Principal component analysis PCA. Kathleen Marchal Dept Plant Biotechnology and Bioinformatics Department information technology (INTEC)

Size: px
Start display at page:

Download "Principal component analysis PCA. Kathleen Marchal Dept Plant Biotechnology and Bioinformatics Department information technology (INTEC)"

Transcription

1 Principal component analysis PCA Kathleen Marchal Dept Plant Biotechnology and Bioinformatics Department information technology (INTEC)

2 Overzicht lessen 26/02 13h biostat S3 emile clapeyron 07/03 ma 13 h S5 Grace hopper 11/03 vrij 13 h S5 Grace hopper 7/04 do 9 h 14/04 do 9 h Emile Clapeyron S3 21/04 do 9 h Emile Clapeyron S3 21/04 do 13 h S5 Grace hopper 22/04 vrij 13 h S5 Grace hopper (28/04 do 9 h) 29/04 vrij 13 h S5 Grace hopper

3 Multivariate analysis methods Multiple variables Statistical text books Variables (n) Observations

4 PCA How does it work? Intuitive (case study, course notes) Geometric interpretation (course notes) Algebraic solution (tutorial)

5 Case study: systems biomedicine Cancer is a heterogeneous disease Subtypes exist within one cancer Subtypes have different molecular origin/prognosis Can molecular information help explaining the subtypes?

6 Case study: systems biomedicine Genes = variables G1 G2 G3 G4 Gn Patients =observations P1 P2 P3 P4 Pm Patient profiles Golub 1999: 72 patiënten met acute lymfatische (ALL, in deze tekst wordt gesteld dat deze patiënten tot klasse 1 behoren) of acute myeloïde (AML, in deze tekst behoren deze patiënten tot klasse 2) ; 7000 genen Patienten = observaties Genes = variabelen

7 Case study: systems biomedicine High dimensional dataset Patient profiles Variable 2 Gene 2 Variable 1, gene 1 Patient Variabelen: genen (7000) Observaties: patienten (37)

8 High Dimensionality of the datasets Goal Biomarkers Making of predictors

9 Subtyping/biomarker selection What do we expect? Patients with the same subtype (class) should have the same expression profiles Or the clinical subtype is reflected in the molecular phenotype This implies that the highest variable genes or gene combinations can be associated with the class distinction

10 Biomarkers

11 but there are confounding factors Expression signals contain related to age, drug usage, gender, there are redundant signals Feature selection: select those genes that are most distinctive for the phenotype of interest

12 Supervised analysis Class distinction is known Select features/genes that are most discriminative for the a priori know class distinction These genes are biomarkers used to screen novel patients Supervised dimensionality reduction

13 Feature extraction Choose class distinction vector (related to a known class distiction) c [ ] Calculate for every gene its metric p(g,c) i.e. its distance to the class distinction vector: Favors genes that have a pronounced between class variance but a low within class difference P( g, c) Pronounced between class variance High within class variance Pronounced between class variance Low within class variance Low between class variance low within class variance

14 Unsupervised analysis Previous methods only select single genes that do not necessarily contain independent information Sometimes linear combinations of genes can be more discriminative because the activity of a tumor is rarely determined by the activity of one gene = complex phenotype that requires interactions between genes What if the class distinction is not known a priori?

15 PCA => The dataset can be disentangled in different directions of variation (phenotype related and/or confounding factors) => We assume that the most pronounced variance in the dataset (changes in gene expression between patient groups) can be explained by the cancer phenotype

16 PCA Variables: genes (7000) Observations: patients (37) Patients are thus represented by 7000 dimensional vectors. They need to be plotted in a 7000 dimensional space. We will now reduce the dimensions of the dataset by making linear combinations of the variables (genes) that capture most of the variability in the dataset (1 st PC). The PC will be represented by the vector (a11, a12, ) where a11 and a12 correspond to the loadings of respectively gene 1 and gene 2 (or the contribution of gene 1 and gene 2 to the 1 st PC.

17 Variable 2 Gene 2 Gene1 high loading: feature important for class distinction PC1 (a11,a12) In case we have only two variables i.e. two dimensions Variable 1, gene 1 Patient profiles Variable 2 Gene 2 Gene2 high loading: feature important for class distinction PC1 (a11,a12) Variable 1, gene 1 Patient Express observations in new basis determined by PC

18 PCA Biologisch gezien is het ook logisch dat we de dimensionaliteit van het probleem reduceren: niet alle genen zijn onafhankelijke van elkaar. Sommige genen zijn bv coexpressed d.w.z. naar klasseonderscheid toe geven ze een redundant en dus niet onafhankelijk signaal. Met dimensionaliteitsreductie kunnen we deze genen groeperen.

19 Variable 2 Gene 2 Gene1 high loading: feature important for class distinction PC1 (a11,a12) P1_gene2 P1_gene1 Variable 1, gene 1 Variable 2 Gene 2 PC1 (a11,a12) Variable 1, gene 1 Dimensionality reduction: Project the observations on the first (or first two PCs) X coordinate of the first patient P1_(PC1) = a11 P1_gene1 + a12 P1_gene2

20 PCA (intuitive) new variables (PC) are linear combinations of the original variables. the principal components are selected such that they are uncorrelated with each other. the first principal component accounts for the maximum variance in the data, the second principal component accounts for the maximum of the variance not yet explained by the first component, and

21 predict(pcares)[, 1] predict(pcares)[, 2] scores PCA

22 PCA How does it work? Intuitive (case study, course notes) Geometric interpretation (course notes) Algebraic solution (tutorial)

23 Bioinformatics convention Patients =observations (n) Statistical text books Variables (n) Observations Genes = variables (4)

24 PCA (geometric) PCA is a basis transformation PX=Y in which P = transformation vector In PCA this transformation corresponds with a rotation of the original basis vectors over an angle a In the example below, the rows in the transformation vector are the PC

25 PCA (geometric) The data are mean centered Decide on whether the data need to be standardized or not. First component is selected in that direction where the observations establish most of the data variability Second component is selected in that direction that is orthogonal to the first component and that accounts for most of the remaining variance in the data. Procedure continues until the number of principal components equals the number of variables. The total number of new axes accounts for the same variation as the original axes.

26 PCA (geometric) x1 x

27 Mean centering PCA (geometric)

28 Variance rescaling PCA (geometric)

29 PCA (geometric) X2 PC1 (cosa, sina) =X1* x2 PC1 (cosa, sina) 100% 100% 0 a X1 0 a x % 0 100% Directionality if driven by the scale and not by the difference in contribution to the variance

30 PCA (geometric) x2 PC1 (cosa, sina) x2 PC1 (cosa, sina) a Variance explained x1 a Variance explained x1

31

32 PCA is a basis transformation PCA (geometric) PX=Y in which P = transformation vector In PCA this transformation corresponds with a rotation of the original basis vectors over an angle a In the example below, the rows in the transformation vector are the PC Loadings! cos ( ) sin ( ) P X = X* sin ( ) cos ( ) x1 x2 x1 x2 Vector representing the first new axis (PC1), the elements of the vector are the loadings and express the contribution of each original axis to the PC Performing the matrix multiplication corresponds to calculating the coordinates of the original datapoints according to the new axes To this end each datapoint is projected on each novel PC. The results of these projections are the scores of the data points

33 PCA (geometric)

34 PCA (geometric) How to determine the rotation (Ɵ) of the new axis? PC1 (cosa, sina) = X1* X2 Scores! p X1 The observations p are now projected with respect to the new axis X 1. The new coordinate x1* can be written as: x 1 = cos Ɵ * x1 + sin Ɵ * x2 x1, and x2 are the coordinates of that observation with respect to X1 and X2.

35 PCA (geometric)

36 PCA (geometric) Variance explained as function of the rotation

37 PCA (geometric) x2 PC1 (cosa, sina) x2 PC1 (cosa, sina) a Variance explained x1 a Variance explained x1

38 PCA (geometric) Second PC PC2 (-sina,cosa) The observations are now projected with respect to the new axis X 2. x2* = -sin Ɵ * x1 + cos Ɵ * x2 Data reduction possible

39 3D case PCA (geometric)

40 PCA (geometric) PCA as a dimensionality reduction technique

41 PCA (geometric) P1 is the rotation of the unitary vector over an angle a. The coordinates of p1 according to the original basis x1*, y1* So the directionality of the first PC is (cosa, sina)

42 PCA (geometric) P X= Y PCA is a base transformation, rotation that is obtained by multiplying the matrix P with X P: Transformation matrix contains in its rows the PC P: first coordinate of the original datapoint (x1,x2) according to the transformed base

43 PCA (geometric) Projection of p1 on the PC1 consists of two components px1 and px2 being respectively the projection of the first original coordinate on the PC1 and the projection of the second original coordinate on the first PC1

44 PCA How does it work? Intuitive (case study, course notes) Geometric interpretation (course notes) Algebraic solution (tutorial)

45 Basis transformation Matrix multiplication = lineaire afbeelding

46 Basis transformation PCA = defining a new basis (basis transformation) Assume 4 Dim case (4 genes are the basis vectors, a, b, c, d) X = matrix of n observations, coordinates of the n patients in the original basis (i.e. original expression measures) (4Xn) X= x 1a x na x 1d x nd P = lineaire afbeeldingsmatrix (loading matrix) (4X4) P= a 1a a 1d a 4a a 4d Y=PX (lineaire afbeelding op de nieuwe basis)

47 Basis transformation Y : the coordinates according to the new basis Y= a 1a x 1a + a 1b x 1b + a 1c x 1c + a 1d x 1d a 1a x na + a 1b x nb + a 1c x nc + a 1d x nd a 4a x 1a + a 4b x 1b + a 4c x 1c + a 4d x 1d a 4a x na + a 4b x nb + a 4c x nc + a 4d x nd Yi is the projection on the new basis P

48 PCA(algebraic solution) How to best rerepresent X How to choose the new basis P In PCA the P vector will consist of the loadings of PC and determine the PCs Data are noisy and redundant

49 PCA(algebraic solution) Signal to noise ratio (SNR) Noise is usually randomly distributed whereas the variance that is due to a signal is expected to be spread in a particular direction (certain genes tend to be consistently differentially expressed in the cancer patients of a specific subtype). The observed variance is not random. This is the signal we are interested in.

50 PCA(algebraic solution) In gene expression data: genes that belong to the same pathway and that are coexpressed confer redundant information => dimensionality reduction

51 PCA(algebraic solution) Gene 1 and gene 2 are correlated Redundancy in signal Gene 1 and gene 2 are not correlated No redundancy in signal

52 PCA(algebraic solution) x 1a x na x 1d x nd x 1a x 1d x na x nd Variancecovariance matrix 4 X n n X 4 Square m X m matrix Diagonal elements are the variances The off diagonal elements are the covariances Computing sx quantifies the correlations between all possible pair of measurements (between the genes profiles)

53 PCA(algebraic solution) Variancecovariance matrix

54 Variancecovariance matrix PCA(algebraic solution)

55 Variancecovariance matrix PCA(algebraic solution)

56 PCA(algebraic solution) Diagonalize the Covariance Matrix Our goals are to find the covariance matrix that: Minimizes redundancy, measured by covariance. (offdiagonal), i.e. we would like each variable to co-vary as little as possible with other variables. Maximizes the signal, measured by variance. (the diagonal) Since covariance is non-negative, the optimized covariance matrix will be a diagonal matrix.

57 PCA(algebraic solution) Choose P in the afbeelding Y=PX such that Sy is diagonalized and the values of the diagonals are ranked according to the variance in the data they explain PCA does this in the simplest way: The new basis is orthonormal The directions with the largest variances are the most important (solution is possible with linear algebra)

58 PCA(algebraic solution)

59 PCA(algebraic solution)

60 PCA(algebraic solution)

61 Case study AAAA 0.3 AAAT 7 S1 S2 Sn AAAG AAAC AATA Number of tetranucleotides: 4^4=265 (variables) Number of observations = scaffolds = restricted because of the frequency based binning (20?) Can scaffolds be separated based on their NT frequencies ->PCA

62 Case study AAAA 0.3 AAAT 7 S1 S2 Sn Variables: tetranucleotides: 4^4=265 (variables) Observations = scaffolds = restricted because of the frequency based binning (20?) AAAG AAAC AATA Can scaffolds be separated based on their NT frequencies ->PCA Make a new axis that is a linear combination of the tetranucleotides-> reduce the 265 dim space to a 2 dim space Scores of the original datapoints in the novel axes

63

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 02-01-2018 Biomedical data are usually high-dimensional Number of samples (n) is relatively small whereas number of features (p) can be large Sometimes p>>n Problems

More information

Discriminant analysis and supervised classification

Discriminant analysis and supervised classification Discriminant analysis and supervised classification Angela Montanari 1 Linear discriminant analysis Linear discriminant analysis (LDA) also known as Fisher s linear discriminant analysis or as Canonical

More information

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag A Tutorial on Data Reduction Principal Component Analysis Theoretical Discussion By Shireen Elhabian and Aly Farag University of Louisville, CVIP Lab November 2008 PCA PCA is A backbone of modern data

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

PRINCIPAL COMPONENT ANALYSIS

PRINCIPAL COMPONENT ANALYSIS PRINCIPAL COMPONENT ANALYSIS Dimensionality Reduction Tzompanaki Katerina Dimensionality Reduction Unsupervised learning Goal: Find hidden patterns in the data. Used for Visualization Data compression

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

Principal component analysis (PCA) for clustering gene expression data

Principal component analysis (PCA) for clustering gene expression data Principal component analysis (PCA) for clustering gene expression data Ka Yee Yeung Walter L. Ruzzo Bioinformatics, v17 #9 (2001) pp 763-774 1 Outline of talk Background and motivation Design of our empirical

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

-Principal components analysis is by far the oldest multivariate technique, dating back to the early 1900's; ecologists have used PCA since the

-Principal components analysis is by far the oldest multivariate technique, dating back to the early 1900's; ecologists have used PCA since the 1 2 3 -Principal components analysis is by far the oldest multivariate technique, dating back to the early 1900's; ecologists have used PCA since the 1950's. -PCA is based on covariance or correlation

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Machine Learning (Spring 2012) Principal Component Analysis

Machine Learning (Spring 2012) Principal Component Analysis 1-71 Machine Learning (Spring 1) Principal Component Analysis Yang Xu This note is partly based on Chapter 1.1 in Chris Bishop s book on PRML and the lecture slides on PCA written by Carlos Guestrin in

More information

PRINCIPAL COMPONENT ANALYSIS

PRINCIPAL COMPONENT ANALYSIS PRINCIPAL COMPONENT ANALYSIS 1 INTRODUCTION One of the main problems inherent in statistics with more than two variables is the issue of visualising or interpreting data. Fortunately, quite often the problem

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin SoSe 2015 What is Machine Learning? What is Machine Learning?

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson PCA Review! Supervised learning! Fisher linear discriminant analysis! Nonlinear discriminant analysis! Research example! Multiple Classes! Unsupervised

More information

Principal Component Analysis (PCA) Theory, Practice, and Examples

Principal Component Analysis (PCA) Theory, Practice, and Examples Principal Component Analysis (PCA) Theory, Practice, and Examples Data Reduction summarization of data with many (p) variables by a smaller set of (k) derived (synthetic, composite) variables. p k n A

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Quantitative Understanding in Biology Short Course Session 9 Principal Components Analysis

Quantitative Understanding in Biology Short Course Session 9 Principal Components Analysis Quantitative Understanding in Biology Short Course Session 9 Principal Components Analysis Jinhyun Ju Jason Banfelder Luce Skrabanek June 21st, 218 1 Preface For the last session in this course, we ll

More information

EE16B Designing Information Devices and Systems II

EE16B Designing Information Devices and Systems II EE6B Designing Information Devices and Systems II Lecture 9B Geometry of SVD, PCA Uniqueness of the SVD Find SVD of A 0 A 0 AA T 0 ) ) 0 0 ~u ~u 0 ~u ~u ~u ~u Uniqueness of the SVD Find SVD of A 0 A 0

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 42 Outline 1 Introduction 2 Feature selection

More information

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17 Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 17 Outline Filters and Rotations Generating co-varying random fields Translating co-varying fields into

More information

Vector Space Models. wine_spectral.r

Vector Space Models. wine_spectral.r Vector Space Models 137 wine_spectral.r Latent Semantic Analysis Problem with words Even a small vocabulary as in wine example is challenging LSA Reduce number of columns of DTM by principal components

More information

STATISTICAL LEARNING SYSTEMS

STATISTICAL LEARNING SYSTEMS STATISTICAL LEARNING SYSTEMS LECTURE 8: UNSUPERVISED LEARNING: FINDING STRUCTURE IN DATA Institute of Computer Science, Polish Academy of Sciences Ph. D. Program 2013/2014 Principal Component Analysis

More information

12.2 Dimensionality Reduction

12.2 Dimensionality Reduction 510 Chapter 12 of this dimensionality problem, regularization techniques such as SVD are almost always needed to perform the covariance matrix inversion. Because it appears to be a fundamental property

More information

BIOINFORMATICS Datamining #1

BIOINFORMATICS Datamining #1 BIOINFORMATICS Datamining #1 Mark Gerstein, Yale University gersteinlab.org/courses/452 1 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu Large-scale Datamining Gene Expression Representing Data in

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 6 1 / 22 Overview

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 15

GEOG 4110/5100 Advanced Remote Sensing Lecture 15 GEOG 4110/5100 Advanced Remote Sensing Lecture 15 Principal Component Analysis Relevant reading: Richards. Chapters 6.3* http://www.ce.yildiz.edu.tr/personal/songul/file/1097/principal_components.pdf *For

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Anders Øland David Christiansen 1 Introduction Principal Component Analysis, or PCA, is a commonly used multi-purpose technique in data analysis. It can be used for feature

More information

Review of similarity transformation and Singular Value Decomposition

Review of similarity transformation and Singular Value Decomposition Review of similarity transformation and Singular Value Decomposition Nasser M Abbasi Applied Mathematics Department, California State University, Fullerton July 8 7 page compiled on June 9, 5 at 9:5pm

More information

Quantitative Understanding in Biology Principal Components Analysis

Quantitative Understanding in Biology Principal Components Analysis Quantitative Understanding in Biology Principal Components Analysis Introduction Throughout this course we have seen examples of complex mathematical phenomena being represented as linear combinations

More information

Supervised Learning: Linear Methods (1/2) Applied Multivariate Statistics Spring 2012

Supervised Learning: Linear Methods (1/2) Applied Multivariate Statistics Spring 2012 Supervised Learning: Linear Methods (1/2) Applied Multivariate Statistics Spring 2012 Overview Review: Conditional Probability LDA / QDA: Theory Fisher s Discriminant Analysis LDA: Example Quality control:

More information

Dimension Reduction and Classification Using PCA and Factor. Overview

Dimension Reduction and Classification Using PCA and Factor. Overview Dimension Reduction and Classification Using PCA and - A Short Overview Laboratory for Interdisciplinary Statistical Analysis Department of Statistics Virginia Tech http://www.stat.vt.edu/consult/ March

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

MATH 829: Introduction to Data Mining and Analysis Principal component analysis

MATH 829: Introduction to Data Mining and Analysis Principal component analysis 1/11 MATH 829: Introduction to Data Mining and Analysis Principal component analysis Dominique Guillot Departments of Mathematical Sciences University of Delaware April 4, 2016 Motivation 2/11 High-dimensional

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 8 Continuous Latent Variable

More information

Overview of clustering analysis. Yuehua Cui

Overview of clustering analysis. Yuehua Cui Overview of clustering analysis Yuehua Cui Email: cuiy@msu.edu http://www.stt.msu.edu/~cui A data set with clear cluster structure How would you design an algorithm for finding the three clusters in this

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

Principal component analysis

Principal component analysis Principal component analysis Angela Montanari 1 Introduction Principal component analysis (PCA) is one of the most popular multivariate statistical methods. It was first introduced by Pearson (1901) and

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Principal Component Analysis. Applied Multivariate Statistics Spring 2012

Principal Component Analysis. Applied Multivariate Statistics Spring 2012 Principal Component Analysis Applied Multivariate Statistics Spring 2012 Overview Intuition Four definitions Practical examples Mathematical example Case study 2 PCA: Goals Goal 1: Dimension reduction

More information

MULTIVARIATE STATISTICAL ANALYSIS OF SPECTROSCOPIC DATA. Haisheng Lin, Ognjen Marjanovic, Barry Lennox

MULTIVARIATE STATISTICAL ANALYSIS OF SPECTROSCOPIC DATA. Haisheng Lin, Ognjen Marjanovic, Barry Lennox MULTIVARIATE STATISTICAL ANALYSIS OF SPECTROSCOPIC DATA Haisheng Lin, Ognjen Marjanovic, Barry Lennox Control Systems Centre, School of Electrical and Electronic Engineering, University of Manchester Abstract:

More information

Covariance and Principal Components

Covariance and Principal Components COMP3204/COMP6223: Computer Vision Covariance and Principal Components Jonathon Hare jsh2@ecs.soton.ac.uk Variance and Covariance Random Variables and Expected Values Mathematicians talk variance (and

More information

EE16B Designing Information Devices and Systems II

EE16B Designing Information Devices and Systems II EE16B Designing Information Devices and Systems II Lecture 9A Geometry of SVD, PCA Intro Last time: Described the SVD in Compact matrix form: U1SV1 T Full form: UΣV T Showed a procedure to SVD via A T

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

Sparse Approximation and Variable Selection

Sparse Approximation and Variable Selection Sparse Approximation and Variable Selection Lorenzo Rosasco 9.520 Class 07 February 26, 2007 About this class Goal To introduce the problem of variable selection, discuss its connection to sparse approximation

More information

Factor Analysis (10/2/13)

Factor Analysis (10/2/13) STA561: Probabilistic machine learning Factor Analysis (10/2/13) Lecturer: Barbara Engelhardt Scribes: Li Zhu, Fan Li, Ni Guan Factor Analysis Factor analysis is related to the mixture models we have studied.

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 2. Overview of multivariate techniques 2.1 Different approaches to multivariate data analysis 2.2 Classification of multivariate techniques

More information

GENOMIC SIGNAL PROCESSING. Lecture 2. Classification of disease subtype based on microarray data

GENOMIC SIGNAL PROCESSING. Lecture 2. Classification of disease subtype based on microarray data GENOMIC SIGNAL PROCESSING Lecture 2 Classification of disease subtype based on microarray data 1. Analysis of microarray data (see last 15 slides of Lecture 1) 2. Classification methods for microarray

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Statistics for Applications. Chapter 9: Principal Component Analysis (PCA) 1/16

Statistics for Applications. Chapter 9: Principal Component Analysis (PCA) 1/16 Statistics for Applications Chapter 9: Principal Component Analysis (PCA) 1/16 Multivariate statistics and review of linear algebra (1) Let X be a d-dimensional random vector and X 1,..., X n be n independent

More information

SVD, PCA & Preprocessing

SVD, PCA & Preprocessing Chapter 1 SVD, PCA & Preprocessing Part 2: Pre-processing and selecting the rank Pre-processing Skillicorn chapter 3.1 2 Why pre-process? Consider matrix of weather data Monthly temperatures in degrees

More information

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Machine Learning Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1 / 47 Table of contents 1 Introduction

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Principal

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

COMPLEX PRINCIPAL COMPONENT SPECTRA EXTRACTION

COMPLEX PRINCIPAL COMPONENT SPECTRA EXTRACTION COMPLEX PRINCIPAL COMPONEN SPECRA EXRACION PROGRAM complex_pca_spectra Computing principal components o begin, click the Formation attributes tab in the AASPI-UIL window and select program complex_pca_spectra:

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays

Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays Prof. Tesler Math 283 Fall 2015 Prof. Tesler Principal Components Analysis Math 283 / Fall 2015

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

e 2 e 1 (a) (b) (d) (c)

e 2 e 1 (a) (b) (d) (c) 2.13 Rotated principal component analysis [Book, Sect. 2.2] Fig.: PCA applied to a dataset composed of (a) 1 cluster, (b) 2 clusters, (c) and (d) 4 clusters. In (c), an orthonormal rotation and (d) an

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Singular Value Decomposition and Principal Component Analysis (PCA) I

Singular Value Decomposition and Principal Component Analysis (PCA) I Singular Value Decomposition and Principal Component Analysis (PCA) I Prof Ned Wingreen MOL 40/50 Microarray review Data per array: 0000 genes, I (green) i,i (red) i 000 000+ data points! The expression

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

Principal Component Analysis (PCA) CSC411/2515 Tutorial

Principal Component Analysis (PCA) CSC411/2515 Tutorial Principal Component Analysis (PCA) CSC411/2515 Tutorial Harris Chan Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek University of Toronto hchan@cs.toronto.edu October 19th, 2017 (UofT)

More information

Introduction to multivariate analysis Outline

Introduction to multivariate analysis Outline Introduction to multivariate analysis Outline Why do a multivariate analysis Ordination, classification, model fitting Principal component analysis Discriminant analysis, quickly Species presence/absence

More information

Neuroscience Introduction

Neuroscience Introduction Neuroscience Introduction The brain As humans, we can identify galaxies light years away, we can study particles smaller than an atom. But we still haven t unlocked the mystery of the three pounds of matter

More information

Independent Component Analysis and Its Application on Accelerator Physics

Independent Component Analysis and Its Application on Accelerator Physics Independent Component Analysis and Its Application on Accelerator Physics Xiaoying Pang LA-UR-12-20069 ICA and PCA Similarities: Blind source separation method (BSS) no model Observed signals are linear

More information

Multivariate Statistics Fundamentals Part 1: Rotation-based Techniques

Multivariate Statistics Fundamentals Part 1: Rotation-based Techniques Multivariate Statistics Fundamentals Part 1: Rotation-based Techniques A reminded from a univariate statistics courses Population Class of things (What you want to learn about) Sample group representing

More information