Chapter 9. Bootstrap Confidence Intervals. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Size: px
Start display at page:

Download "Chapter 9. Bootstrap Confidence Intervals. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University"

Transcription

1 Chapter 9 Bootstrap Confidence Intervals William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright W. Q. Meeker and L. A. Escobar. Based on the authors text Statistical Methods for Reliability Data, John Wiley & Sons Inc January 13, h 41min 9-1

2 Bootstrap Confidence Intervals Chapter 9 Objectives Explain basic ideas behind the use of computer simulation to obtain bootstrap confidence intervals. Explain different methods for generating bootstrap samples. Obtain and interpret simulation-based pointwise parametric bootstrap confidence intervals. 9-2

3 Bootstrap Sampling and Bootstrap Confidence Intervals Instead of assuming Z µ = ( µ µ)/ŝe µ NOR(0,1), use Monte Carlo simulation to approximate the distribution of Z µ. Simulate B = 4000 values of Z µ = ( µ µ)/ŝe µ. Some bootstrap approximations: Z µ Z µ Z log( σ) Z log( σ ) Z logit[ F(t)] Z logit[ F (t)] when computing confidence intervals for µ, σ, and F. 9-3

4 A Simple Bootstrap Re-Sampling Method Population or Process Actual Sample Data From Population or Process (Used to Estimate Model Parameters) Resample with Replacement from DATA (Draw B Samples, each of Size n) n units F(t; θ) DATA DATA * 1 θ^ θ ^* 1 DATA* 2 θ^* 2.. DATA * B θ^* B 9-4

5 A Simple Parametric Bootstrap Sampling Method Population or Process Actual Sample Data From Population or Process (Used to Estimate Model Parameters) Simulated Censored Samples From (Draw B samples, each of size n) F(t; θ^ ) n units F(t; θ) DATA ^ F(t; θ) DATA* 1 θ ^* 1 DATA* 2 θ ^* 2. DATA * B θ ^* B 9-5

6 Scatterplot of 1,000 (Out of B =10,000) Bootstrap Estimates µ and σ for Shock Absorber µ σ 9-6

7 Weibull Plot of F(t; µ, σ) from the Original Sample (dark line) and 50 (Out of B =10,000) F(t; µ, σ ) Computed from Bootstrap Samples for the Shock Absorber Proportion Failing Kilometers 9-7

8 Bootstrap Confidence Interval for µ With complete data or Type II censoring, Z µ j = µ j µ ŝe µ j has a distribution that does not depend on any unknown parameters. Such a quantity is called a pivotal quantity. By the definition of quantiles, then ) Pr (z µ < Z µ (α/2) j z µ (1 α/2) = 1 α Simple algebra shows that [µ, µ] = [ µ z µ (1 α/2) ŝe µ, µ z µ (α/2) ŝe µ ] provides an exact 95% confidence interval for µ. With other kinds of censoring, the interval is, in general, only approximate. 9-8

9 Bootstrap Distributions of Weibull µ and Z µ Based on B=10,000 Bootstrap Samples for the Shock Absorber Bootstrap Estimates Bootstrap-t Untransformed muhat* Z-muhat* Bootstrap-t Untransformed 1 Bootstrap cdf Z-muhat* 9-9

10 Bootstrap Confidence Interval for σ With complete data or Type II censoring, Z log( σ ) = log( σ ) log( σ) ŝe log( σ ) has a distribution that does not depend on any unknown parameters. Such a quantity is called a pivotal quantity. By the definition of quantiles, then ) Pr (z log( σ )(α/2) < Z log( σ j ) z log( σ )(1 α/2) = 1 α Simple algebra shows that [σ, σ] = [ σ/w, σ/ w] provides an exact 95% confidence interval for σ, where = ] w ] exp [z log( σ )(1 α/2) ŝe log( σ) and w = exp [z log( σ )(α/2) ŝe log( σ) With other kinds of censoring, the interval is, in general, only approximate. 9-10

11 Bootstrap Distributions of σ, Z σ, and Z log( σ ) Based on B=10,000 Bootstrap Samples Bootstrap Estimates Bootstrap-t Untransformed sigmahat* Bootstrap-t log-transform Z-sigmahat* Bootstrap-t log-transform 1 Bootstrap cdf Z-log(sigmahat*) Z-log(sigmahat*) 9-11

12 Bootstrap Confidence Interval for F(t e ) With complete data or Type II censoring [using F = F(t e )], Z logit( F ) = logit( F ) logit( F) ŝe logit( F ) has a distribution that does not depend on any unknown parameters. Such a quantity is called a pivotal quantity. By the definition of quantiles, then ) (z logit( F )(α/2) < Z logit( F j ) z logit( F )(1 α/2) Pr = 1 α Simple algebra shows that [F, F] = F F +(1 F) w, F F +(1 F) w where provides an exact 95% confidence interval for F, where = [ ] w exp z logit( F ŝe ) (1 α/2) logit( F) and w = exp [ z logit( F ) (α/2) ŝe logit( F)] With other kinds of censoring, the interval is, in general, only approximate. 9-12

13 Bootstrap Distributions of F(t e ), Z F(te ), and Z logit[ F(te ) ] for t e=10,000 km Based on B=10,000 Bootstrap Samples Bootstrap Estimates Bootstrap-t Untransformed F(10000)hat* Bootstrap-t logit-transformed Z-F(10000)hat* Bootstrap-t logit-transformed 1 Bootstrap cdf Z-logit(F(10000)hat*) Z-logit(F(10000)hat*) 9-13

14 Bootstrap Confidence Interval for t p With complete data or Type II censoring, Z log( t p) = log( t p ) log( t p )] ŝe log( t p) has a distribution that does not depend on any unknown parameters. Such a quantity is called a pivotal quantity. By the definition of quantiles, then ) Pr (z log( t p)(α/2) < Z log( t p)j z log( t p)(1 α/2) = 1 α Simple algebra shows that exp [t p, t p ] = [ t p /w, t p / w] provides an exact 95% confidence interval for t p, where = [ ] w ] z log( t ŝe p) (1 α/2) log( t and w = exp p ) [ z log( t p) (α/2) ŝe log( t p ) With other kinds of censoring, the interval is, in general, only approximate. 9-14

15 Bootstrap Distributions of t p, Z t p, and Z log[ t p] for t e =10,000 km Based on B=10,000 Bootstrap Samples Bootstrap Estimates Bootstrap-t Untransformed t0.1hat* Bootstrap-t log-transform Z-t0.1hat* Bootstrap-t log-transform 1 Bootstrap cdf Z-log(t0.1hat*) Z-log(t0.1hat*) 9-15

n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect.

n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect. Chapter 7 Parametric Likelihood Fitting Concepts: Chapter 7 Parametric Likelihood Fitting Concepts: Objectives Show how to compute a likelihood for a parametric model using discrete data. Show how to compute

More information

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 15. System Reliability Concepts and Methods. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 15 System Reliability Concepts and Methods William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on

More information

Simultaneous Prediction Intervals for the (Log)- Location-Scale Family of Distributions

Simultaneous Prediction Intervals for the (Log)- Location-Scale Family of Distributions Statistics Preprints Statistics 10-2014 Simultaneous Prediction Intervals for the (Log)- Location-Scale Family of Distributions Yimeng Xie Virginia Tech Yili Hong Virginia Tech Luis A. Escobar Louisiana

More information

Statistical Prediction Based on Censored Life Data. Luis A. Escobar Department of Experimental Statistics Louisiana State University.

Statistical Prediction Based on Censored Life Data. Luis A. Escobar Department of Experimental Statistics Louisiana State University. Statistical Prediction Based on Censored Life Data Overview Luis A. Escobar Department of Experimental Statistics Louisiana State University and William Q. Meeker Department of Statistics Iowa State University

More information

The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles

The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles Statistics Preprints Statistics 2008 The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles Yili Hong Iowa State University, yili_hong@hotmail.com William Q. Meeker

More information

Chapter 17. Failure-Time Regression Analysis. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 17. Failure-Time Regression Analysis. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 17 Failure-Time Regression Analysis William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on the authors

More information

Data: Singly right censored observations from a temperatureaccelerated

Data: Singly right censored observations from a temperatureaccelerated Chapter 19 Analyzing Accelerated Life Test Data William Q Meeker and Luis A Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W Q Meeker and L A Escobar Based on the authors

More information

ACCELERATED DESTRUCTIVE DEGRADATION TEST PLANNING. Presented by Luis A. Escobar Experimental Statistics LSU, Baton Rouge LA 70803

ACCELERATED DESTRUCTIVE DEGRADATION TEST PLANNING. Presented by Luis A. Escobar Experimental Statistics LSU, Baton Rouge LA 70803 ACCELERATED DESTRUCTIVE DEGRADATION TEST PLANNING Presented by Luis A. Escobar Experimental Statistics LSU, Baton Rouge LA 70803 This is jointly work with Ying Shi and William Q. Meeker both from Iowa

More information

Statistical Prediction Based on Censored Life Data

Statistical Prediction Based on Censored Life Data Editor s Note: Results following from the research reported in this article also appear in Chapter 12 of Meeker, W. Q., and Escobar, L. A. (1998), Statistical Methods for Reliability Data, New York: Wiley.

More information

Unit 10: Planning Life Tests

Unit 10: Planning Life Tests Unit 10: Planning Life Tests Ramón V. León Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. 11/2/2004 Unit 10 - Stat

More information

Sample Size and Number of Failure Requirements for Demonstration Tests with Log-Location-Scale Distributions and Type II Censoring

Sample Size and Number of Failure Requirements for Demonstration Tests with Log-Location-Scale Distributions and Type II Censoring Statistics Preprints Statistics 3-2-2002 Sample Size and Number of Failure Requirements for Demonstration Tests with Log-Location-Scale Distributions and Type II Censoring Scott W. McKane 3M Pharmaceuticals

More information

Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data

Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data Hazard Function, Failure Rate, and A Rule of Thumb for Calculating Empirical Hazard Function of Continuous-Time Failure Data Feng-feng Li,2, Gang Xie,2, Yong Sun,2, Lin Ma,2 CRC for Infrastructure and

More information

Chapter 18. Accelerated Test Models. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 18. Accelerated Test Models. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 18 Accelerated Test Models William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on the authors text

More information

Checking the Reliability of Reliability Models.

Checking the Reliability of Reliability Models. Checking the Reliability of Reliability. INFORMS 007 Puerto Rico. July 8-11. Víctor Aguirre Torres Stat Department Instituto Tecnológico Autónomo de México ITAM Credits. Partially Sponsored by Asociación

More information

Checking the Reliability of Reliability Models.

Checking the Reliability of Reliability Models. Checking the Reliability of Reliability Models. Seminario de Estadística, CIMAT Abril 3, 007. Víctor Aguirre Torres Departmento de Estadística, ITAM Área de Probabilidad y Estadística, CIMAT Credits. Partially

More information

STAT 6350 Analysis of Lifetime Data. Probability Plotting

STAT 6350 Analysis of Lifetime Data. Probability Plotting STAT 6350 Analysis of Lifetime Data Probability Plotting Purpose of Probability Plots Probability plots are an important tool for analyzing data and have been particular popular in the analysis of life

More information

Accelerated Destructive Degradation Tests: Data, Models, and Analysis

Accelerated Destructive Degradation Tests: Data, Models, and Analysis Statistics Preprints Statistics 03 Accelerated Destructive Degradation Tests: Data, Models, and Analysis Luis A. Escobar Louisiana State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Reliability prediction based on complicated data and dynamic data

Reliability prediction based on complicated data and dynamic data Graduate Theses and Dissertations Graduate College 2009 Reliability prediction based on complicated data and dynamic data Yili Hong Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd

More information

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes.

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Unit 2: Models, Censoring, and Likelihood for Failure-Time Data Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Ramón

More information

Arrhenius Plot. Sample StatFolio: arrhenius.sgp

Arrhenius Plot. Sample StatFolio: arrhenius.sgp Summary The procedure is designed to plot data from an accelerated life test in which failure times have been recorded and percentiles estimated at a number of different temperatures. The percentiles P

More information

A Tool for Evaluating Time-Varying-Stress Accelerated Life Test Plans with Log-Location- Scale Distributions

A Tool for Evaluating Time-Varying-Stress Accelerated Life Test Plans with Log-Location- Scale Distributions Statistics Preprints Statistics 6-2010 A Tool for Evaluating Time-Varying-Stress Accelerated Life Test Plans with Log-Location- Scale Distributions Yili Hong Virginia Tech Haiming Ma Iowa State University,

More information

Using Accelerated Life Tests Results to Predict Product Field Reliability

Using Accelerated Life Tests Results to Predict Product Field Reliability Statistics Preprints Statistics 6-2008 Using Accelerated Life Tests Results to Predict Product Field Reliability William Q. Meeker Iowa State University, wqmeeker@iastate.edu Luis A. Escobar Louisiana

More information

Unit 20: Planning Accelerated Life Tests

Unit 20: Planning Accelerated Life Tests Unit 20: Planning Accelerated Life Tests Ramón V. León Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. 11/13/2004

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

L11 Hypothesis testing

L11 Hypothesis testing Hypothesis Simple Composite Hypothesis Simple Composite Monte-Carlo and Empirical Methods for Statistical Inference, FMS091/MASM11 L11 Hypothesis testing Hypothesis testing Statistical hypothesises Testing

More information

Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data

Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data Statistics Preprints Statistics 6-6-999 Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data Shuen-Lin Jeng Ming-Chuan University William Q. Meeker Iowa State University,

More information

Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter

Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter Statistics Preprints Statistics 10-8-2002 Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter Yao Zhang Iowa State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Distribution Theory. Comparison Between Two Quantiles: The Normal and Exponential Cases

Distribution Theory. Comparison Between Two Quantiles: The Normal and Exponential Cases Communications in Statistics Simulation and Computation, 34: 43 5, 005 Copyright Taylor & Francis, Inc. ISSN: 0361-0918 print/153-4141 online DOI: 10.1081/SAC-00055639 Distribution Theory Comparison Between

More information

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Statistics Preprints Statistics 7-2008 Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Yili Hong Iowa State University William Q. Meeker Iowa

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data

Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Center for Nondestructive Evaluation Publications Center for Nondestructive Evaluation 2009 Prediction of remaining life of power transformers based on left truncated and right censored lifetime data Yili

More information

Accelerated Destructive Degradation Test Planning

Accelerated Destructive Degradation Test Planning Accelerated Destructive Degradation Test Planning Ying Shi Dept. of Statistics Iowa State University Ames, IA 50011 yshi@iastate.edu Luis A. Escobar Dept. of Experimental Statistics Louisiana State University

More information

Political Science 236 Hypothesis Testing: Review and Bootstrapping

Political Science 236 Hypothesis Testing: Review and Bootstrapping Political Science 236 Hypothesis Testing: Review and Bootstrapping Rocío Titiunik Fall 2007 1 Hypothesis Testing Definition 1.1 Hypothesis. A hypothesis is a statement about a population parameter The

More information

Distribution Fitting (Censored Data)

Distribution Fitting (Censored Data) Distribution Fitting (Censored Data) Summary... 1 Data Input... 2 Analysis Summary... 3 Analysis Options... 4 Goodness-of-Fit Tests... 6 Frequency Histogram... 8 Comparison of Alternative Distributions...

More information

Quantile POD for Hit-Miss Data

Quantile POD for Hit-Miss Data Quantile POD for Hit-Miss Data Yew-Meng Koh a and William Q. Meeker a a Center for Nondestructive Evaluation, Department of Statistics, Iowa State niversity, Ames, Iowa 50010 Abstract. Probability of detection

More information

Warranty Prediction Based on Auxiliary Use-rate Information

Warranty Prediction Based on Auxiliary Use-rate Information Statistics Preprints Statistics 2009 Warranty Prediction Based on Auxiliary Use-rate Information Yili Hong Virginia Polytechnic Institute and State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Bayesian Methods for Accelerated Destructive Degradation Test Planning

Bayesian Methods for Accelerated Destructive Degradation Test Planning Statistics Preprints Statistics 11-2010 Bayesian Methods for Accelerated Destructive Degradation Test Planning Ying Shi Iowa State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information

Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information Statistics Preprints Statistics 8-2010 Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information Jiqiang Guo Iowa State University, jqguo@iastate.edu

More information

Degradation data analysis for samples under unequal operating conditions: a case study on train wheels

Degradation data analysis for samples under unequal operating conditions: a case study on train wheels Degradation data analysis for samples under unequal operating conditions: a case study on train wheels Marta AFONSO FREITAS UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTMENT OF PRODUCTION ENGINEERING marta.afreitas@gmail.com

More information

Asymptotic distribution of the sample average value-at-risk

Asymptotic distribution of the sample average value-at-risk Asymptotic distribution of the sample average value-at-risk Stoyan V. Stoyanov Svetlozar T. Rachev September 3, 7 Abstract In this paper, we prove a result for the asymptotic distribution of the sample

More information

POD Tutorial Part I I Review of ahat versus a Strategies

POD Tutorial Part I I Review of ahat versus a Strategies POD Tutorial Part I I Review of ahat versus a Strategies William Q. Meeker wqmeeker@iastate.edu Center for Nondestructive Evaluation Department of Statistics Iowa State University 1 Overview versus a data

More information

Accelerated Degradation Tests: Modeling and Analysis

Accelerated Degradation Tests: Modeling and Analysis Statistics Preprints Statistics 9-20-1999 Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker Iowa State University, wqmeeker@iastate.edu Luis A. Escobar Louisiana State University C.

More information

Estimating a parametric lifetime distribution from superimposed renewal process data

Estimating a parametric lifetime distribution from superimposed renewal process data Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2013 Estimating a parametric lifetime distribution from superimposed renewal process data Ye Tian Iowa State

More information

STAT 830 Non-parametric Inference Basics

STAT 830 Non-parametric Inference Basics STAT 830 Non-parametric Inference Basics Richard Lockhart Simon Fraser University STAT 801=830 Fall 2012 Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics STAT 801=830

More information

Estimation of Quantiles

Estimation of Quantiles 9 Estimation of Quantiles The notion of quantiles was introduced in Section 3.2: recall that a quantile x α for an r.v. X is a constant such that P(X x α )=1 α. (9.1) In this chapter we examine quantiles

More information

Accelerated Testing Obtaining Reliability Information Quickly

Accelerated Testing Obtaining Reliability Information Quickly Accelerated Testing Background Accelerated Testing Obtaining Reliability Information Quickly William Q. Meeker Department of Statistics and Center for Nondestructive Evaluation Iowa State University Ames,

More information

Bayesian Life Test Planning for the Log-Location- Scale Family of Distributions

Bayesian Life Test Planning for the Log-Location- Scale Family of Distributions Statistics Preprints Statistics 3-14 Bayesian Life Test Planning for the Log-Location- Scale Family of Distributions Yili Hong Virginia Tech Caleb King Virginia Tech Yao Zhang Pfizer Global Research and

More information

Bootstrap & Confidence/Prediction intervals

Bootstrap & Confidence/Prediction intervals Bootstrap & Confidence/Prediction intervals Olivier Roustant Mines Saint-Étienne 2017/11 Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 1 / 9 Framework Consider a model with

More information

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS040) p.4828 Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

More information

Field Failure Prediction Using Dynamic Environmental Data

Field Failure Prediction Using Dynamic Environmental Data Statistics Preprints Statistics 1-211 Field Failure Prediction Using Dynamic Environmental Data Yili Hong Virginia Tech William Q. Meeker Iowa State University, wqmeeker@iastate.edu Follow this and additional

More information

Bayesian Modeling of Accelerated Life Tests with Random Effects

Bayesian Modeling of Accelerated Life Tests with Random Effects Bayesian Modeling of Accelerated Life Tests with Random Effects Ramón V. León Avery J. Ashby Jayanth Thyagarajan Joint Statistical Meeting August, 00 Toronto, Canada Abstract We show how to use Bayesian

More information

Parametric Evaluation of Lifetime Data

Parametric Evaluation of Lifetime Data IPN Progress Report 42-155 November 15, 2003 Parametric Evaluation of Lifetime Data J. Shell 1 The proposed large array of small antennas for the DSN requires very reliable systems. Reliability can be

More information

Bootstrap Confidence Intervals

Bootstrap Confidence Intervals Bootstrap Confidence Intervals Patrick Breheny September 18 Patrick Breheny STA 621: Nonparametric Statistics 1/22 Introduction Bootstrap confidence intervals So far, we have discussed the idea behind

More information

Robust Estimators for Transformed Location Scale Families

Robust Estimators for Transformed Location Scale Families Robust Estimators for Transformed Location Scale Families David J. Olive Southern Illinois University May 5, 2006 Abstract In analogy with the method of moments, the parameters of a location scale family

More information

Weibull Reliability Analysis

Weibull Reliability Analysis Weibull Reliability Analysis = http://www.rt.cs.boeing.com/mea/stat/scholz/ http://www.rt.cs.boeing.com/mea/stat/reliability.html http://www.rt.cs.boeing.com/mea/stat/scholz/weibull.html Fritz Scholz (425-865-3623,

More information

A hidden semi-markov model for the occurrences of water pipe bursts

A hidden semi-markov model for the occurrences of water pipe bursts A hidden semi-markov model for the occurrences of water pipe bursts T. Economou 1, T.C. Bailey 1 and Z. Kapelan 1 1 School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison

More information

A Simulation Study on Confidence Interval Procedures of Some Mean Cumulative Function Estimators

A Simulation Study on Confidence Interval Procedures of Some Mean Cumulative Function Estimators Statistics Preprints Statistics -00 A Simulation Study on Confidence Interval Procedures of Some Mean Cumulative Function Estimators Jianying Zuo Iowa State University, jiyizu@iastate.edu William Q. Meeker

More information

A Hierarchical Model for Heterogenous Reliability Field Data

A Hierarchical Model for Heterogenous Reliability Field Data Statistics Publications Statistics 2018 A Hierarchical Model for Heterogenous Reliability Field Data Eric Thomas Mittman Iowa State University, emittman@iastate.edu Colin Lewis-Beck Iowa State University,

More information

Estimation of Parameters of the Weibull Distribution Based on Progressively Censored Data

Estimation of Parameters of the Weibull Distribution Based on Progressively Censored Data International Mathematical Forum, 2, 2007, no. 41, 2031-2043 Estimation of Parameters of the Weibull Distribution Based on Progressively Censored Data K. S. Sultan 1 Department of Statistics Operations

More information

COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH *

COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH * Jordan Journal of Mathematics and Statistics JJMS 4,, pp. 6-78 COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH * Sanku Dey ABSTRACT:

More information

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap Patrick Breheny December 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/21 The empirical distribution function Suppose X F, where F (x) = Pr(X x) is a distribution function, and we wish to estimate

More information

STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL. A Thesis. Presented to the. Faculty of. San Diego State University

STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL. A Thesis. Presented to the. Faculty of. San Diego State University STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree

More information

POD(a) = Pr (Y(a) > '1').

POD(a) = Pr (Y(a) > '1'). PROBABILITY OF DETECTION MODELING FOR ULTRASONIC TESTING Pradipta Sarkar, William Q. Meeker, R. Bruce Thompson, Timothy A. Gray Center for Nondestructive Evaluation Iowa State University Ames, IA 511 Warren

More information

Weibull Reliability Analysis

Weibull Reliability Analysis Weibull Reliability Analysis = http://www.rt.cs.boeing.com/mea/stat/reliability.html Fritz Scholz (425-865-3623, 7L-22) Boeing Phantom Works Mathematics &Computing Technology Weibull Reliability Analysis

More information

Monte Carlo Integration II & Sampling from PDFs

Monte Carlo Integration II & Sampling from PDFs Monte Carlo Integration II & Sampling from PDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Last Lecture Direct illumination

More information

Bootstrap inference for the finite population total under complex sampling designs

Bootstrap inference for the finite population total under complex sampling designs Bootstrap inference for the finite population total under complex sampling designs Zhonglei Wang (Joint work with Dr. Jae Kwang Kim) Center for Survey Statistics and Methodology Iowa State University Jan.

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 5 AMS-UCSC Tue 24, 2012 Winter 2012. Session 1 (Class 5) AMS-132/206 Tue 24, 2012 1 / 11 Topics Topics We will talk about... 1 Confidence Intervals

More information

Applications of Reliability Demonstration Test

Applications of Reliability Demonstration Test Applications of Reliability Demonstration Test Winson Taam Applied Statistics, NST, BR&T Jun 3, 2009 BOEING is a trademark of Boeing Management Company. EOT_RT_Sub_Template.ppt 1/6/2009 1 Outline Concept

More information

Analysis of Type-II Progressively Hybrid Censored Data

Analysis of Type-II Progressively Hybrid Censored Data Analysis of Type-II Progressively Hybrid Censored Data Debasis Kundu & Avijit Joarder Abstract The mixture of Type-I and Type-II censoring schemes, called the hybrid censoring scheme is quite common in

More information

Appendix F. Computational Statistics Toolbox. The Computational Statistics Toolbox can be downloaded from:

Appendix F. Computational Statistics Toolbox. The Computational Statistics Toolbox can be downloaded from: Appendix F Computational Statistics Toolbox The Computational Statistics Toolbox can be downloaded from: http://www.infinityassociates.com http://lib.stat.cmu.edu. Please review the readme file for installation

More information

Statistical Methods for Reliability Data from Designed Experiments

Statistical Methods for Reliability Data from Designed Experiments Statistical Methods for Reliability Data from Designed Experiments Laura J. Freeman Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

Discussion Paper Series

Discussion Paper Series INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO CENTRO DE INVESTIGACIÓN ECONÓMICA Discussion Paper Series Size Corrected Power for Bootstrap Tests Manuel A. Domínguez and Ignacio N. Lobato Instituto Tecnológico

More information

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring A. Ganguly, S. Mitra, D. Samanta, D. Kundu,2 Abstract Epstein [9] introduced the Type-I hybrid censoring scheme

More information

Web-based Supplementary Material for. Dependence Calibration in Conditional Copulas: A Nonparametric Approach

Web-based Supplementary Material for. Dependence Calibration in Conditional Copulas: A Nonparametric Approach 1 Web-based Supplementary Material for Dependence Calibration in Conditional Copulas: A Nonparametric Approach Elif F. Acar, Radu V. Craiu, and Fang Yao Web Appendix A: Technical Details The score and

More information

Fleet Maintenance Simulation With Insufficient Data

Fleet Maintenance Simulation With Insufficient Data Fleet Maintenance Simulation With Insufficient Data Zissimos P. Mourelatos Mechanical Engineering Department Oakland University mourelat@oakland.edu Ground Robotics Reliability Center (GRRC) Seminar 17

More information

Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution

Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution CMST 21(4) 221-227 (2015) DOI:10.12921/cmst.2015.21.04.006 Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution B. Sadeghpour Gildeh, M. Taghizadeh Ashkavaey Department

More information

Bivariate Degradation Modeling Based on Gamma Process

Bivariate Degradation Modeling Based on Gamma Process Bivariate Degradation Modeling Based on Gamma Process Jinglun Zhou Zhengqiang Pan Member IAENG and Quan Sun Abstract Many highly reliable products have two or more performance characteristics (PCs). The

More information

Lifetime prediction and confidence bounds in accelerated degradation testing for lognormal response distributions with an Arrhenius rate relationship

Lifetime prediction and confidence bounds in accelerated degradation testing for lognormal response distributions with an Arrhenius rate relationship Scholars' Mine Doctoral Dissertations Student Research & Creative Works Spring 01 Lifetime prediction and confidence bounds in accelerated degradation testing for lognormal response distributions with

More information

Inference on reliability in two-parameter exponential stress strength model

Inference on reliability in two-parameter exponential stress strength model Metrika DOI 10.1007/s00184-006-0074-7 Inference on reliability in two-parameter exponential stress strength model K. Krishnamoorthy Shubhabrata Mukherjee Huizhen Guo Received: 19 January 2005 Springer-Verlag

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part III: Parametric Bootstrap Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD)

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

large number of i.i.d. observations from P. For concreteness, suppose

large number of i.i.d. observations from P. For concreteness, suppose 1 Subsampling Suppose X i, i = 1,..., n is an i.i.d. sequence of random variables with distribution P. Let θ(p ) be some real-valued parameter of interest, and let ˆθ n = ˆθ n (X 1,..., X n ) be some estimate

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

Lecture 1: Random number generation, permutation test, and the bootstrap. August 25, 2016

Lecture 1: Random number generation, permutation test, and the bootstrap. August 25, 2016 Lecture 1: Random number generation, permutation test, and the bootstrap August 25, 2016 Statistical simulation 1/21 Statistical simulation (Monte Carlo) is an important part of statistical method research.

More information

REFERENCES AND FURTHER STUDIES

REFERENCES AND FURTHER STUDIES REFERENCES AND FURTHER STUDIES by..0. on /0/. For personal use only.. Afifi, A. A., and Azen, S. P. (), Statistical Analysis A Computer Oriented Approach, Academic Press, New York.. Alvarez, A. R., Welter,

More information

Introduction to Reliability Theory (part 2)

Introduction to Reliability Theory (part 2) Introduction to Reliability Theory (part 2) Frank Coolen UTOPIAE Training School II, Durham University 3 July 2018 (UTOPIAE) Introduction to Reliability Theory 1 / 21 Outline Statistical issues Software

More information

Some Inferential Results for One-Shot Device. Testing Data Analysis

Some Inferential Results for One-Shot Device. Testing Data Analysis Some Inferential Results for One-Shot Device Testing Data Analysis SOME INFERENTIAL RESULTS FOR ONE-SHOT DEVICE TESTING DATA ANALYSIS BY HON YIU SO, B.Sc., M.Phil. a thesis submitted to the Department

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

Harvard University. Harvard University Biostatistics Working Paper Series

Harvard University. Harvard University Biostatistics Working Paper Series Harvard University Harvard University Biostatistics Working Paper Series Year 2008 Paper 94 The Highest Confidence Density Region and Its Usage for Inferences about the Survival Function with Censored

More information

An Introduction to Causal Mediation Analysis. Xu Qin University of Chicago Presented at the Central Iowa R User Group Meetup Aug 10, 2016

An Introduction to Causal Mediation Analysis. Xu Qin University of Chicago Presented at the Central Iowa R User Group Meetup Aug 10, 2016 An Introduction to Causal Mediation Analysis Xu Qin University of Chicago Presented at the Central Iowa R User Group Meetup Aug 10, 2016 1 Causality In the applications of statistics, many central questions

More information

Bayesian Reliability Analysis: Statistical Challenges from Science-Based Stockpile Stewardship

Bayesian Reliability Analysis: Statistical Challenges from Science-Based Stockpile Stewardship : Statistical Challenges from Science-Based Stockpile Stewardship Alyson G. Wilson, Ph.D. agw@lanl.gov Statistical Sciences Group Los Alamos National Laboratory May 22, 28 Acknowledgments Christine Anderson-Cook

More information

Interval Estimation III: Fisher's Information & Bootstrapping

Interval Estimation III: Fisher's Information & Bootstrapping Interval Estimation III: Fisher's Information & Bootstrapping Frequentist Confidence Interval Will consider four approaches to estimating confidence interval Standard Error (+/- 1.96 se) Likelihood Profile

More information

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests International Journal of Performability Engineering, Vol., No., January 24, pp.3-4. RAMS Consultants Printed in India Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests N. CHANDRA *, MASHROOR

More information

Chapter 2: Resampling Maarten Jansen

Chapter 2: Resampling Maarten Jansen Chapter 2: Resampling Maarten Jansen Randomization tests Randomized experiment random assignment of sample subjects to groups Example: medical experiment with control group n 1 subjects for true medicine,

More information

Contributions to Reliability and Lifetime Data Analysis

Contributions to Reliability and Lifetime Data Analysis ontributions to Reliability and Lifetime Data nalysis by nupap Somboonsavatdee dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) in The

More information

Understanding and Addressing the Unbounded Likelihood Problem

Understanding and Addressing the Unbounded Likelihood Problem Statistics Preprints Statistics 9-2013 Understanding and Addressing the Unbounded Likelihood Problem Shiyao Liu Iowa State University Huaiqing Wu Iowa State University William Q. Meeker Iowa State University,

More information

ST495: Survival Analysis: Maximum likelihood

ST495: Survival Analysis: Maximum likelihood ST495: Survival Analysis: Maximum likelihood Eric B. Laber Department of Statistics, North Carolina State University February 11, 2014 Everything is deception: seeking the minimum of illusion, keeping

More information

Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples

Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples 90 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 1, MARCH 2003 Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples N. Balakrishnan, N. Kannan, C. T.

More information

Confidence Intervals for Normal Data Spring 2014

Confidence Intervals for Normal Data Spring 2014 Confidence Intervals for Normal Data 18.05 Spring 2014 Agenda Today Review of critical values and quantiles. Computing z, t, χ 2 confidence intervals for normal data. Conceptual view of confidence intervals.

More information