (SIMULATION): EXERCISE 10 SWING UP CONTROL (REALTIME): EXERCISE 11 PENDULUM STABILIZATION USING THE NONLINEAR MODEL (SIMULATION) EXERCISE 12 PENDULUM REAL TIME STABILIZATION EXERCISE 13 CRANE CONTROL EXERCISE 14 SWING UP AND HOLD CONTROL EXERCISE 15 UP AND DOWN
3 ABSTRACT The Digital Pendulum is a modern version of a classical control problem; that of erecting and balancing a free swinging pendulum in its inverted position or moving a hanging pendulum in a controlled manner. The cart on the track is digitally controlled to swing up and to balance the pendulum into an upright sustained position or to move the cart with pendulum in an unperturbed down position. The cart track is of limited length, imposing constraints on the control algorithm. In pendulum mode the system is used to control the twin arm pendulum from an initial position, hanging at rest with the cart in the center of its travel along the track, to a final position with the pendulum upright and the cart restored to its central position. In crane mode the control problem is to move the position of the cart without undue movement of the pendulum. This problem is typical of that experienced when controlling a gantry crane.. 2
4 PENDULUM OVERVIEW Exercise 1 Nonlinear model In this experiment, the pendulum is modeled in Simulink using it s equations of motions and then simulated to see the output. Equations of the pendulum (NonLinear) from Instruction manual: In the simulation no voltage is given to the motor, and only an initial angle is set, below are the results Figure 1 Results for an initial angle of zero (Inverted Pendulum) 3
5 Figure 2 Initial Angle of 0.01 (Very slight disturbance from vertical) The pendulum parameters in the simulation were adjustable; all of the graphs were obtained using the approximate values specified in the datasheet as shown below Figure 3 Pendulum Simulation Parameters 4
6 Exercise 2 Linear model For small values of theta, the equations of motion in Exercise 1 take on the form: In this experiment, the pendulum is modelled using nonlinear equations for both theta=0 and theta=pi i.e. Inverted and hanging respectively. Results for both are shown below: Figure 4 Linear Model for initial angle =π (Crane Mode) As can be seen the linear model applies very well to small oscillations about the theta=pi position. The next graph shows the linear model for a small disturbance for theta=0 5
7 Figure 5 Linear Model for inverted Pendulum theta=0 In this case the linear model fails as the system is unstable and a small disturbance causes a large change in theta thus making our assumptions void. Exercise 3 Static Friction Coefficients Figure 6 Static Friction Offsets 6
8 Because of the static friction forces (also called stiction); with very small values of control signal the cart will not move. Furthermore the static friction force may not be symmetrical. We can compensate for that simply by adding an additional voltage offset value to the cart control signal. Measurement of the value of the offset is the purpose of this exercise. RESULTS: Static friction in: Positive Direction: 0.2 Negative direction: PROBLEMS: Several problems were faced in this experiment, according to the manual the values of the friction in both directions should have been almost the same however even after numerous attempts and readjustments of the pendulum our values differed by almost 100%, moreover upon further experimentation it was found that the pendulum was behaving erratically using these values, so the values used in all subsequent experiments were: Positive Direction: 0.1 Negative directions: 0.4 Exercise 4 Cart model identification In this experiment we identify the linear model between the control signal u and the cart position x Figure 7 Experiment To Identify Cart Model 7
9 After using the realtime model to get the required data, Matlab identification interface was used to get the transfer function of the cart. Figure 8 Figure 9 8
10 Figure 10 The pendulum had to be immobilized or else the cart would veer off to one direction due to excess swing. Finally, the transfer function for the cart, generated using Matlab was: Exercise 5 Crane linear model identification Crane refers to the pendulum in the stable position (theta=pi), in this experiment a transfer function for the crane mode is found. The excitation signal is applied for the first 10 seconds then the pendulum is allowed to swing freely for 80 seconds to identify the damping effect. 9
11 Figure 11 Crane Identification experiment The transfer function derived in Matlab for the crane mode: Figure 12 Measured Vs. Estimated Response 10
12 Figure 13 Peak Shows Natural Frequency Figure 14 Pole Zero Plot: Poles slightly to right of jw axis show error 11
13 Exercise 6 Inverted pendulum linear model identification Figure 15 Response of inverted Pendulum In the case of this experiment, a vital file Mextract.m which was required for extracting the transfer function of the inverted pendulum was missing; we tried to use a file of the same name from the Maglev experiment but failed. We ed Feedback systems about this omission, they have not replied till the publishing of this report. Since we could not develop a model for the inverted pendulum, due to which some of the further experiments of the inverted pendulum control were performed using the prespecified model. Exercise 7 PID control of cart model position (SIMULATED) Using the cart model identified in previous experiments, a PID controller was designed for controlling the cart position. Various values of PID were tested for different experiments. 12
14 Figure 16 Unmodified Root Locus Figure 17 Root Locus Of the Cart System after adjustment 13
15 Figure 16 Simulated Step Response of the adjusted system P=27.84 I=36 D= 4.5 Figure 17 Response of the PID Compensated system 14
16 Exercise 8 PID control of cart model position (REALTIME) Figure 18 Real Time Results with P=10 I=25 D=2 Figure 19 Real Time Results with P=27.84 I=36 D=4.5 15
17 Exercise 9 Model swing up control (SIMULATION): Figure 20 Simulation of Model Swing up control with default parameters Exercise 10 Swing up control (REALTIME): Figure 21 Real Time Swing up Control 16
18 Exercise 11 Pendulum stabilization using the nonlinear model (SIMULATION) Figure 22 Pendulum Stabilization (Simulation) Assuming pendulum is at 0 degrees whilst starting Exercise 12 Pendulum real time stabilization Figure 23 Real Time Pendulum Stabilization 17
19 Exercise 13 Crane control SIMULATION: Figure 24 Desired Angle is pi (perfectly still pendulum) 18
20 Figure 25 Simulation for another control Signal REALTIME: Figure 26 Default Settings: Sine wave 0.1 Hz, 0.2v Amplitude 19
21 Figure 27 Sawtooth 0.2Hz 0.4v Amplitude Exercise 14 Swing up and hold control Figure 28 Square 0.1Hz, 0.2 Amplitude 20
22 Figure 29 Simulation Results Figure 30 Real Time Trial 1 (FAILURE) Cart hits end of track 21
23 Figure 32 First Success Swing up and Hold in Real Time In the real time trials it was observed that as the initial voltage of the square wave which slowly increases the pendulum s oscillations is increased two things occur: 1. The pendulum reaches the top point more quickly. 2. The pendulum becomes less stable at the top inverted position, and in extreme cases fails to balance Figure 31 Swing up and hold with decreased initial voltage, extremely stable 22
24 Exercise 15 Up and down Figure 33 Graph of Final Experiment This is the final experiment in the study of the inverted pendulum and involves a combination or culmination of all previous experiments into one. First the pendulum is started from a rest position and made to balance in the inverted position after which it is allowed to fall down into the crane mode and settled as quickly as possible. 23
Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42
Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 OpenLoop
More informationLab 6d: SelfErecting Inverted Pendulum (SEIP)
Lab 6d: SelfErecting Inverted Pendulum (SEIP) Arthur Schopen Life swings like a pendulum backward and forward between pain and boredom. hauer 1 Objectives The goal of this project is to design a controller
More informationProject Lab Report. Michael Hall. Hao Zhu. Neil Nevgi. Station 6. Ta: Yan Cui
Project Lab Report Michael Hall Hao Zhu Neil Nevgi Station 6 Ta: Yan Cui Nov. 12 th 2012 Table of Contents: Executive Summary 3 Modeling Report.47 System Identification 711 Control Design..1115 Simulation
More informationLab 6d: SelfErecting Inverted Pendulum (SEIP)
Lab 6d: SelfErecting Inverted Pendulum (SEIP) Arthur Schopen Life swings like a pendulum backward and forward between pain and boredom. hauer 1 Objectives The goal of this project is to design a controller
More informationControlling the Inverted Pendulum
Controlling the Inverted Pendulum Steven A. P. Quintero Department of Electrical and Computer Engineering University of California, Santa Barbara Email: squintero@umail.ucsb.edu Abstract The strategies
More informationEE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP SystemsModel: 205)
EE 4443/539 LAB 3: Control of Industrial Systems Simulation and Hardware Control (PID Design) The Torsion Disks (ECP SystemsModel: 05) Compiled by: Nitin Swamy Email: nswamy@lakeshore.uta.edu Email: okuljaca@lakeshore.uta.edu
More informationInverted Pendulum. Objectives
Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives
More informationTable of Contents 1.0 OBJECTIVE APPARATUS PROCEDURE LAB PREP WORK POLEPLACEMENT DESIGN
LAB 4 ENGI 38: ADVANCED CONTROLS  Lab Partners: (Alphabetically) Figliomeni, Dan Malyshev, Andrey McGrath, Adam TO: WARREN PAJU ELECTRICAL
More informationStabilizing the dual inverted pendulum
Stabilizing the dual inverted pendulum Taylor W. Barton Massachusetts Institute of Technology, Cambridge, MA 02139 USA (email: tbarton@mit.edu) Abstract: A classical control approach to stabilizing a
More informationLab 6d: SelfErecting Inverted Pendulum (SEIP)
Lab 6d: SelfErecting Inverted Pendulum (SEIP) Arthur Schopen Life swings like a pendulum backward and forward between pain and boredom. hauer 1 Objectives The goal of this project is to design a controller
More informationState Feedback MAE 433 Spring 2012 Lab 7
State Feedback MAE 433 Spring 1 Lab 7 Prof. C. Rowley and M. Littman AIs: Brandt Belson, onathan Tu Princeton University April 47, 1 1 Overview This lab addresses the control of an inverted pendulum balanced
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationDC Motor Position: System Modeling
1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System
More informationExample: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response
Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response Physical Setup A common actuator in control systems is the
More informationDCmotor PID control
DCmotor PID control This version: November 1, 2017 REGLERTEKNIK Name: Pnumber: AUTOMATIC LINKÖPING CONTROL Date: Passed: Chapter 1 Introduction The purpose of this lab is to give an introduction to
More informationMEAM 510 Fall 2011 Bruce D. Kothmann
Balancing g Robot Control MEAM 510 Fall 2011 Bruce D. Kothmann Agenda Bruce s Controls Resume Simple Mechanics (Statics & Dynamics) of the Balancing Robot Basic Ideas About Feedback & Stability Effects
More informationDouble Inverted Pendulum (DBIP)
Linear Motion Servo Plant: IP01_2 Linear Experiment #15: LQR Control Double Inverted Pendulum (DBIP) All of Quanser s systems have an inherent open architecture design. It should be noted that the following
More informationEE 422G  Signals and Systems Laboratory
EE 4G  Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the
More informationYTÜ Mechanical Engineering Department
YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationFUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT
http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication
More informationSRV02Series Rotary Experiment # 7. Rotary Inverted Pendulum. Student Handout
SRV02Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout SRV02Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout 1. Objectives The objective in this experiment is
More informationYTÜ Mechanical Engineering Department
YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report
More informationMEAM 510 Fall 2012 Bruce D. Kothmann
Balancing g Robot Control MEAM 510 Fall 2012 Bruce D. Kothmann Agenda Bruce s Controls Resume Simple Mechanics (Statics & Dynamics) of the Balancing Robot Basic Ideas About Feedback & Stability Effects
More informationLab 4 Numerical simulation of a crane
Lab 4 Numerical simulation of a crane Agenda Time 10 min Item Review agenda Introduce the crane problem 95 min Lab activity I ll try to give you a 5 minute warning before the end of the lab period to
More informationHandson Lab. Damped Compound Pendulum System ID (Experimental and Simulation) L Bar length m d Pivot to CG distance m m Mass of pendulum kg
Handson Lab Damped Compound Pendulum System ID (Experimental and Simulation) Preamble: c d dt d L Bar length m d Pivot to CG distance m m Mass of pendulum kg L L m g L Sketched above is a damped compound
More informationLab 6a: Pole Placement for the Inverted Pendulum
Lab 6a: Pole Placement for the Inverted Pendulum Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the Panta Rei, and she guessed it was the Pendulum
More informationAnalysis and Synthesis of SingleInput SingleOutput Control Systems
Lino Guzzella Analysis and Synthesis of SingleInput SingleOutput Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems
More informationMEM04: Rotary Inverted Pendulum
MEM4: Rotary Inverted Pendulum Interdisciplinary Automatic Controls Laboratory  ME/ECE/CHE 389 April 8, 7 Contents Overview. Configure ELVIS and DC Motor................................ Goals..............................................3
More information1. In Activity 11, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 21 below:
PRELAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 11,
More informationLAB 2  ONE DIMENSIONAL MOTION
Name Date Partners L021 LAB 2  ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity
More informationState Feedback Controller for Position Control of a Flexible Link
Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state
More informationES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK
ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing
More informationRotary Inverted Pendulum
Rotary Inverted Pendulum Eric Liu 1 Aug 2013 1 1 State Space Derivations 1.1 Electromechanical Derivation Consider the given diagram. We note that the voltage across the motor can be described by: e b
More informationApplication of Neural Networks for Control of Inverted Pendulum
Application of Neural Networks for Control of Inverted Pendulum VALERI MLADENOV Department of Theoretical Electrical Engineering Technical University of Sofia Sofia, Kliment Ohridski blvd. 8; BULARIA valerim@tusofia.bg
More informationEndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. When a spring is compressed 10 cm, compared to its
More informationTarget Tracking Using Double Pendulum
Target Tracking Using Double Pendulum Brian Spackman 1, Anusna Chakraborty 1 Department of Electrical and Computer Engineering Utah State University Abstract: This paper deals with the design, implementation
More informationDOUBLE ARM JUGGLING SYSTEM Progress Presentation ECSE4962 Control Systems Design
DOUBLE ARM JUGGLING SYSTEM Progress Presentation ECSE4962 Control Systems Design Group Members: John Kua Trinell Ball Linda Rivera Introduction Where are we? Bulk of Design and Build Complete Testing
More informationECE320: Linear Control Systems Homework 8. 1) For one of the rectilinear systems in lab, I found the following state variable representations:
ECE30: Linear Control Systems Homework 8 Due: Thursday May 6, 00 at the beginning of class ) For one of the rectilinear systems in lab, I found the following state variable representations: 0 0 q q+ 74.805.6469
More informationNeural Network Control of an Inverted Pendulum on a Cart
Neural Network Control of an Inverted Pendulum on a Cart VALERI MLADENOV, GEORGI TSENOV, LAMBROS EKONOMOU, NICHOLAS HARKIOLAKIS, PANAGIOTIS KARAMPELAS Department of Theoretical Electrical Engineering Technical
More informationUNIVERSITY OF WASHINGTON Department of Aeronautics and Astronautics
UNIVERSITY OF WASHINGTON Department of Aeronautics and Astronautics Modeling and Control of a Flexishaft System March 19, 2003 Christopher Lum Travis Reisner Amanda Stephens Brian Hass AA/EE448 Controls
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationPID Control. Objectives
PID Control Objectives The objective of this lab is to study basic design issues for proportionalintegralderivative control laws. Emphasis is placed on transient responses and steadystate errors. The
More informationThe output voltage is given by,
71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the
More informationLaboratory Exercise 1 DC servo
Laboratory Exercise DC servo PerOlof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,
More informationNonlinear Opamp Circuits
deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering IIT Bombay May 3, 2013 Overview of opamp operating regions Linear Region Occurs when the opamp output is stable i.e.
More informationES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK
ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing
More informationVideo 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
More informationInverted Pendulum System
Introduction Inverted Pendulum System This lab experiment consists of two experimental procedures, each with sub parts. Experiment 1 is used to determine the system parameters needed to implement a controller.
More informationChapter 7 Control. Part Classical Control. Mobile Robotics  Prof Alonzo Kelly, CMU RI
Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More information1 Introduction. 2 Process description
1 Introduction This document describes the backround and theory of the Rotary Inverted Pendulum laboratory excercise. The purpose of this laboratory excercise is to familiarize the participants with state
More informationNonLinear SwingUp and Stabilizing Control of an Inverted Pendulum System
EUROCON 3 Ljubljana, Slovenia NonLinear SwingUp and Stabilizing Control of an Inverted Pendulum System Marvin Bugeja Faculty of Engineering University of Malta Msida (MSD6) Malta email: merv@ieee.org
More information1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii
Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System
More informationFUZZY SWINGUP AND STABILIZATION OF REAL INVERTED PENDULUM USING SINGLE RULEBASE
005010 JATIT All rights reserved wwwjatitorg FUZZY SWINGUP AND STABILIZATION OF REAL INVERTED PENDULUM USING SINGLE RULEBASE SINGH VIVEKKUMAR RADHAMOHAN, MONA SUBRAMANIAM A, DR MJNIGAM Indian Institute
More informationLab 5a: Pole Placement for the Inverted Pendulum
Lab 5a: Pole Placement for the Inverted Pendulum November 1, 2011 1 Purpose The objective of this lab is to achieve simultaneous control of both the angular position of the pendulum and horizontal position
More informationMechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation
Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.
More informationCALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems
CDS 101 1. Åström and Murray, Exercise 1.3 2. Åström and Murray, Exercise 1.4 3. Åström and Murray, Exercise 2.6, parts (a) and (b) CDS 110a 1. Åström and Murray, Exercise 1.4 2. Åström and Murray, Exercise
More informationCascade Control of a Continuous Stirred Tank Reactor (CSTR)
Journal of Applied and Industrial Sciences, 213, 1 (4): 1623, ISSN: 23284595 (PRINT), ISSN: 2328469 (ONLINE) Research Article Cascade Control of a Continuous Stirred Tank Reactor (CSTR) 16 A. O. Ahmed
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationThe control of a gantry
The control of a gantry AAE 364L In this experiment we will design a controller for a gantry or crane. Without a controller the pendulum of crane will swing for a long time. The idea is to use control
More informationForced oscillation  Pohl s pendulum with measure Dynamics. Equipment TEP
Forced oscillation  Pohl s pendulum TEP Related topics Angular velocity, characteristic frequency, resonance frequency, torsional pendulum, torsional oscillation, restoring torque, damped/undamped free
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationThe Control of an Inverted Pendulum
The Control of an Inverted Pendulum AAE 364L This experiment is devoted to the inverted pendulum. Clearly, the inverted pendulum will fall without any control. We will design a controller to balance the
More information(Refer Slide Time: 1:42)
Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture  21 Basic Principles of Feedback Control (Contd..) Friends, let me get started
More informationExample: DC Motor Speed Modeling
Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and openloop response Physical setup and system equations A common actuator in
More informationQNET Experiment #04: Inverted Pendulum Control. Rotary Pendulum (ROTPEN) Inverted Pendulum Trainer. Instructor Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #04: Inverted Pendulum Control Rotary Pendulum (ROTPEN) Inverted Pendulum Trainer Instructor Manual Table of Contents 1 Laboratory Objectives1 2
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationLab 3: Model based Position Control of a Cart
I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationDesign and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum
ISSN (Online): 3473878, Impact Factor (5): 3.79 Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum Kambhampati Tejaswi, Alluri Amarendra, Ganta Ramesh 3 M.Tech, Department
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationDigital Control Semester Project
Digital Control Semester Project Part I: TransformBased Design 1 Introduction For this project you will be designing a digital controller for a system which consists of a DC motor driving a shaft with
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationThe Control of an Inverted Pendulum
The Control of an Inverted Pendulum AAE 364L This experiment is devoted to the inverted pendulum. Clearly, the inverted pendulum will fall without any control. We will design a controller to balance the
More informationMotor Controller. A block diagram for the motor with a feedback controller is shown below
Motor Controller A block diagram for the motor with a feedback controller is shown below A few things to note 1. In this modeling problem, there is no established method or set of criteria for selecting
More informationTHE REACTION WHEEL PENDULUM
THE REACTION WHEEL PENDULUM By Ana Navarro YuHan Sun Final Report for ECE 486, Control Systems, Fall 2013 TA: Dan Soberal 16 December 2013 Thursday 36pm Contents 1. Introduction... 1 1.1 Sensors (Encoders)...
More informationLab 4 Motion in OneDimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (prerequisite Lab3)
Lab 4 Motion in OneDimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (prerequisite Lab3) Objectives: To obtain an understanding of position, velocity, and acceleration
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More information9.1 Harmonic Motion. Motion in cycles. linear motion  motion that goes from one place to another without repeating.
9.1 Harmonic Motion A bicyclist pedaling past you on the street moves in linear motion. Linear motion gets us from one place to another (Figure 9.1A). This chapter is about another kind of motion called
More informationLecture 25: Tue Nov 27, 2018
Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review timedomain characteristics of 2ndorder systems intro to control: feedback openloop vs closedloop control intro to
More informationCONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version
CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1
More informationPHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I
PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I (A short report is required for this lab. Just fill in the worksheet, make the graphs, and provide answers to the questions. Be sure to include
More informationTHE FLOATING DUTCHMEN Three Dimensional DrivenArm Inverted Pendulum
THE FLOATING DUTCHMEN Three Dimensional DrivenArm Inverted Pendulum Final Report for ECSE496 Control Systems Design Team Teresa Bernardi Brian Lewis Matthew Rosmarin Monday, May 8, 6 Rensselaer Polytechnic
More informationFRICTION AND FRICTION COMPENSATION IN THE FURUTA PENDULUM
FRICTION AND FRICTION COMPENSATION IN THE FURUTA PENDULUM M. Gäfvert, J. Svensson and K. J. Åström Department of Automatic Control Lund Institute of Technology, Box 8, S Lund, Sweden Fax:+4646388,Email:{magnus,kja}@control.lth.se
More informationMechatronics Engineering. Li Wen
Mechatronics Engineering Li Wen Bioinspired robotdc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control
More informationTransitioning to Chaos in a Simple Mechanical Oscillator
Transitioning to Chaos in a Simple Mechanical Oscillator Hwan Bae Physics Department, The College of Wooster, Wooster, Ohio 69, USA (Dated: May 9, 8) We vary the magnetic damping, driver frequency, and
More informationEE 474 Lab Part 2: OpenLoop and ClosedLoop Control (Velocity Servo)
Contents EE 474 Lab Part 2: OpenLoop and ClosedLoop Control (Velocity Servo) 1 Introduction 1 1.1 Discovery learning in the Controls Teaching Laboratory.............. 1 1.2 A Laboratory Notebook...............................
More informationDesign of Fuzzy PDControlled Overhead Crane System with AntiSwing Compensation
Engineering, 2011, 3, 755762 doi:10.4236/eng.2011.37091 Published Online July 2011 (http://www.scirp.org/journal/eng) Design of Fuzzy PDControlled Overhead Crane System with AntiSwing Compensation Abstract
More informationSimulink Modeling Tutorial
Simulink Modeling Tutorial Train system Free body diagram and Newton's law Model Construction Running the Model Obtaining MATLAB Model In Simulink, it is very straightforward to represent a physical system
More informationMatlabBased Tools for Analysis and Control of Inverted Pendula Systems
MatlabBased Tools for Analysis and Control of Inverted Pendula Systems Slávka Jadlovská, Ján Sarnovský Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic sjadlovska@gmail.com,
More informationB11. Closedloop control. Chapter 1. Fundamentals of closedloop control technology. Festo Didactic Process Control System
B11 Chapter 1 Fundamentals of closedloop control technology B12 This chapter outlines the differences between closedloop and openloop control and gives an introduction to closedloop control technology.
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationInverted Pendulum: StateSpace Methods for Controller Design
1 de 12 18/10/2015 22:45 Tips Effects TIPS ABOUT BASICS HARDWARE INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SYSTEM MODELING ANALYSIS Inverted Pendulum: StateSpace Methods for Controller
More informationSingleInputSingleOutput Systems
TF 502 SingleInputSingleOutput Systems SIST, ShanghaiTech Introduction OpenLoop ControlResponse Proportional Control General PID Control Boris Houska 11 Contents Introduction OpenLoop ControlResponse
More information