Local Stability on Hybrid Inverse Problems

Size: px
Start display at page:

Download "Local Stability on Hybrid Inverse Problems"

Transcription

1 Purdue University January 5, 2013 Joint work with P. Stefanov and A. Nachman

2 Table of contents Mathematical model 1 Mathematical model 2 3 4

3 Mathematical Model Mathematical model Let Ω be a bounded simply connected open set of R n with C k boundary, k 1. Consider the elliptic boundary value problem where σ is in C k (Ω), such that σ u = 0 in Ω, u Ω = f, (1) 0 < λ σ(x), x Ω. (2) We address the question of whether we can determine σ, in a stable way, from the functional where p is fixed. F (σ) = σ u p, (3)

4 : Kutchment and Steinhauer 12. : Nachmann, Tamasan and Timonov 07, 09. Seo, Kwon and Woo 05. MREIT or CDII. Hyperbolic case p = 2: Bal, Bonnetier, Mondard, Triki 11, 12. Capdeboscq et al 09, Bal, Schotland 10, Kutchment and Kuyanski 11, and more. UMEIT or EAT

5 Mathematical model Linearized. Analyze the linearization in the different cases, 0 p < 1, p = 1 and p > 1. Use SU paper Linearizing non-linear inverse problems and an application to inverse backscattering JFA 09 to get conditional stability for the non-linear problem.

6 Mathematical model The derivative of F at some fixed σ 0 is given by ( df σ0 (ρ) = σ 0 u 0 p ρ + p u ) 0 v(ρ) u 0 2, ρ := δσ/σ 0, (4) where v solves σ 0 v = σ 0 u 0 ρ in Ω, v Ω = 0, (5) and u 0 is the solution of (1) for σ = σ 0. Notice that (4) makes sense as long as u 0 0 in Ω.

7 Solve (4) for the free ρ term and plug that into (5) to get ( ) ( ) u 0 v σ 0 v + p σ 0 u 0 2 u dfσ0 (ρ) 0 = u 0 p u 0 ( ) dfσ0 (ρ) = σ 0 u 0 σ 0 u 0 p. in Ω, with v Ω = 0.

8 Representation of df σ0 Proposition Let u 0 be σ 0 -harmonic, with u 0 0 in Ω. Then σ 0 T 0 df σ0 (ρ) σ 0 u 0 p = L 1 σ 0,D T 0ρ, where T 0 = u 0 is a transport operator along the gradient field of u 0, σ,d is the Dirichlet realization of σ := σ and ( ) u 0 v Lv := σ 0 v + p σ 0 u 0 2 u 0. Remark: The operator L is the only interesting object to study.

9 Example: Consider the particular case when σ 0 = 1, f = x n. Then u 0 = x n and L = x (1 p) 2 x n, where x = (x, x n ). Notice that: For 0 p < 1, L is an elliptic operator. For p = 1, L becomes the restriction of the Laplacion over x n = 0. For p > 1, L is a hyperbolic operator. This characterization remains true in the general case.

10 Proposition Let u 0 be σ 0 -harmonic, with u 0 0 in Ω. There exist local coordinates (y, y n ) such that dx 2 = c 2 (dy n ) 2 + g αβ dy α dy β, where c = u 0 1. In this coordinates g αβ := i x i x i y α y β (6) L = Q + 1 p det g y n c 2 σ 0 det g y n, where Q is a second order elliptic positively defined differential operator in the variables y smoothly dependent on y n. In dimension two this representation is global.

11 Proof. Recall Lv = σ 0 v + p ( ) u 0 v σ 0 u 0 2 u 0 Let - Π 0 ω the the orthogonal projection of the covector ω onto u 0. - Π := Id Π 0. Take a test function φ C 0 (Ω), and compute (Lv, φ) = (σ 0 v, φ) p(σ 0 Π 0 v, φ), = (σ 0 Π v, Π φ) + (1 p) (σ 0 Π 0 v, Π 0 φ). (7)

12 Hence L = (Π ) σ 0 (Π ) (1 p)(π 0 ) σ 0 (Π 0 ), (8) where the prime stands for transpose. Notice that trivially c 2 u 0 2 = 1 for c = u 0 1. Near x 0 choose boundary local coordinates to the level surface u 0 (x) = u 0 (x 0 ), with y n = u 0 then and then c 2 dx 2 = (dy n ) 2 + c 2 g αβ dy α dy β dx 2 = c 2 (dy n ) 2 + g αβ dy α dy β, g αβ := i x i x i y α y β

13 In this coordinates, Π 0 v = (0,..., 0, v/ y n ) Π v = ( v/ y 1,..., v/ y n 1, 0) (Lv, φ) = Hence ( αβ v σ 0 g φ v y α + (1 φ ) det p)c 2 y β g dy y n y n L = 1 ( det g y β σ 0g αβ det g y ) + (1 p) α y n c 2 σ 0 det g y n

14 In the case n = 2 we have a global coordinate system. Take y 2 = u 0 and y 1 = v 0 with v 0 H 1 (Ω) being the σ 0 -conjugate harmonic of u 0 (u 0 + iv 0 is analitic on Ω). The level curves to u 0 and v 0 are perpendicular and, under the non-vanishing gradient assumption, they can not intersect in more than one point. Remark In the 2D case we can ensure u 0 0 in Ω by imposing condition in the boundary. For instance if u Ω = f is two-to-one then u 0 0 in Ω.

15 Using the representation of df σ0 and decomposition of L we get ( v, df ) σ(ρ) u 0 p u 0 = (Lv, v) = σ 1/2 0 Π v 2 + (1 p) σ 1/2 0 Π 0 v 2 min(1, (1 p)) σ 1/2 0 v 2. If df σ (ρ) = 0 = v = 0. We then have σ 0 u 0 ρ = 0. This implies ρ = 0. Hence the linearization is injective. Together with the ellipticity, this has the usual consequences.

16 In this case we have the following stability of L. Proposition (p=1) Let u 0 be σ 0 harmonic, with u 0 0 in Ω, then (Lv, v) C v 2 L 2 (Ω), for v Ω = 0, (9) for C > 0.

17 Sketch proof: For each x 0 Ω there exist ɛ 0 such that for all 0 < ɛ < ɛ 0 a+ɛ a ɛ Q 0 Lvvdy dy n = a+ɛ a ɛ C C a+ɛ a ɛ a+ɛ a ɛ Q 0 σ 0 g αβ v y α v y β det(dx/dy) dy dy n Q 0 y v(y, y n ) 2 dy dy n Q 0 v(y, y n ) 2 dy dy n C v 2 L 2 (Ω 0 ɛ ) where a = u 0 (x 0 ) and Ω 0 ɛ = (a ɛ, a + ɛ) Q 0. Here C depends on λ,n and the upper bound or the level curves of u 0 intersecting the domain of integration.

18 Once we have established stability for the operator L we can get stability for the linearization using the decomposition σ 0 T 0 df σ0 (ρ) σ 0 u 0 p = L 1 σ 0,D T 0ρ. Hence for some s 1, s 2. ρ H s 1 df σ0 (ρ) H s 2 (10)

19 Finally using SU technique to transfer stability from the linearization to the non-linear problem we get Hölder type of stability. For L > 0 there exist ɛ > 0, so that for any f with σ σ 0 H s ɛ, σ H s L one has the conditional stability estimate for some 0 < µ < 1. σ σ 0 H s C F (σ) F (σ 0 ) µ H s

20 Final Remarks Critical points (easier in n=2). General approach to get stability for a non-linear problem. Case p = 2.

21 Thank you!

STABILITY OF COUPLED-PHYSICS INVERSE PROBLEMS WITH ONE INTERNAL MEASUREMENT

STABILITY OF COUPLED-PHYSICS INVERSE PROBLEMS WITH ONE INTERNAL MEASUREMENT STABILITY OF COUPLED-PHYSICS INVERSE PROBLEMS WITH ONE INTERNAL MEASUREMENT CARLOS MONTALTO AND PLAMEN STEFANOV Abstract. In this paper, we develop a general approach to prove stability for the non linear

More information

The inverse conductivity problem with power densities in dimension n 2

The inverse conductivity problem with power densities in dimension n 2 The inverse conductivity problem with power densities in dimension n 2 François Monard Guillaume Bal Dept. of Applied Physics and Applied Mathematics, Columbia University. June 19th, 2012 UC Irvine Conference

More information

Hybrid Inverse Problems and Internal Functionals. Guillaume Bal

Hybrid Inverse Problems and Internal Functionals. Guillaume Bal Hybrid Inverse Problems and Internal Functionals Department of Applied Physics & Applied Mathematics Columbia University Joint w.: Cédric Bellis, Eric Bonnetier, Matias Courdurier, Chenxi Guo, Sébastien

More information

Euler Equations: local existence

Euler Equations: local existence Euler Equations: local existence Mat 529, Lesson 2. 1 Active scalars formulation We start with a lemma. Lemma 1. Assume that w is a magnetization variable, i.e. t w + u w + ( u) w = 0. If u = Pw then u

More information

Non-uniqueness result for a hybrid inverse problem

Non-uniqueness result for a hybrid inverse problem Non-uniqueness result for a hybrid inverse problem Guillaume Bal and Kui Ren Abstract. Hybrid inverse problems aim to combine two imaging modalities, one that displays large contrast and one that gives

More information

A SHARP STABILITY ESTIMATE IN TENSOR TOMOGRAPHY

A SHARP STABILITY ESTIMATE IN TENSOR TOMOGRAPHY A SHARP STABILITY ESTIMATE IN TENSOR TOMOGRAPHY PLAMEN STEFANOV 1. Introduction Let (M, g) be a compact Riemannian manifold with boundary. The geodesic ray transform I of symmetric 2-tensor fields f is

More information

Non-uniqueness result for a hybrid inverse problem

Non-uniqueness result for a hybrid inverse problem Non-uniqueness result for a hybrid inverse problem Guillaume Bal and Kui Ren Abstract. Hybrid inverse problems aim to combine two imaging modalities, one that displays large contrast and one that gives

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3) M ath 5 2 7 Fall 2 0 0 9 L ecture 4 ( S ep. 6, 2 0 0 9 ) Properties and Estimates of Laplace s and Poisson s Equations In our last lecture we derived the formulas for the solutions of Poisson s equation

More information

R. M. Brown. 29 March 2008 / Regional AMS meeting in Baton Rouge. Department of Mathematics University of Kentucky. The mixed problem.

R. M. Brown. 29 March 2008 / Regional AMS meeting in Baton Rouge. Department of Mathematics University of Kentucky. The mixed problem. mixed R. M. Department of Mathematics University of Kentucky 29 March 2008 / Regional AMS meeting in Baton Rouge Outline mixed 1 mixed 2 3 4 mixed We consider the mixed boundary value Lu = 0 u = f D u

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Lecture Notes on Metric Spaces

Lecture Notes on Metric Spaces Lecture Notes on Metric Spaces Math 117: Summer 2007 John Douglas Moore Our goal of these notes is to explain a few facts regarding metric spaces not included in the first few chapters of the text [1],

More information

Differential Topology Final Exam With Solutions

Differential Topology Final Exam With Solutions Differential Topology Final Exam With Solutions Instructor: W. D. Gillam Date: Friday, May 20, 2016, 13:00 (1) Let X be a subset of R n, Y a subset of R m. Give the definitions of... (a) smooth function

More information

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation A Variational Analysis of a Gauged Nonlinear Schrödinger Equation Alessio Pomponio, joint work with David Ruiz Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Variational and Topological

More information

Math 185 Homework Exercises II

Math 185 Homework Exercises II Math 185 Homework Exercises II Instructor: Andrés E. Caicedo Due: July 10, 2002 1. Verify that if f H(Ω) C 2 (Ω) is never zero, then ln f is harmonic in Ω. 2. Let f = u+iv H(Ω) C 2 (Ω). Let p 2 be an integer.

More information

Photo-Acoustic imaging in layered media

Photo-Acoustic imaging in layered media Photo-Acoustic imaging in layered media Faouzi TRIKI Université Grenoble-Alpes, France (joint works with Kui Ren, Texas at Austin, USA.) 4 juillet 2016 Photo-Acoustic effect Photo-Acoustic effect (Bell,

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

Microlocal Methods in X-ray Tomography

Microlocal Methods in X-ray Tomography Microlocal Methods in X-ray Tomography Plamen Stefanov Purdue University Lecture I: Euclidean X-ray tomography Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Methods

More information

Microlocal Analysis : a short introduction

Microlocal Analysis : a short introduction Microlocal Analysis : a short introduction Plamen Stefanov Purdue University Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Analysis : a short introduction 1 / 25 Introduction

More information

1 Introduction. COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING A. Tamasan, A. Timonov

1 Introduction. COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING A. Tamasan, A. Timonov EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS ISSN 2306 6172 Volume 2, Issue 2(2014) 5 29 COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING A. Tamasan, A. Timonov Abstract Coupled physics electrical

More information

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition Sukjung Hwang CMAC, Yonsei University Collaboration with M. Dindos and M. Mitrea The 1st Meeting of

More information

Differential Geometry III, Solutions 6 (Week 6)

Differential Geometry III, Solutions 6 (Week 6) Durham University Pavel Tumarkin Michaelmas 016 Differential Geometry III, Solutions 6 Week 6 Surfaces - 1 6.1. Let U R be an open set. Show that the set {x, y, z R 3 z = 0 and x, y U} is a regular surface.

More information

Cauchy problem for Ultrasound Modulated EIT

Cauchy problem for Ultrasound Modulated EIT Cauchy problem for Ultrasound Modulated EIT Guillaume Bal December 18, 2011 Abstract Ultrasound modulation of electrical or optical properties of materials offers the possibility to devise hybrid imaging

More information

The Dirichlet-to-Neumann operator

The Dirichlet-to-Neumann operator Lecture 8 The Dirichlet-to-Neumann operator The Dirichlet-to-Neumann operator plays an important role in the theory of inverse problems. In fact, from measurements of electrical currents at the surface

More information

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang)

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang) and of Standing Waves the Fractional Schrödinger Equation Shihui Zhu (joint with J. Zhang) Department of Mathematics, Sichuan Normal University & IMS, National University of Singapore P1 iu t ( + k 2 )

More information

Curvilinear coordinates

Curvilinear coordinates C Curvilinear coordinates The distance between two points Euclidean space takes the simplest form (2-4) in Cartesian coordinates. The geometry of concrete physical problems may make non-cartesian coordinates

More information

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots, Chapter 8 Elliptic PDEs In this chapter we study elliptical PDEs. That is, PDEs of the form 2 u = lots, where lots means lower-order terms (u x, u y,..., u, f). Here are some ways to think about the physical

More information

6 6 DISCRETE GROUPS. 6.1 Discontinuous Group Actions

6 6 DISCRETE GROUPS. 6.1 Discontinuous Group Actions 6 6 DISCRETE GROUPS 6.1 Discontinuous Group Actions Let G be a subgroup of Möb(D). This group acts discontinuously on D if, for every compact subset K of D, the set {T G : T (K) K } is finite. Proposition

More information

Valuations. 6.1 Definitions. Chapter 6

Valuations. 6.1 Definitions. Chapter 6 Chapter 6 Valuations In this chapter, we generalize the notion of absolute value. In particular, we will show how the p-adic absolute value defined in the previous chapter for Q can be extended to hold

More information

MICROLOCAL ANALYSIS METHODS

MICROLOCAL ANALYSIS METHODS MICROLOCAL ANALYSIS METHODS PLAMEN STEFANOV One of the fundamental ideas of classical analysis is a thorough study of functions near a point, i.e., locally. Microlocal analysis, loosely speaking, is analysis

More information

Toward imaging modalities with high(er) resolution

Toward imaging modalities with high(er) resolution Toward imaging modalities with high(er) resolution François Monard Department of Mathematics, University of Michigan February 9, 2016 University of North Carolina at Charlotte Introduction Topic du jour

More information

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes Cauchy-Riemann Equations and Conformal Mapping 26.2 Introduction In this Section we consider two important features of complex functions. The Cauchy-Riemann equations provide a necessary and sufficient

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

Random Walks on Hyperbolic Groups III

Random Walks on Hyperbolic Groups III Random Walks on Hyperbolic Groups III Steve Lalley University of Chicago January 2014 Hyperbolic Groups Definition, Examples Geometric Boundary Ledrappier-Kaimanovich Formula Martin Boundary of FRRW on

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

The Levenberg-Marquardt Iteration for Numerical Inversion of the Power Density Operator

The Levenberg-Marquardt Iteration for Numerical Inversion of the Power Density Operator The Levenberg-Marquardt Iteration for Numerical Inversion of the Power Density Operator G. Bal (gb2030@columbia.edu) 1 W. Naetar (wolf.naetar@univie.ac.at) 2 O. Scherzer (otmar.scherzer@univie.ac.at) 2,3

More information

arxiv:math/ v1 [math.ag] 18 Oct 2003

arxiv:math/ v1 [math.ag] 18 Oct 2003 Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 2, May 2003, pp. 139 152. Printed in India The Jacobian of a nonorientable Klein surface arxiv:math/0310288v1 [math.ag] 18 Oct 2003 PABLO ARÉS-GASTESI

More information

and finally, any second order divergence form elliptic operator

and finally, any second order divergence form elliptic operator Supporting Information: Mathematical proofs Preliminaries Let be an arbitrary bounded open set in R n and let L be any elliptic differential operator associated to a symmetric positive bilinear form B

More information

MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26

MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26 MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26 1. Abelian Varieties of GL 2 -Type 1.1. Modularity Criteria. Here s what we ve shown so far: Fix a continuous residual representation : G Q GLV, where V is

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

Explicit formulas and symmetric function theory

Explicit formulas and symmetric function theory and symmetric function theory Department of Mathematics University of Michigan Number Theory and Function Fields at the Crossroads University of Exeter January 206 Arithmetic functions on Z over short

More information

Fonctions on bounded variations in Hilbert spaces

Fonctions on bounded variations in Hilbert spaces Fonctions on bounded variations in ilbert spaces Newton Institute, March 31, 2010 Introduction We recall that a function u : R n R is said to be of bounded variation (BV) if there exists an n-dimensional

More information

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Raphael Hora UFSC rhora@mtm.ufsc.br 29/04/2014 Raphael Hora (UFSC) Inverse Scattering with Partial data on AH Manifolds 29/04/2014

More information

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary David Chopp and John A. Velling December 1, 2003 Abstract Let γ be a Jordan curve in S 2, considered as the ideal

More information

A fully non-linear optimization approach to acousto-electric tomography

A fully non-linear optimization approach to acousto-electric tomography A fully non-linear optimization approach to acousto-electric tomography B. J. Adesokan, K. Knudsen, V. P. Krishnan and S. Roy arxiv:1804.02507v2 [math.oc] 4 Jul 2018 Abstract This paper considers the non-linear

More information

MET Workshop: Exercises

MET Workshop: Exercises MET Workshop: Exercises Alex Blumenthal and Anthony Quas May 7, 206 Notation. R d is endowed with the standard inner product (, ) and Euclidean norm. M d d (R) denotes the space of n n real matrices. When

More information

An inverse source problem in optical molecular imaging

An inverse source problem in optical molecular imaging An inverse source problem in optical molecular imaging Plamen Stefanov 1 Gunther Uhlmann 2 1 2 University of Washington Formulation Direct Problem Singular Operators Inverse Problem Proof Conclusion Figure:

More information

Optimal regularity and control of the support for the pullback equation

Optimal regularity and control of the support for the pullback equation Optimal regularity and control of the support for the pullback equation O. KNEUSS Department of Mathematics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil olivier.kneuss@gmail.com August

More information

Analysis III Theorems, Propositions & Lemmas... Oh My!

Analysis III Theorems, Propositions & Lemmas... Oh My! Analysis III Theorems, Propositions & Lemmas... Oh My! Rob Gibson October 25, 2010 Proposition 1. If x = (x 1, x 2,...), y = (y 1, y 2,...), then is a distance. ( d(x, y) = x k y k p Proposition 2. In

More information

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner:

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner: M ath 0 1 E S 1 W inter 0 1 0 Last Updated: January, 01 0 Solving Second Order Linear ODEs Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections 4. 4. 7 and

More information

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions. February 18, 2015 1 2 3 Instantons in Path Integral Formulation of mechanics is based around the propagator: x f e iht / x i In path integral formulation of quantum mechanics we relate the propagator to

More information

Dr. Allen Back. Sep. 10, 2014

Dr. Allen Back. Sep. 10, 2014 Dr. Allen Back Sep. 10, 2014 The chain rule in multivariable calculus is in some ways very simple. But it can lead to extremely intricate sorts of relationships (try thermodynamics in physical chemistry...

More information

Statistics 581, Problem Set 1 Solutions Wellner; 10/3/ (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality

Statistics 581, Problem Set 1 Solutions Wellner; 10/3/ (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality Statistics 581, Problem Set 1 Solutions Wellner; 1/3/218 1. (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality and is usually written P ( X ɛ) E( X )/ɛ for an arbitrary random

More information

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY TIMOTHY E. GOLDBERG These are notes for a talk given in the Lie Groups Seminar at Cornell University on Friday, September 25, 2009. In retrospect, perhaps

More information

Conductivity imaging from one interior measurement

Conductivity imaging from one interior measurement Conductivity imaging from one interior measurement Amir Moradifam (University of Toronto) Fields Institute, July 24, 2012 Amir Moradifam (University of Toronto) A convergent algorithm for CDII 1 / 16 A

More information

Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables

Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables Joao Meireles joint work with Martino Bardi and Guy Barles University of Padua, Italy Workshop "New Perspectives in Optimal

More information

Calderón s inverse problem in 2D Electrical Impedance Tomography

Calderón s inverse problem in 2D Electrical Impedance Tomography Calderón s inverse problem in 2D Electrical Impedance Tomography Kari Astala (University of Helsinki) Joint work with: Matti Lassas, Lassi Päivärinta, Samuli Siltanen, Jennifer Mueller and Alan Perämäki

More information

Physics 6303 Lecture 2 August 22, 2018

Physics 6303 Lecture 2 August 22, 2018 Physics 6303 Lecture 2 August 22, 2018 LAST TIME: Coordinate system construction, covariant and contravariant vector components, basics vector review, gradient, divergence, curl, and Laplacian operators

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Regularity of the p-poisson equation in the plane

Regularity of the p-poisson equation in the plane Regularity of the p-poisson equation in the plane Erik Lindgren Peter Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology NO-7491 Trondheim, Norway Abstract We

More information

LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL TANGENT VECTORS.

LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL TANGENT VECTORS. LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL 2006. TANGENT VECTORS. Overview: Tangent vectors, spaces and bundles. First: to an embedded manifold of Euclidean space. Then to one

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition The Dirichlet boundary problems for second order parabolic operators satisfying a Martin Dindos Sukjung Hwang University of Edinburgh Satellite Conference in Harmonic Analysis Chosun University, Gwangju,

More information

FFTs in Graphics and Vision. Rotational and Reflective Symmetry Detection

FFTs in Graphics and Vision. Rotational and Reflective Symmetry Detection FFTs in Graphics and Vision Rotational and Reflective Symmetry Detection Outline Representation Theory Symmetry Detection Rotational Symmetry Reflective Symmetry Representation Theory Recall: A group is

More information

Reflections and Rotations in R 3

Reflections and Rotations in R 3 Reflections and Rotations in R 3 P. J. Ryan May 29, 21 Rotations as Compositions of Reflections Recall that the reflection in the hyperplane H through the origin in R n is given by f(x) = x 2 ξ, x ξ (1)

More information

56 4 Integration against rough paths

56 4 Integration against rough paths 56 4 Integration against rough paths comes to the definition of a rough integral we typically take W = LV, W ; although other choices can be useful see e.g. remark 4.11. In the context of rough differential

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

1 Dirac Notation for Vector Spaces

1 Dirac Notation for Vector Spaces Theoretical Physics Notes 2: Dirac Notation This installment of the notes covers Dirac notation, which proves to be very useful in many ways. For example, it gives a convenient way of expressing amplitudes

More information

Lecture 13. Differential forms

Lecture 13. Differential forms Lecture 13. Differential forms In the last few lectures we have seen how a connection can be used to differentiate tensors, and how the introduction of a Riemannian metric gives a canonical choice of connection.

More information

2. Geometrical Preliminaries

2. Geometrical Preliminaries 2. Geometrical Preliminaries The description of the geometry is essential for the definition of a shell structure. Our objective in this chapter is to survey the main geometrical concepts, to introduce

More information

1 Introduction Definitons Markov... 2

1 Introduction Definitons Markov... 2 Compact course notes Dynamic systems Fall 2011 Professor: Y. Kudryashov transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Introduction 2 1.1 Definitons...............................................

More information

p-adic gauge theory in number theory K. Fujiwara Nagoya Tokyo, September 2007

p-adic gauge theory in number theory K. Fujiwara Nagoya Tokyo, September 2007 p-adic gauge theory in number theory K. Fujiwara Nagoya Tokyo, September 2007 Dirichlet s theorem F : totally real field, O F : the integer ring, [F : Q] = d. p: a prime number. Dirichlet s unit theorem:

More information

225A DIFFERENTIAL TOPOLOGY FINAL

225A DIFFERENTIAL TOPOLOGY FINAL 225A DIFFERENTIAL TOPOLOGY FINAL KIM, SUNGJIN Problem 1. From hitney s Embedding Theorem, we can assume that N is an embedded submanifold of R K for some K > 0. Then it is possible to define distance function.

More information

Variable Exponents Spaces and Their Applications to Fluid Dynamics

Variable Exponents Spaces and Their Applications to Fluid Dynamics Variable Exponents Spaces and Their Applications to Fluid Dynamics Martin Rapp TU Darmstadt November 7, 213 Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 1 / 14 Overview 1 Variable

More information

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE GOALS Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction. Be able to use the fact that

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Week 4: Differentiation for Functions of Several Variables

Week 4: Differentiation for Functions of Several Variables Week 4: Differentiation for Functions of Several Variables Introduction A functions of several variables f : U R n R is a rule that assigns a real number to each point in U, a subset of R n, For the next

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading

Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading Chapter 4 Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading The moment of a force about a point provides a measure of the

More information

SOLUTION OF POISSON S EQUATION. Contents

SOLUTION OF POISSON S EQUATION. Contents SOLUTION OF POISSON S EQUATION CRISTIAN E. GUTIÉRREZ OCTOBER 5, 2013 Contents 1. Differentiation under the integral sign 1 2. The Newtonian potential is C 1 2 3. The Newtonian potential from the 3rd Green

More information

An inverse scattering problem in random media

An inverse scattering problem in random media An inverse scattering problem in random media Pedro Caro Joint work with: Tapio Helin & Matti Lassas Computational and Analytic Problems in Spectral Theory June 8, 2016 Outline Introduction and motivation

More information

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky Homogeneous para-kähler Einstein manifolds Dmitri V. Alekseevsky Hamburg,14-18 July 2008 1 The talk is based on a joint work with C.Medori and A.Tomassini (Parma) See ArXiv 0806.2272, where also a survey

More information

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1.

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1. 6 Orthogonal groups We now turn to the orthogonal groups. These are more difficult, for two related reasons. First, it is not always true that the group of isometries with determinant 1 is equal to its

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Kenichi ITO (University of Tokyo) joint work with Erik SKIBSTED (Aarhus University) 3 July 2018 Example: Free

More information

BOUNDARY RIGIDITY AND STABILITY FOR GENERIC SIMPLE METRICS

BOUNDARY RIGIDITY AND STABILITY FOR GENERIC SIMPLE METRICS JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0894-0347(XX)0000-0 BOUNDARY RIGIDITY AND STABILITY FOR GENERIC SIMPLE METRICS PLAMEN STEFANOV AND GUNTHER UHLMANN 1. Introduction

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

Existence of minimizers for the pure displacement problem in nonlinear elasticity

Existence of minimizers for the pure displacement problem in nonlinear elasticity Existence of minimizers for the pure displacement problem in nonlinear elasticity Cristinel Mardare Université Pierre et Marie Curie - Paris 6, Laboratoire Jacques-Louis Lions, Paris, F-75005 France Abstract

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

1 = I I I II 1 1 II 2 = normalization constant III 1 1 III 2 2 III 3 = normalization constant...

1 = I I I II 1 1 II 2 = normalization constant III 1 1 III 2 2 III 3 = normalization constant... Here is a review of some (but not all) of the topics you should know for the midterm. These are things I think are important to know. I haven t seen the test, so there are probably some things on it that

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 21 (Day 1) 1. (CA) Evaluate sin 2 x x 2 dx Solution. Let C be the curve on the complex plane from to +, which is along

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

A new class of pseudodifferential operators with mixed homogenities

A new class of pseudodifferential operators with mixed homogenities A new class of pseudodifferential operators with mixed homogenities Po-Lam Yung University of Oxford Jan 20, 2014 Introduction Given a smooth distribution of hyperplanes on R N (or more generally on a

More information

Physics 411 Lecture 7. Tensors. Lecture 7. Physics 411 Classical Mechanics II

Physics 411 Lecture 7. Tensors. Lecture 7. Physics 411 Classical Mechanics II Physics 411 Lecture 7 Tensors Lecture 7 Physics 411 Classical Mechanics II September 12th 2007 In Electrodynamics, the implicit law governing the motion of particles is F α = m ẍ α. This is also true,

More information

Transparent connections

Transparent connections The abelian case A definition (M, g) is a closed Riemannian manifold, d = dim M. E M is a rank n complex vector bundle with a Hermitian metric (i.e. a U(n)-bundle). is a Hermitian (i.e. metric) connection

More information