MFE634. Reliability Analysis. Group 5. Xiangyu Luo Ameya Palekar Krutin Parashuram Patil Chao Sa

Size: px
Start display at page:

Download "MFE634. Reliability Analysis. Group 5. Xiangyu Luo Ameya Palekar Krutin Parashuram Patil Chao Sa"

Transcription

1 MFE634 Reliability Analysis Group 5 Xiangyu Luo Ameya Palekar Krutin Parashuram Patil Chao Sa

2 Contents. Generate Data and Verify.... Calculate and Analyze the Data.... Complete Sample % Confidence Interval for the Mean Time to Failure (MTTF) % Confidence Interval for the Failure Rate (FR) % the Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)..... With Truncated at the 7th Failure % Confidence Interval for the Mean Time to Failure (MTTF) % Confidence Interval for the Failure Rate (FR) % Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) With Truncated at time T= 0.5*MTTF % Confidence Interval for the Mean Time to Failure (MTTF) % Confidence Interval for the Failure Rate (FR) % Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) Summary Implement A Fault Tree Analysis for Flood Barrier A Failure Mode and Effects Analysis for Flood Barrier... 8 Appendix A:... 9

3 Frequency. Generate Data and Verify Generate 5 exponentially distributed times to failure, with MTTF as defined by group number. Expon. MTTF =.5K + GNo*00 =.5K = 3000 Data Display Failure Sum of Failure Histogram of Failure 9 Sum of Failure = Mean of Failure 6 5 Mean of Failure = Standard Deviation of Failure Standard deviation of Failure = Failure Distribution ID Plot for Failure Goodness of Fit Test Distribution AD P Normal.668 <0.005 Exponential Weibull >0.50 Gamma Through the highest P-value and lowest AD value, we pick the Exponential distribution as the best fit for our data.

4 . Calculate and Analyze the Data. Complete Sample... 95% Confidence Interval for the Mean Time to Failure (MTTF) In this case, we have 5 samples and the confidence interval is 95%, and by adding all the test times of failures, we get total time is T = n = 5 α = T i i= = 7089 With these inputs, we can use the Chi-Squared distribution table to calculate the confidence interval in the experiment with the degree of freedom = n: Hence, the corresponding for the mean life is: ( T, χ α n, χ α n, = χ 50,0.975 = 7.40 χ α n, = χ 50,0.05 = T ) = ( , 478 ) = (990.79, ) χ n, α.. 95% Confidence Interval for the Failure Rate (FR) Failure Rate = Mean Life = ( , ) = ( , ) % the Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) Often, we just need a lower or upper bound on reliability. Assume we are interested in a 90% reliability lower bound for this case and we know mission time = We re-

5 estimate the failure rate bound, for the error α = 0., for only one side. With Degree of Freedom = n, the new Chi-square value: χ n, α = χ 50,0.9 = Hence, the corresponding for the mean life and failure rate are: Mean = FR = T = = χ n, α Mean Life = = Which, in turn, allow us to calculate 90% Lower Bound for the reliability R of the device. R lower(t) = P{x T} = EXP { T θ } = EXP{ pt} = EXP{ } = With Truncated at the 7th Failure. Data Display.. 95% Confidence Interval for the Mean Time to Failure (MTTF) In this case, the experiment is truncated at the 7 th failure = We have 7 failures with known failure time. The confidence interval is 95%. By adding all the known test times of failures and assumed failure time for the last 8 samples, we get total time is 658. T = 7 T i i= k = 7 α = 0.05 The 7 th Failure (Sort smallest to largest) (5 7) = 658 3

6 With these inputs, we can use the Chi-Squared distribution table to calculate the confidence interval in the experiment with the degree of freedom = k: Hence, the corresponding for the mean life is: ( T, χ α k, χ α k, = χ 4,0.975 = 6.9 χ α k, = χ 4,0.05 = 5.69 T ) = ( , 3364 ) = (69.74, ) 5.69 χ k, α.. 95% Confidence Interval for the Failure Rate (FR) Failure Rate = Mean Life = ( , ) = ( , ) % Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) In a 90% reliability lower bound with mission time = For the error α = 0., for only one side, with Degree of Freedom = k, the new Chi-square value: χ k, α = χ 4,0.9 =.064 Hence, the corresponding for the mean life and failure rate are: Mean = FR = T = = χ k, α Mean Life = = Which, in turn, allow us to calculate 90% Lower Bound for the reliability R of the device. R lower(t) = P{x T} = EXP { T θ } = EXP{ pt} = EXP{ } = 0.6 4

7 .3. With Truncated at time T= 0.5*MTTF. Data Display.3. 95% Confidence Interval for the Mean Time to Failure (MTTF) In this case, the experiment runs in a specific time = 0.5*3000 = 750, so we have 6 failures with known failure time. The confidence interval is 95%. We get total time is T = k = 6 α = 0.05 T = = 8750 With these inputs, we can use the Chi-Squared distribution table to calculate the confidence interval in the experiment with the degree of freedom = n+: Hence, the corresponding for the mean life is: ( T, χ α n+, χ α k+, = χ 4,0.975 = 6.9 χ α k+, = χ 4,0.05 = 5.69 T ) = ( , ) = ( , ) 5.69 χ n+, α.3. 95% Confidence Interval for the Failure Rate (FR) Failure Rate = 5 Mean Life Time=750 Failure (Sort smallest to largest) = ( , ) = ( , ) % Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) In a 90% reliability lower bound with mission time = For the error α = 0., for only one side, with Degree of Freedom = k+, the new Chi-square value:

8 χ k+, α = χ 4,0.9 =.064 Hence, the corresponding for the mean life and failure rate are: Mean = FR = T = = χ k+, α Mean Life = = Which, in turn, allow us to calculate 90% Lower Bound for the reliability R of the device. R lower(t) = P{x T} = EXP { T θ } = EXP{ pt} = EXP{ } = Summary Collect the three sets of results in a table and compare. Complete Truncated at 7 th Truncated at 0.5 MTTF 95% CI for the MTTF (990.79, 4394) (69.74, ) ( ,666.53) 95% CI for the FR ( , ) ( , ) ( , ) 90% Lower Confidence Bounds for the MTTF & FR MTTF: FR: MTTF: FR: MTTF: FR: As we can see, the complete data has the most accurate 95% confidence interval and failure rate. The failure and time censored (truncated) data, which are both incomplete, have larger confidence interval and larger failure rate. 6

9 4. Implement 4. A Fault Tree Analysis for Flood Barrier Fail to Use Portable Flood Barriers Connective Parts Cracked Barrier Leaky Anchorage Corroded Bearing Heavier than Permitted Covering Face Broken Lack of Rustproof Paint Fail of Construction Fail of Design Fail of Construction Fail of Material 7

10 4. A Failure Mode and Effects Analysis for Flood Barrier Part / Design Parameter Portable Flood Barrier After-sale service Potential Failure Mode Connective part crack Barriers leaky Missing part Do not reach.5m height Service hotline is always busy Potential Failure Effects Barrier destroy Barrier can't be used Barrier can't be used Barrier can't prevent flood Customers disappointed SEV Potential Causes Part Corroded Damaged during delivery Fail to check Installed improperly Hotlines are few OCC Current Controls Protective paint Strength the package Offer backup parts Offer detailed Instruction Set more hotlines DET RPN Actions Recommended Redesign the structure of connective part Add protections during delivery Set up double-check mechanism 3 30 Training the QA department 9 70 Invest more money on After-sale apartment Severity (SEV) If SEV >= 8 Otherwise If SEV <= 3 Risk Priority Number (RPN) If RPN >= 300 Otherwise If RPN <= 00 8

11 Appendix A: MFE634 Group Take Home Final Exam Q-: S08 Group No: Date: Reliability Analysis Question: use the following Group Exp. MTTF: Group Expon. MTTF Group Expon. MTTF One,500 hours All others.5k+gno*00 Generate 5 exponentially distributed times to failure, with MTTF as defined above. Using as a Model the START sheets on Exponential Reliability and Censored Data Analyze such above defined complete sample, in the following manner: a) Obtain a 95% Confidence Interval for the Mean Time to Failure (MTTF) b) Obtain a 95% Confidence Interval for the Failure Rate (FR) c) Obtain 90% the Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) Now, assume your sample has been Truncated at the 7 th failure. This means the test was suspended at that Failure Time. Thence, you will never know when the remaining units will fail. With such Failure Censored Data: a) Obtain a 95% Confidence Interval for the Mean Time to Failure (MTTF) b) Obtain a 95% Confidence Interval for the Failure Rate (FR) c) Obtain 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) Finally, assume your sample has been Truncated at time T= 0.5*MTTF. This means the test was suspended after that Truncation Time. Thence, you will never know when units still working after such time T, will fail. With such Time Censored Data: a) Obtain a 95% Confidence Interval for the Mean Time to Failure (MTTF) b) Obtain a 95% Confidence Interval for the Failure Rate (FR) c) Obtain 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI) Compare the three sets of results in a table. Take Conclusions. Now, implement () a Fault Tree Analysis (FTA) and () a Failure Mode and Effects Analysis (FMEA) to an example of your Group Project Topic problem. Make it specific to your Topic problem issues. Use the Blueprints material in BB as a guide. This Take Home Part of the Final Exam is worth 0 Points (Companion, also 0 points). Each Group will deliver a printout/file of this Take Home at Entrance of the Final Exam. 9

Solutions. Some of the problems that might be encountered in collecting data on check-in times are:

Solutions. Some of the problems that might be encountered in collecting data on check-in times are: Solutions Chapter 7 E7.1 Some of the problems that might be encountered in collecting data on check-in times are: Need to collect separate data for each airline (time and cost). Need to collect data for

More information

CHAPTER 10 RELIABILITY

CHAPTER 10 RELIABILITY CHAPTER 10 RELIABILITY Failure rates Reliability Constant failure rate and exponential distribution System Reliability Components in series Components in parallel Combination system 1 Failure Rate Curve

More information

Key Words: Lifetime Data Analysis (LDA), Probability Density Function (PDF), Goodness of fit methods, Chi-square method.

Key Words: Lifetime Data Analysis (LDA), Probability Density Function (PDF), Goodness of fit methods, Chi-square method. Reliability prediction based on lifetime data analysis methodology: The pump case study Abstract: The business case aims to demonstrate the lifetime data analysis methodology application from the historical

More information

Examination paper for TMA4275 Lifetime Analysis

Examination paper for TMA4275 Lifetime Analysis Department of Mathematical Sciences Examination paper for TMA4275 Lifetime Analysis Academic contact during examination: Ioannis Vardaxis Phone: 95 36 00 26 Examination date: Saturday May 30 2015 Examination

More information

Windchill Quality Solutions 2011 (formerly Relex 2011) Curriculum Guide

Windchill Quality Solutions 2011 (formerly Relex 2011) Curriculum Guide Windchill Quality Solutions 2011 (formerly Relex 2011) Curriculum Guide Web Based Curriculum Guide Update to Windchill Quality Solutions (Formerly Relex 2011) Windchill Quality Solutions (Formerly Relex

More information

9.4 Life Sensitivity for Stress Effects

9.4 Life Sensitivity for Stress Effects 9.4 Life Sensitivity for Stress Effects The fatigue crack growth life of structural components is significantly affected by the level of applied (repeating) stress and the initial crack size. This section

More information

Semiconductor Reliability

Semiconductor Reliability Semiconductor Reliability. Semiconductor Device Failure Region Below figure shows the time-dependent change in the semiconductor device failure rate. Discussions on failure rate change in time often classify

More information

Chapter 2. 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is

Chapter 2. 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is Chapter 2 1 From Equation 2.10: P(A 1 F) ˆ P(A 1)P(F A 1 ) S i P(F A i )P(A i ) The denominator is 0:3 0:0001 0:01 0:005 0:001 0:002 0:0002 0:04 ˆ 0:00009 P(A 1 F) ˆ 0:0001 0:3 ˆ 0:133: 0:00009 Similarly

More information

ELE 491 Senior Design Project Proposal

ELE 491 Senior Design Project Proposal ELE 491 Senior Design Project Proposal These slides are loosely based on the book Design for Electrical and Computer Engineers by Ford and Coulston. I have used the sources referenced in the book freely

More information

The comparative studies on reliability for Rayleigh models

The comparative studies on reliability for Rayleigh models Journal of the Korean Data & Information Science Society 018, 9, 533 545 http://dx.doi.org/10.7465/jkdi.018.9..533 한국데이터정보과학회지 The comparative studies on reliability for Rayleigh models Ji Eun Oh 1 Joong

More information

Chapter 5. System Reliability and Reliability Prediction.

Chapter 5. System Reliability and Reliability Prediction. Chapter 5. System Reliability and Reliability Prediction. Problems & Solutions. Problem 1. Estimate the individual part failure rate given a base failure rate of 0.0333 failure/hour, a quality factor of

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Reliability Engineering I

Reliability Engineering I Happiness is taking the reliability final exam. Reliability Engineering I ENM/MSC 565 Review for the Final Exam Vital Statistics What R&M concepts covered in the course When Monday April 29 from 4:30 6:00

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Fault Tolerant Computing ECE 655 Part 1 Introduction C. M. Krishna Fall 2006 ECE655/Krishna Part.1.1 Prerequisites Basic courses in

More information

The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles

The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles Statistics Preprints Statistics 2008 The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles Yili Hong Iowa State University, yili_hong@hotmail.com William Q. Meeker

More information

Chapter 3. Julian Chan. June 29, 2012

Chapter 3. Julian Chan. June 29, 2012 Chapter 3 Julian Chan June 29, 202 Continuous variables For a continuous random variable X there is an associated density function f(x). It satisifies many of the same properties of discrete random variables

More information

ECE 510 Lecture 6 Confidence Limits. Scott Johnson Glenn Shirley

ECE 510 Lecture 6 Confidence Limits. Scott Johnson Glenn Shirley ECE 510 Lecture 6 Confidence Limits Scott Johnson Glenn Shirley Concepts 28 Jan 2013 S.C.Johnson, C.G.Shirley 2 Statistical Inference Population True ( population ) value = parameter Sample Sample value

More information

Math 407: Probability Theory 5/10/ Final exam (11am - 1pm)

Math 407: Probability Theory 5/10/ Final exam (11am - 1pm) Math 407: Probability Theory 5/10/2013 - Final exam (11am - 1pm) Name: USC ID: Signature: 1. Write your name and ID number in the spaces above. 2. Show all your work and circle your final answer. Simplify

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

Continuous Improvement Toolkit. Probability Distributions. Continuous Improvement Toolkit.

Continuous Improvement Toolkit. Probability Distributions. Continuous Improvement Toolkit. Continuous Improvement Toolkit Probability Distributions The Continuous Improvement Map Managing Risk FMEA Understanding Performance** Check Sheets Data Collection PDPC RAID Log* Risk Analysis* Benchmarking***

More information

EE 445 / 850: Final Examination

EE 445 / 850: Final Examination EE 445 / 850: Final Examination Date and Time: 3 Dec 0, PM Room: HLTH B6 Exam Duration: 3 hours One formula sheet permitted. - Covers chapters - 5 problems each carrying 0 marks - Must show all calculations

More information

Part Possible Score Base 5 5 MC Total 50

Part Possible Score Base 5 5 MC Total 50 Stat 220 Final Exam December 16, 2004 Schafer NAME: ANDREW ID: Read This First: You have three hours to work on the exam. The other questions require you to work out answers to the questions; be sure to

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document 19.15 Chemical and Volume Control System 19.15.1 System Description See subsection 9.3.6.2. 19.15.2 System Operation See subsection 9.3.6.4. 19.15.3 Performance during Accident Conditions See subsection

More information

10 Introduction to Reliability

10 Introduction to Reliability 0 Introduction to Reliability 10 Introduction to Reliability The following notes are based on Volume 6: How to Analyze Reliability Data, by Wayne Nelson (1993), ASQC Press. When considering the reliability

More information

Fundamentals of Reliability Engineering and Applications

Fundamentals of Reliability Engineering and Applications Fundamentals of Reliability Engineering and Applications E. A. Elsayed elsayed@rci.rutgers.edu Rutgers University Quality Control & Reliability Engineering (QCRE) IIE February 21, 2012 1 Outline Part 1.

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

Quiz #2 A Mighty Fine Review

Quiz #2 A Mighty Fine Review Quiz #2 A Mighty Fine Review February 27: A reliable adventure; a day like all days filled with those events that alter and change the course of history and you will be there! What is a Quiz #2? Three

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

Objective Experiments Glossary of Statistical Terms

Objective Experiments Glossary of Statistical Terms Objective Experiments Glossary of Statistical Terms This glossary is intended to provide friendly definitions for terms used commonly in engineering and science. It is not intended to be absolutely precise.

More information

n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect.

n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect. Chapter 7 Parametric Likelihood Fitting Concepts: Chapter 7 Parametric Likelihood Fitting Concepts: Objectives Show how to compute a likelihood for a parametric model using discrete data. Show how to compute

More information

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS040) p.4828 Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

More information

I I FINAL, 01 Jun 8.4 to 31 May TITLE AND SUBTITLE 5 * _- N, '. ', -;

I I FINAL, 01 Jun 8.4 to 31 May TITLE AND SUBTITLE 5 * _- N, '. ', -; R AD-A237 850 E........ I N 11111IIIII U 1 1I!til II II... 1. AGENCY USE ONLY Leave 'VanK) I2. REPORT DATE 3 REPORT TYPE AND " - - I I FINAL, 01 Jun 8.4 to 31 May 88 4. TITLE AND SUBTITLE 5 * _- N, '.

More information

Module. Module. Module. 3 (Control & Reaction Plan) Break the Rules

Module. Module. Module. 3 (Control & Reaction Plan) Break the Rules (1) Break the Rules Module 1 Module 2 Module 3 (Control & Reaction Plan) Break the Rules Module 1 1. -, - - FMEA , 4 www.ssiso.co.kr 4 , 2011.03.01 PRESS (P) CRACK P1 C1 NECK P2 C2 SCRATCH P3 C3 P4 C4

More information

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean Confidence Intervals Confidence interval for sample mean The CLT tells us: as the sample size n increases, the sample mean is approximately Normal with mean and standard deviation Thus, we have a standard

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS CDR4_BERE601_11_SE_C1QXD 1//08 1:0 PM Page 1 110: (Student CD-ROM Topic) Chi-Square Goodness-of-Fit Tests CD1-1 110 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS In this section, χ goodness-of-fit

More information

Other Continuous Probability Distributions

Other Continuous Probability Distributions CHAPTER Probability, Statistics, and Reliability for Engineers and Scientists Second Edition PROBABILITY DISTRIBUTION FOR CONTINUOUS RANDOM VARIABLES A. J. Clar School of Engineering Department of Civil

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

Confidence intervals CE 311S

Confidence intervals CE 311S CE 311S PREVIEW OF STATISTICS The first part of the class was about probability. P(H) = 0.5 P(T) = 0.5 HTTHHTTTTHHTHTHH If we know how a random process works, what will we see in the field? Preview of

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood Scott Johnson Glenn Shirley Confidence Limits 30 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 2 Binomial Confidence Limits (Solution 6.2) UCL: Prob of

More information

Estimation of Stress-Strength Reliability for Kumaraswamy Exponential Distribution Based on Upper Record Values

Estimation of Stress-Strength Reliability for Kumaraswamy Exponential Distribution Based on Upper Record Values International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 2, 59-71 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.7210 Estimation of Stress-Strength Reliability for

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues Content What are Events? Examples for Problematic Event Semantics Inhibit, Enabler / Conditioning

More information

STAT T&E COE-Report Reliability Test Planning for Mean Time Between Failures. Best Practice. Authored by: Jennifer Kensler, PhD STAT T&E COE

STAT T&E COE-Report Reliability Test Planning for Mean Time Between Failures. Best Practice. Authored by: Jennifer Kensler, PhD STAT T&E COE Reliability est Planning for Mean ime Between Failures Best Practice Authored by: Jennifer Kensler, PhD SA &E COE March 21, 2014 he goal of the SA &E COE is to assist in developing rigorous, defensible

More information

Statistical Quality Design & Control Fall 2003 Odette School of Business University of Windsor

Statistical Quality Design & Control Fall 2003 Odette School of Business University of Windsor Name (print, please) ID Statistical Quality Design & Control 7-5 Fall Odette School of Business University of Windsor Midterm Exam Solution Wednesday, October 15, 5: 6:5 pm Instructor: Mohammed Fazle Baki

More information

MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander

MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander Problem Points Score 1 22 2 18 Last Name: First Name: USC ID: Signature: 3 20 4 21 5 27 6 18 7 25 8 28 Total 175 Points total 179 but 175 is maximum. This

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 8 Input Modeling Purpose & Overview Input models provide the driving force for a simulation model. The quality of the output is no better than the quality

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulation Modeling and Performance Analysis with Discrete-Event Simulation Chapter 9 Input Modeling Contents Data Collection Identifying the Distribution with Data Parameter Estimation Goodness-of-Fit

More information

Reliability of Technical Systems

Reliability of Technical Systems Main Topics 1. Introduction, Key Terms, Framing the Problem 2. Reliability Parameters: Failure Rate, Failure Probability, etc. 3. Some Important Reliability Distributions 4. Component Reliability 5. Software

More information

DISTRIBUTION SYSTEM ELECTRIC INFRASTRUCTURE RELIABILITY PERFORMANCE INDICATORS

DISTRIBUTION SYSTEM ELECTRIC INFRASTRUCTURE RELIABILITY PERFORMANCE INDICATORS EB-- Exhibit D Page of DISTRIBUTION SYSTEM ELECTRIC INFRASTRUCTURE RELIABILITY PERFORMANCE INDICATORS FIVE-YEAR HISTORICAL RELIABILITY PERFORMANCE THESL tracks System Average Interruption Frequency Index

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

Online publication date: 01 March 2010 PLEASE SCROLL DOWN FOR ARTICLE

Online publication date: 01 March 2010 PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [2007-2008-2009 Pohang University of Science and Technology (POSTECH)] On: 2 March 2010 Access details: Access Details: [subscription number 907486221] Publisher Taylor

More information

Quantitative Reliability Analysis

Quantitative Reliability Analysis Quantitative Reliability Analysis Moosung Jae May 4, 2015 System Reliability Analysis System reliability analysis is conducted in terms of probabilities The probabilities of events can be modelled as logical

More information

Solutions to the Spring 2015 CAS Exam ST

Solutions to the Spring 2015 CAS Exam ST Solutions to the Spring 2015 CAS Exam ST (updated to include the CAS Final Answer Key of July 15) There were 25 questions in total, of equal value, on this 2.5 hour exam. There was a 10 minute reading

More information

Data Sheet. Functional Safety Characteristic Safety Values for BE.. Brakes * _0715*

Data Sheet. Functional Safety Characteristic Safety Values for BE.. Brakes * _0715* Drive Technology \ Drive Automation \ System Integration \ Services *22291814_0715* Data Sheet Functional Safety Characteristic Safety Values for BE.. Brakes Edition 07/2015 22291814/EN SEW-EURODRIVE Driving

More information

Availability. M(t) = 1 - e -mt

Availability. M(t) = 1 - e -mt Availability Availability - A(t) the probability that the system is operating correctly and is available to perform its functions at the instant of time t More general concept than reliability: failure

More information

Prof. Thistleton MAT 505 Introduction to Probability Lecture 13

Prof. Thistleton MAT 505 Introduction to Probability Lecture 13 Prof. Thistleton MAT 55 Introduction to Probability Lecture 3 Sections from Text and MIT Video Lecture: Sections 5.4, 5.6 http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-4- probabilisticsystems-analysis-and-applied-probability-fall-2/video-lectures/lecture-8-continuousrandomvariables/

More information

7.1 Basic Properties of Confidence Intervals

7.1 Basic Properties of Confidence Intervals 7.1 Basic Properties of Confidence Intervals What s Missing in a Point Just a single estimate What we need: how reliable it is Estimate? No idea how reliable this estimate is some measure of the variability

More information

Reliability of Technical Systems

Reliability of Technical Systems Reliability of Technical Systems Main Topics. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability 4.

More information

Concept Category 2. Exponential and Log Functions

Concept Category 2. Exponential and Log Functions Concept Category 2 Exponential and Log Functions Concept Category 2 Check List *Find the inverse and composition of functions *Identify an exponential from a table, graph and equation *Identify the difference

More information

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel.

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel. Chapter 6 1. a. Section 6.1. b. Section 6.3, see also Section 6.2. c. Predictions based on most published sources of reliability data tend to underestimate the reliability that is achievable, given that

More information

Field data reliability analysis of highly reliable item

Field data reliability analysis of highly reliable item Field data reliability analysis of highly reliable item David Vališ & Zdeněk Vintr Faculty of Military Technologies University of Defence 612 00 Brno Czech Republic david.valis@unob.cz Miroslav Koucký

More information

Hybrid Censoring; An Introduction 2

Hybrid Censoring; An Introduction 2 Hybrid Censoring; An Introduction 2 Debasis Kundu Department of Mathematics & Statistics Indian Institute of Technology Kanpur 23-rd November, 2010 2 This is a joint work with N. Balakrishnan Debasis Kundu

More information

RiskAMP Reference Manual

RiskAMP Reference Manual RiskAMP Reference Manual RiskAMP Version Structured Data, LLC. RiskAMP is a trademark of Strucuted Data, LLC. Excel is a registered trademark of Microsoft Corporation. Other trademarks are held by their

More information

CH.8 Statistical Intervals for a Single Sample

CH.8 Statistical Intervals for a Single Sample CH.8 Statistical Intervals for a Single Sample Introduction Confidence interval on the mean of a normal distribution, variance known Confidence interval on the mean of a normal distribution, variance unknown

More information

Recommended Land Pattern: [mm]

Recommended Land Pattern: [mm] Dimensions: [mm] Recommended Land Pattern: [mm] Electrical Properties: Properties Test conditions Value Unit Tol. 5,5,5 Inductance 00 khz/ 00 mv L 47 µh ±0% Inductance 00 khz/ 00 mv L 47 µh ±0% Rated Current

More information

Content by Week Week of October 14 27

Content by Week Week of October 14 27 Content by Week Week of October 14 27 Learning objectives By the end of this week, you should be able to: Understand the purpose and interpretation of confidence intervals for the mean, Calculate confidence

More information

Comparative Distributions of Hazard Modeling Analysis

Comparative Distributions of Hazard Modeling Analysis Comparative s of Hazard Modeling Analysis Rana Abdul Wajid Professor and Director Center for Statistics Lahore School of Economics Lahore E-mail: drrana@lse.edu.pk M. Shuaib Khan Department of Statistics

More information

57:022 Principles of Design II Midterm Exam #2 Solutions

57:022 Principles of Design II Midterm Exam #2 Solutions 57:022 Principles of Design II Midterm Exam #2 Solutions Part: I II III IV V Total Possible Pts: 20 15 12 16 12 75 PART ONE Indicate "+" if True and "O" if False: _+_a. If a component's lifetime has exponential

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

R E A D : E S S E N T I A L S C R U M : A P R A C T I C A L G U I D E T O T H E M O S T P O P U L A R A G I L E P R O C E S S. C H.

R E A D : E S S E N T I A L S C R U M : A P R A C T I C A L G U I D E T O T H E M O S T P O P U L A R A G I L E P R O C E S S. C H. R E A D : E S S E N T I A L S C R U M : A P R A C T I C A L G U I D E T O T H E M O S T P O P U L A R A G I L E P R O C E S S. C H. 5 S O F T W A R E E N G I N E E R I N G B Y S O M M E R V I L L E S E

More information

Estimation of Quantiles

Estimation of Quantiles 9 Estimation of Quantiles The notion of quantiles was introduced in Section 3.2: recall that a quantile x α for an r.v. X is a constant such that P(X x α )=1 α. (9.1) In this chapter we examine quantiles

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N15FE

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N15FE SSMNFE TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSMNFE High Speed Switching Applications Analog Switching Applications Unit: mm Small package Low ON resistance : R on =. Ω (max) (@V GS

More information

The exponent of a number shows you how many times the number is being multiplied by itself.

The exponent of a number shows you how many times the number is being multiplied by itself. Name Evaluating Numerical Expressions with Exponents- Step-by-Step Lesson Lesson 1 Exponent Problem: Write the expression as an exponent. 4 x 4 x 4 x 4 x 4 Explanation: The exponent of a number shows you

More information

Robustness and Distribution Assumptions

Robustness and Distribution Assumptions Chapter 1 Robustness and Distribution Assumptions 1.1 Introduction In statistics, one often works with model assumptions, i.e., one assumes that data follow a certain model. Then one makes use of methodology

More information

Theoretical Probability Models

Theoretical Probability Models CHAPTER Duxbury Thomson Learning Maing Hard Decision Third Edition Theoretical Probability Models A. J. Clar School of Engineering Department of Civil and Environmental Engineering 9 FALL 003 By Dr. Ibrahim.

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Chapter 5 Reliability of Systems

Chapter 5 Reliability of Systems Chapter 5 Reliability of Systems Hey! Can you tell us how to analyze complex systems? Serial Configuration Parallel Configuration Combined Series-Parallel C. Ebeling, Intro to Reliability & Maintainability

More information

Lecture 3. Conditional distributions with applications

Lecture 3. Conditional distributions with applications Lecture 3. Conditional distributions with applications Jesper Rydén Department of Mathematics, Uppsala University jesper.ryden@math.uu.se Statistical Risk Analysis Spring 2014 Example: Wave parameters

More information

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring A. Ganguly, S. Mitra, D. Samanta, D. Kundu,2 Abstract Epstein [9] introduced the Type-I hybrid censoring scheme

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV Theory of Engineering Experimentation Chapter IV. Decision Making for a Single Sample Chapter IV 1 4 1 Statistical Inference The field of statistical inference consists of those methods used to make decisions

More information

Power System Research Group Electrical Engineering Dept., University of Saskatchewan Saskatoon, Canada

Power System Research Group Electrical Engineering Dept., University of Saskatchewan Saskatoon, Canada Abstract Failure Bunching Phenomena in Electric Power Transmission Systems Roy Billinton Gagan Singh Janak Acharya Power System Research Group Electrical Engineering Dept., University of Saskatchewan Saskatoon,

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com Report Title: Report Type: Date: Qualification Test Report See Attached

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Lecture 9 on BST 631: Statistical Theory I Kui Zhang, 9/3/8 and 9/5/8 Review for the previous lecture Definition: Several commonly used discrete distributions, including discrete uniform, hypergeometric,

More information

COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH *

COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH * Jordan Journal of Mathematics and Statistics JJMS 4,, pp. 6-78 COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH * Sanku Dey ABSTRACT:

More information

Stat 3115D - Exam 2. If you run out of room, use the back of the page and indicate this on the question.

Stat 3115D - Exam 2. If you run out of room, use the back of the page and indicate this on the question. Stat 3115D - Exam 2 Name: Wednesday, April 8, 2015 Time: 50 minutes Instructor: Brittany Cuchta Instructions: Do not open the exam until I say you may. Circle or box your final answer where appropriate.

More information

STAT 328 (Statistical Packages)

STAT 328 (Statistical Packages) Department of Statistics and Operations Research College of Science King Saud University Exercises STAT 328 (Statistical Packages) nashmiah r.alshammari ^-^ Excel and Minitab - 1 - Write the commands of

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 0 Output Analysis for a Single Model Purpose Objective: Estimate system performance via simulation If θ is the system performance, the precision of the

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U).

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U). 1. Suppose Y U(0, 2) so that the probability density function (pdf) of Y is 1 2, 0 < y < 2 (a) Find the pdf of U = Y 4 + 1. Make sure to note the support. (c) Suppose Y 1, Y 2,..., Y n is an iid sample

More information

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 15 System Reliability Concepts and Methods William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on

More information

Distribution Fitting (Censored Data)

Distribution Fitting (Censored Data) Distribution Fitting (Censored Data) Summary... 1 Data Input... 2 Analysis Summary... 3 Analysis Options... 4 Goodness-of-Fit Tests... 6 Frequency Histogram... 8 Comparison of Alternative Distributions...

More information

ParSCORE Marking System. Instructor User Guide

ParSCORE Marking System. Instructor User Guide ParSCORE Marking System Instructor User Guide 2015 Summary Scanning Services is located in Learning and Technology Center in SE12-103N. Hours of Operation: Monday to Friday: 8:00am to 4:00pm Closed weekends

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 6. Renewal Mathematically, renewal refers to a continuous time stochastic process with states,, 2,. N t {,, 2, 3, } so that you only have jumps from x to x + and

More information

Recommended Land Pattern: [mm]

Recommended Land Pattern: [mm] Dimensions: [mm] Recommended Land Pattern: [mm] Electrical Properties: 3 4 5 0,7 Properties Test conditions Value Unit Tol. Inductance 1 100 khz/ 100 mv L 1 10 µh ±20% Inductance 2 100 khz/ 100 mv L 2

More information

Analyzing & Testing. Photocalorimetry Photo-DSC. Method, Technique, Applications. Photo-DSC 204 F1. Leading Thermal Analysis

Analyzing & Testing. Photocalorimetry Photo-DSC. Method, Technique, Applications. Photo-DSC 204 F1. Leading Thermal Analysis Analyzing & Testing Photocalorimetry Photo-DSC Method, Technique, Applications Photo-DSC 204 F1 Leading Thermal Analysis Photo-DSC 204 F1 Phoenix Method and Technique Advantages of Photocalorimetry Besides

More information