n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect.

Size: px
Start display at page:

Download "n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect."

Transcription

1 Chapter 7 Parametric Likelihood Fitting Concepts: Chapter 7 Parametric Likelihood Fitting Concepts: Objectives Show how to compute a likelihood for a parametric model using discrete data. Show how to compute a likelihood for samples containing right censored observations and left censored observations. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright W. Q. Meeker and L. A. Escobar. Based on the authors text Statistical Methods for Reliability Data, John Wiley & Sons Inc December 14, h 9min 7-1 Use a parametric likelihood as a tool for data analysis and inference. Illustrate the use of likelihood and normal-approximation methods of computing confidence intervals for model parameters and other quantities of interest. Explain the appropriate use of the density approximation for observations reported as exact failures. 7-2 Example: Between α-particle Emissions of Americium-241 (Berkson 1966) Berkson (1966) investigates the randomness of α-particle emissions of Americium-241, which has a half-life of about 458 years. Data: Interarrival times (units: 1/5000 seconds). n =10,220 observations. Data binned into intervals from 0 to 4000 time units. Interval sizes ranging from 25 to 100 units. Additional interval for observed times exceeding 4,000 time units. Smaller samples analyzed here to illustrate sample size effect. We start the analysis with n =200. Data for α-particle Emissions of Americium-241 Interarrival s Interval Endpoint All s Random Sample of s lower upper n = n = Histogram of the n = 200 Sample of α-particle Interarrival Data Exponential Probability Plot of the n = 200 Sample of α-particle Interarrival Data. The Plot also Shows Approximate 95% Simultaneous Nonparametric Confidence Bands. Frequency Probability

2 Parametric Likelihood Probability of the Data Using the model Pr(T t) = F(t;) for continuous T, the likelihood (probability) for a single observation in the interval (t i 1,t i ] is L i (;data i ) = Pr(t i 1 < T t i ) = F(t i ;) F(t i 1 ;). Can be generalized to allow for explanatory variables, multiple sources of variability, and other model features. and Likelihood for Interval Data Data: α-particle emissions of americium-241 The exponential distribution is ( F(t;) = 1 exp t ), t > 0. = E(T), the mean time between arrivals. The total likelihood is the joint probability of the data. Assuming n independent observations n L() = L(;DATA) = C L i (;data i ). i=1 Want to estimate and g(). We will find to make L() large. 7-7 The interval-data likelihood has the form n 8 [ L() = L i () = F(tj ;) F(t j 1 ;) ] d j i=1 j=1 8 [ ( = exp t ) ( j 1 exp t )] dj j j=1 where d j is the number of interarrival times in the jth interval (i.e., times between t j 1 and t j ). 7-8 R() = L()/L( ) for the n = 200 α-particle Interarrival Data. Vertical Lines Give an Approximate 95% Likelihood-Based Confidence Interval for Exponential Probability Plot for the n = 200 Sample of α-particle Interarrival Data. The Plot Also Shows Parametric Exponential ML Estimate and 95% Confidence Intervals for F(t). <- estimate of mean using all n=10220 times n=200 -> Probability ML Fit 95% Pointwise Confidence Intervals Example. α-particle Pseudo Data Constructed with Constant Proportion within Each Bin R() = L()/L( ) for the n = 20, 200, and 2000 Pseudo Data. Vertical Lines Give Corresponding Approximate 95% Likelihood-Based Confidence Intervals Interarrival s Interval Endpoint Samples of s lower upper n=20000 n=2000 n=200 n= <- estimate of mean using all n=20000 times n=20 -> n=200 -> <- n=

3 Example. α-particle Random Samples Interarrival s Interval Endpoint All s Random Samples of s lower upper n = n = 2000 n = 200 n=20 R() = L()/L( ) for the n = 20, 200, and 2000 Samples from the α-particle Interarrival Data. Vertical Lines Give Corresponding Approximate 95% Likelihood-Based Confidence Intervals. estimate of mean using all n=10220 times -> n=2000 n=20 n= Likelihood as a Tool for Modeling/Inference What can we do with the (log) likelihood? n L() = log[l()] = L i (). i=1 Likelihood as a Tool for Modeling/Inference (Continued) Regions of high likelihood are credible; regions of low likelihood are not credible (suggests confidence regions for parameters). Study the surface. Maximize with respect to (ML point estimates). Look at curvature at maximum (gives estimate of Fisher information and asymptotic variance). Observe effect of perturbations in data and model on likelihood (sensitivity, influence analysis) If the length of is > 1 or 2 and interest centers on subset of (need to get rid of nuisance parameters), look at profiles (suggests confidence regions/intervals for parameter subsets). Calibrate confidence regions/intervals with χ 2 or simulation (or parametric bootstrap). Use reparameterization to study functions of for Simulated Exponential ( = 5) Samples of Size n = 3 for Simulated Exponential ( = 5) Samples of Size n = 1000 Profile Likelihood Profile Likelihood theta theta

4 Large-Sample Approximate Theory for Likelihood Ratios for a Scalar Parameter Relative likelihood for is R() = L() L( ). If evaluated at the true, then, asymptotically, 2 log[r()] follows, a chisquare distribution with 1 degree of freedom. An approximate 100(1 α)% likelihood-based confidence region for is the set of all values of such that Normal-Approximation Confidence Intervals for A 100(1 α)% normal-approximation (or Wald) confidence interval for is [, ] = ±z (1 α/2) ŝe. where ŝe = [ d 2 L()/d 2] 1 is evaluated at. Based on = NOR(0,1) Z ŝe 2log[R()] < χ 2 (1 α;1) or, equivalently, the set defined by R() > exp [ χ 2 (1 α;1) /2]. General theory in the Appendix. From the definition of NOR(0, 1) quantiles Pr [ ] z (α/2) < z Z (1 α/2) 1 α implies that Pr [ z (1 α/2) < ŝe +z (1 α/2) ŝe ] 1 α Normal-Approximation Confidence Intervals for (continued) A 100(1 α)% normal-approximation (or Wald) confidence interval for is [, ] = [ /w, w] where w = exp[z (1 α/2) ŝe / ]. This follows after transforming (by exponentiation) the confidence interval [log(), log()] = log( )±z (1 α/2) ŝe log( ) which is based on Z log( ) = log( ) log() ŝe log( ) NOR(0,1) Because log( ) is unrestricted in sign, generally Z log( ) is Comparisons for α-particle Data All s Sample of s n =10,220 n = 200 n=20 ML Estimate Standard Error ŝe % Confidence Intervals for Based on Likelihood [585, 608] [498, 662] [289, 713] Z log( ) NOR(0,1) [585, 608] [496, 660] [281, 690] NOR(0,1) [585, 608] [491, 654] [242, 638] Z ML Estimate λ Standard Error ŝe λ % Confidence Intervals for λ 10 5 Based on Likelihood [164, 171] [151, 201] [140, 346] Z log( λ) NOR(0,1) [164, 171] [152, 202] [145, 356] NOR(0,1) [164, 171] [149, 200] [125, 329] Z λ closer to an NOR(0,1) distribution than is Z Density Approximation for Exact Observations Confidence Intervals for Functions of For one-parameter distributions, confidence intervals for can be translated directly into confidence intervals for monotone functions of. The arrival rate λ = 1/ is a decreasing function of. [λ, λ] = [1/, 1/ ] = [.00151,.00201]. F(t;) is a decreasing function of [F (t e), F(t e)] = [F(t e; ), F(t e; )]. If t i 1 = t i i, i > 0, and the correct likelihood F(t i ;) F(t i 1 ;) = F(t i ;) F(t i i ;) can be approximated with the density f(t) as ti [F(t i ;) F(t i i ;)] = f(t)dt f(t i;) i (t i i ) then the density approximation for exact observations may be appropriate. L i (;data i ) = f(t i ;) For most common models, the density approximation is adequate for small i. There are, however, situations where the approximation breaks down as i

5 ML Estimates for the Mean Based on the Density Approximation With r exact failures and n r right-censored observations the ML estimate of is = TTT ni=1 t i = r r TTT = n i=1 t i, total time in test, is the sum of the failure times plus the censoring time of the units that are censored. Confidence Interval for the Mean Life of a New Insulating Material A life test for a new insulating material used 25 specimens which were tested simultaneously at a high voltage of 30 kv. The test was run until 15 of the specimens failed. The 15 failure times (hours) were recorded as: Using the observed curvature in the likelihood: [ ] 1 = ŝe d2 L() 2 d 2 = r = r. If the data are complete or failure censored, 2TTT/ χ 2 2r. Then an exact 100(1 α)% confidence interval for is [, ] = 2(TTT) 2(TTT) χ 2, χ (1 α/2;2r) 2. (α/2;2r) , 3.16, 10.38, 10.75, 12.53, 16.74, 22.54, 25.01, 33.02, 33.93, 36.17, 39.06, 44.56, 46.65, Then TTT = = 958hours. The ML estimate of and a 95% confidence interval are: = 958/15 = hours [ ], = 2(958) χ 2, 2(958) χ (.975;30) 2 = (.025;30) = [48, ]. [ , ] Exponential Analysis With Zero Failures ML estimate for the Exponential distribution mean cannot be computed unless the available data contains one or more failures. For a sample of n units with running times t 1,...,t n and an assumed exponential distribution, a conservative 100(1 α)% lower confidence bound for is = 2(TTT) χ 2 = 2(TTT) 2log(α) = TTT log(α). (1 α;2) The lower bound can be translated into an lower confidence bound for functions like t p for specified p or a upper confidence bound for F(t e) for a specified t e. This bound is based on the fact that under the exponential failure-time distribution, with immediate replacement of failed units, the number of failures observed in a life test with a fixed total time on test has a Poisson distribution Analysis of the Diesel Generator Fan Data (Assuming Removal After 200 Hours of Service) Here we do the analysis of the fan data after 200 hours of testing when all the fans were still running. Thus TTT =14,000 hours. A conservative 95% lower confidence bound on is = 2(TTT) χ 2 = = (.95;2) Using the entire data set, = 28,701 and a likelihoodbased approximate 95% lower confidence bound is = 18,485 hours. A conservative 95% upper confidence bound on F(10000; ) is F(10000) = F(10000; ) = 1 exp( 10000/4674) =.882. This shows how little information comes from a short test with zero or few failures Other Topics in Chapter 7 Inferences when there are no failures. 7-29

Chapter 9. Bootstrap Confidence Intervals. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 9. Bootstrap Confidence Intervals. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 9 Bootstrap Confidence Intervals William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on the authors

More information

Chapter 17. Failure-Time Regression Analysis. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 17. Failure-Time Regression Analysis. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 17 Failure-Time Regression Analysis William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on the authors

More information

Unit 10: Planning Life Tests

Unit 10: Planning Life Tests Unit 10: Planning Life Tests Ramón V. León Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. 11/2/2004 Unit 10 - Stat

More information

The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles

The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles Statistics Preprints Statistics 2008 The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles Yili Hong Iowa State University, yili_hong@hotmail.com William Q. Meeker

More information

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 15 System Reliability Concepts and Methods William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on

More information

Statistical Prediction Based on Censored Life Data. Luis A. Escobar Department of Experimental Statistics Louisiana State University.

Statistical Prediction Based on Censored Life Data. Luis A. Escobar Department of Experimental Statistics Louisiana State University. Statistical Prediction Based on Censored Life Data Overview Luis A. Escobar Department of Experimental Statistics Louisiana State University and William Q. Meeker Department of Statistics Iowa State University

More information

Sample Size and Number of Failure Requirements for Demonstration Tests with Log-Location-Scale Distributions and Type II Censoring

Sample Size and Number of Failure Requirements for Demonstration Tests with Log-Location-Scale Distributions and Type II Censoring Statistics Preprints Statistics 3-2-2002 Sample Size and Number of Failure Requirements for Demonstration Tests with Log-Location-Scale Distributions and Type II Censoring Scott W. McKane 3M Pharmaceuticals

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Data: Singly right censored observations from a temperatureaccelerated

Data: Singly right censored observations from a temperatureaccelerated Chapter 19 Analyzing Accelerated Life Test Data William Q Meeker and Luis A Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W Q Meeker and L A Escobar Based on the authors

More information

STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL. A Thesis. Presented to the. Faculty of. San Diego State University

STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL. A Thesis. Presented to the. Faculty of. San Diego State University STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree

More information

ACCELERATED DESTRUCTIVE DEGRADATION TEST PLANNING. Presented by Luis A. Escobar Experimental Statistics LSU, Baton Rouge LA 70803

ACCELERATED DESTRUCTIVE DEGRADATION TEST PLANNING. Presented by Luis A. Escobar Experimental Statistics LSU, Baton Rouge LA 70803 ACCELERATED DESTRUCTIVE DEGRADATION TEST PLANNING Presented by Luis A. Escobar Experimental Statistics LSU, Baton Rouge LA 70803 This is jointly work with Ying Shi and William Q. Meeker both from Iowa

More information

Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter

Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter Statistics Preprints Statistics 10-8-2002 Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter Yao Zhang Iowa State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS040) p.4828 Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

More information

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes.

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Unit 2: Models, Censoring, and Likelihood for Failure-Time Data Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Ramón

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

A Tool for Evaluating Time-Varying-Stress Accelerated Life Test Plans with Log-Location- Scale Distributions

A Tool for Evaluating Time-Varying-Stress Accelerated Life Test Plans with Log-Location- Scale Distributions Statistics Preprints Statistics 6-2010 A Tool for Evaluating Time-Varying-Stress Accelerated Life Test Plans with Log-Location- Scale Distributions Yili Hong Virginia Tech Haiming Ma Iowa State University,

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Accelerated Destructive Degradation Tests: Data, Models, and Analysis

Accelerated Destructive Degradation Tests: Data, Models, and Analysis Statistics Preprints Statistics 03 Accelerated Destructive Degradation Tests: Data, Models, and Analysis Luis A. Escobar Louisiana State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Accelerated Destructive Degradation Test Planning

Accelerated Destructive Degradation Test Planning Accelerated Destructive Degradation Test Planning Ying Shi Dept. of Statistics Iowa State University Ames, IA 50011 yshi@iastate.edu Luis A. Escobar Dept. of Experimental Statistics Louisiana State University

More information

Reliability prediction based on complicated data and dynamic data

Reliability prediction based on complicated data and dynamic data Graduate Theses and Dissertations Graduate College 2009 Reliability prediction based on complicated data and dynamic data Yili Hong Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd

More information

Maximum-Likelihood Estimation: Basic Ideas

Maximum-Likelihood Estimation: Basic Ideas Sociology 740 John Fox Lecture Notes Maximum-Likelihood Estimation: Basic Ideas Copyright 2014 by John Fox Maximum-Likelihood Estimation: Basic Ideas 1 I The method of maximum likelihood provides estimators

More information

Simultaneous Prediction Intervals for the (Log)- Location-Scale Family of Distributions

Simultaneous Prediction Intervals for the (Log)- Location-Scale Family of Distributions Statistics Preprints Statistics 10-2014 Simultaneous Prediction Intervals for the (Log)- Location-Scale Family of Distributions Yimeng Xie Virginia Tech Yili Hong Virginia Tech Luis A. Escobar Louisiana

More information

Warranty Prediction Based on Auxiliary Use-rate Information

Warranty Prediction Based on Auxiliary Use-rate Information Statistics Preprints Statistics 2009 Warranty Prediction Based on Auxiliary Use-rate Information Yili Hong Virginia Polytechnic Institute and State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Accelerated Testing Obtaining Reliability Information Quickly

Accelerated Testing Obtaining Reliability Information Quickly Accelerated Testing Background Accelerated Testing Obtaining Reliability Information Quickly William Q. Meeker Department of Statistics and Center for Nondestructive Evaluation Iowa State University Ames,

More information

STAT 6350 Analysis of Lifetime Data. Probability Plotting

STAT 6350 Analysis of Lifetime Data. Probability Plotting STAT 6350 Analysis of Lifetime Data Probability Plotting Purpose of Probability Plots Probability plots are an important tool for analyzing data and have been particular popular in the analysis of life

More information

A Simulation Study on Confidence Interval Procedures of Some Mean Cumulative Function Estimators

A Simulation Study on Confidence Interval Procedures of Some Mean Cumulative Function Estimators Statistics Preprints Statistics -00 A Simulation Study on Confidence Interval Procedures of Some Mean Cumulative Function Estimators Jianying Zuo Iowa State University, jiyizu@iastate.edu William Q. Meeker

More information

Statistical Prediction Based on Censored Life Data

Statistical Prediction Based on Censored Life Data Editor s Note: Results following from the research reported in this article also appear in Chapter 12 of Meeker, W. Q., and Escobar, L. A. (1998), Statistical Methods for Reliability Data, New York: Wiley.

More information

Chapter 18. Accelerated Test Models. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 18. Accelerated Test Models. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 18 Accelerated Test Models William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on the authors text

More information

Empirical Power of Four Statistical Tests in One Way Layout

Empirical Power of Four Statistical Tests in One Way Layout International Mathematical Forum, Vol. 9, 2014, no. 28, 1347-1356 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47128 Empirical Power of Four Statistical Tests in One Way Layout Lorenzo

More information

A Statistical Journey through Historic Haverford

A Statistical Journey through Historic Haverford A Statistical Journey through Historic Haverford Arthur Berg University of California, San Diego Arthur Berg A Statistical Journey through Historic Haverford 2/ 18 The Dataset Histograms Oldest? Arthur

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Understanding and Addressing the Unbounded Likelihood Problem

Understanding and Addressing the Unbounded Likelihood Problem Statistics Preprints Statistics 9-2013 Understanding and Addressing the Unbounded Likelihood Problem Shiyao Liu Iowa State University Huaiqing Wu Iowa State University William Q. Meeker Iowa State University,

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Quantile POD for Hit-Miss Data

Quantile POD for Hit-Miss Data Quantile POD for Hit-Miss Data Yew-Meng Koh a and William Q. Meeker a a Center for Nondestructive Evaluation, Department of Statistics, Iowa State niversity, Ames, Iowa 50010 Abstract. Probability of detection

More information

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Right censored

More information

ST495: Survival Analysis: Hypothesis testing and confidence intervals

ST495: Survival Analysis: Hypothesis testing and confidence intervals ST495: Survival Analysis: Hypothesis testing and confidence intervals Eric B. Laber Department of Statistics, North Carolina State University April 3, 2014 I remember that one fateful day when Coach took

More information

Interval Estimation for Parameters of a Bivariate Time Varying Covariate Model

Interval Estimation for Parameters of a Bivariate Time Varying Covariate Model Pertanika J. Sci. & Technol. 17 (2): 313 323 (2009) ISSN: 0128-7680 Universiti Putra Malaysia Press Interval Estimation for Parameters of a Bivariate Time Varying Covariate Model Jayanthi Arasan Department

More information

Unit 20: Planning Accelerated Life Tests

Unit 20: Planning Accelerated Life Tests Unit 20: Planning Accelerated Life Tests Ramón V. León Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. 11/13/2004

More information

Bayesian Methods for Accelerated Destructive Degradation Test Planning

Bayesian Methods for Accelerated Destructive Degradation Test Planning Statistics Preprints Statistics 11-2010 Bayesian Methods for Accelerated Destructive Degradation Test Planning Ying Shi Iowa State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

OPTIMUM DESIGN ON STEP-STRESS LIFE TESTING

OPTIMUM DESIGN ON STEP-STRESS LIFE TESTING Libraries Conference on Applied Statistics in Agriculture 1998-10th Annual Conference Proceedings OPTIMUM DESIGN ON STEP-STRESS LIFE TESTING C. Xiong Follow this and additional works at: http://newprairiepress.org/agstatconference

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Using Accelerated Life Tests Results to Predict Product Field Reliability

Using Accelerated Life Tests Results to Predict Product Field Reliability Statistics Preprints Statistics 6-2008 Using Accelerated Life Tests Results to Predict Product Field Reliability William Q. Meeker Iowa State University, wqmeeker@iastate.edu Luis A. Escobar Louisiana

More information

Bayesian Life Test Planning for the Log-Location- Scale Family of Distributions

Bayesian Life Test Planning for the Log-Location- Scale Family of Distributions Statistics Preprints Statistics 3-14 Bayesian Life Test Planning for the Log-Location- Scale Family of Distributions Yili Hong Virginia Tech Caleb King Virginia Tech Yao Zhang Pfizer Global Research and

More information

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests International Journal of Performability Engineering, Vol., No., January 24, pp.3-4. RAMS Consultants Printed in India Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests N. CHANDRA *, MASHROOR

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS330 / MAS83 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-0 8 Parametric models 8. Introduction In the last few sections (the KM

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

STT 843 Key to Homework 1 Spring 2018

STT 843 Key to Homework 1 Spring 2018 STT 843 Key to Homework Spring 208 Due date: Feb 4, 208 42 (a Because σ = 2, σ 22 = and ρ 2 = 05, we have σ 2 = ρ 2 σ σ22 = 2/2 Then, the mean and covariance of the bivariate normal is µ = ( 0 2 and Σ

More information

Estimating a parametric lifetime distribution from superimposed renewal process data

Estimating a parametric lifetime distribution from superimposed renewal process data Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2013 Estimating a parametric lifetime distribution from superimposed renewal process data Ye Tian Iowa State

More information

A hidden semi-markov model for the occurrences of water pipe bursts

A hidden semi-markov model for the occurrences of water pipe bursts A hidden semi-markov model for the occurrences of water pipe bursts T. Economou 1, T.C. Bailey 1 and Z. Kapelan 1 1 School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison

More information

Examination paper for TMA4275 Lifetime Analysis

Examination paper for TMA4275 Lifetime Analysis Department of Mathematical Sciences Examination paper for TMA4275 Lifetime Analysis Academic contact during examination: Ioannis Vardaxis Phone: 95 36 00 26 Examination date: Saturday May 30 2015 Examination

More information

Analysis of Type-II Progressively Hybrid Censored Data

Analysis of Type-II Progressively Hybrid Censored Data Analysis of Type-II Progressively Hybrid Censored Data Debasis Kundu & Avijit Joarder Abstract The mixture of Type-I and Type-II censoring schemes, called the hybrid censoring scheme is quite common in

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Inference on reliability in two-parameter exponential stress strength model

Inference on reliability in two-parameter exponential stress strength model Metrika DOI 10.1007/s00184-006-0074-7 Inference on reliability in two-parameter exponential stress strength model K. Krishnamoorthy Shubhabrata Mukherjee Huizhen Guo Received: 19 January 2005 Springer-Verlag

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Maximum Likelihood (ML) Estimation

Maximum Likelihood (ML) Estimation Econometrics 2 Fall 2004 Maximum Likelihood (ML) Estimation Heino Bohn Nielsen 1of32 Outline of the Lecture (1) Introduction. (2) ML estimation defined. (3) ExampleI:Binomialtrials. (4) Example II: Linear

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data

Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data Statistics Preprints Statistics 6-6-999 Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data Shuen-Lin Jeng Ming-Chuan University William Q. Meeker Iowa State University,

More information

Chapter 6. Estimation of Confidence Intervals for Nodal Maximum Power Consumption per Customer

Chapter 6. Estimation of Confidence Intervals for Nodal Maximum Power Consumption per Customer Chapter 6 Estimation of Confidence Intervals for Nodal Maximum Power Consumption per Customer The aim of this chapter is to calculate confidence intervals for the maximum power consumption per customer

More information

Weibull Reliability Analysis

Weibull Reliability Analysis Weibull Reliability Analysis = http://www.rt.cs.boeing.com/mea/stat/scholz/ http://www.rt.cs.boeing.com/mea/stat/reliability.html http://www.rt.cs.boeing.com/mea/stat/scholz/weibull.html Fritz Scholz (425-865-3623,

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

Generalized Linear Models

Generalized Linear Models York SPIDA John Fox Notes Generalized Linear Models Copyright 2010 by John Fox Generalized Linear Models 1 1. Topics I The structure of generalized linear models I Poisson and other generalized linear

More information

Bayesian Inference. Chapter 2: Conjugate models

Bayesian Inference. Chapter 2: Conjugate models Bayesian Inference Chapter 2: Conjugate models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in

More information

β j = coefficient of x j in the model; β = ( β1, β2,

β j = coefficient of x j in the model; β = ( β1, β2, Regression Modeling of Survival Time Data Why regression models? Groups similar except for the treatment under study use the nonparametric methods discussed earlier. Groups differ in variables (covariates)

More information

Weibull Reliability Analysis

Weibull Reliability Analysis Weibull Reliability Analysis = http://www.rt.cs.boeing.com/mea/stat/reliability.html Fritz Scholz (425-865-3623, 7L-22) Boeing Phantom Works Mathematics &Computing Technology Weibull Reliability Analysis

More information

Interval Estimation III: Fisher's Information & Bootstrapping

Interval Estimation III: Fisher's Information & Bootstrapping Interval Estimation III: Fisher's Information & Bootstrapping Frequentist Confidence Interval Will consider four approaches to estimating confidence interval Standard Error (+/- 1.96 se) Likelihood Profile

More information

New Developments in Econometrics Lecture 16: Quantile Estimation

New Developments in Econometrics Lecture 16: Quantile Estimation New Developments in Econometrics Lecture 16: Quantile Estimation Jeff Wooldridge Cemmap Lectures, UCL, June 2009 1. Review of Means, Medians, and Quantiles 2. Some Useful Asymptotic Results 3. Quantile

More information

Lifetime prediction and confidence bounds in accelerated degradation testing for lognormal response distributions with an Arrhenius rate relationship

Lifetime prediction and confidence bounds in accelerated degradation testing for lognormal response distributions with an Arrhenius rate relationship Scholars' Mine Doctoral Dissertations Student Research & Creative Works Spring 01 Lifetime prediction and confidence bounds in accelerated degradation testing for lognormal response distributions with

More information

Distribution Theory. Comparison Between Two Quantiles: The Normal and Exponential Cases

Distribution Theory. Comparison Between Two Quantiles: The Normal and Exponential Cases Communications in Statistics Simulation and Computation, 34: 43 5, 005 Copyright Taylor & Francis, Inc. ISSN: 0361-0918 print/153-4141 online DOI: 10.1081/SAC-00055639 Distribution Theory Comparison Between

More information

Parametric Evaluation of Lifetime Data

Parametric Evaluation of Lifetime Data IPN Progress Report 42-155 November 15, 2003 Parametric Evaluation of Lifetime Data J. Shell 1 The proposed large array of small antennas for the DSN requires very reliable systems. Reliability can be

More information

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments STAT 135 Lab 3 Asymptotic MLE and the Method of Moments Rebecca Barter February 9, 2015 Maximum likelihood estimation (a reminder) Maximum likelihood estimation Suppose that we have a sample, X 1, X 2,...,

More information

Mahdi karbasian* & Zoubi Ibrahim

Mahdi karbasian* & Zoubi Ibrahim International Journal of Industrial Engineering & Production Research (010) pp. 105-110 September 010, Volume 1, Number International Journal of Industrial Engineering & Production Research ISSN: 008-4889

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods PhD School in Statistics cycle XXVI, 2011 Theory and Methods of Statistical Inference PART I Frequentist theory and methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data

Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data Feng-feng Li,2, Gang Xie,2, Yong Sun,2, Lin Ma,2 CRC for Infrastructure and

More information

PRINCIPLES OF STATISTICAL INFERENCE

PRINCIPLES OF STATISTICAL INFERENCE Advanced Series on Statistical Science & Applied Probability PRINCIPLES OF STATISTICAL INFERENCE from a Neo-Fisherian Perspective Luigi Pace Department of Statistics University ofudine, Italy Alessandra

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Generalized additive modelling of hydrological sample extremes

Generalized additive modelling of hydrological sample extremes Generalized additive modelling of hydrological sample extremes Valérie Chavez-Demoulin 1 Joint work with A.C. Davison (EPFL) and Marius Hofert (ETHZ) 1 Faculty of Business and Economics, University of

More information

Theory and Methods of Statistical Inference

Theory and Methods of Statistical Inference PhD School in Statistics cycle XXIX, 2014 Theory and Methods of Statistical Inference Instructors: B. Liseo, L. Pace, A. Salvan (course coordinator), N. Sartori, A. Tancredi, L. Ventura Syllabus Some prerequisites:

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

Estimation of Quantiles

Estimation of Quantiles 9 Estimation of Quantiles The notion of quantiles was introduced in Section 3.2: recall that a quantile x α for an r.v. X is a constant such that P(X x α )=1 α. (9.1) In this chapter we examine quantiles

More information

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That Statistics Lecture 2 August 7, 2000 Frank Porter Caltech The plan for these lectures: The Fundamentals; Point Estimation Maximum Likelihood, Least Squares and All That What is a Confidence Interval? Interval

More information

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Statistics Preprints Statistics 7-2008 Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Yili Hong Iowa State University William Q. Meeker Iowa

More information

Introduction to Statistics and Error Analysis II

Introduction to Statistics and Error Analysis II Introduction to Statistics and Error Analysis II Physics116C, 4/14/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Center for Nondestructive Evaluation Publications Center for Nondestructive Evaluation 2009 Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Yili

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume VI: Statistics PART A Edited by Emlyn Lloyd University of Lancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester

More information

Lecture 3. Truncation, length-bias and prevalence sampling

Lecture 3. Truncation, length-bias and prevalence sampling Lecture 3. Truncation, length-bias and prevalence sampling 3.1 Prevalent sampling Statistical techniques for truncated data have been integrated into survival analysis in last two decades. Truncation in

More information

Exercise 5.4 Solution

Exercise 5.4 Solution Exercise 5.4 Solution Niels Richard Hansen University of Copenhagen May 7, 2010 1 5.4(a) > leukemia

More information

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods PhD School in Statistics XXV cycle, 2010 Theory and Methods of Statistical Inference PART I Frequentist likelihood methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

ST745: Survival Analysis: Nonparametric methods

ST745: Survival Analysis: Nonparametric methods ST745: Survival Analysis: Nonparametric methods Eric B. Laber Department of Statistics, North Carolina State University February 5, 2015 The KM estimator is used ubiquitously in medical studies to estimate

More information

COMPETING RISKS WEIBULL MODEL: PARAMETER ESTIMATES AND THEIR ACCURACY

COMPETING RISKS WEIBULL MODEL: PARAMETER ESTIMATES AND THEIR ACCURACY Annales Univ Sci Budapest, Sect Comp 45 2016) 45 55 COMPETING RISKS WEIBULL MODEL: PARAMETER ESTIMATES AND THEIR ACCURACY Ágnes M Kovács Budapest, Hungary) Howard M Taylor Newark, DE, USA) Communicated

More information