Finite Dierence Schemes

Size: px
Start display at page:

Download "Finite Dierence Schemes"

Transcription

1 MATH-459 Numerical Methods for Coservatio Laws by Prof. Ja S. Hesthave Solutio set 2: Fiite Dierece Schemes Exercise 2. Cosistecy A method is cosistet if its local trucatio error T k satises T k (x, t) = O (k p ) + O (h q ) where p, q >. () Essetially, cosistecy tells us that we are approximatig the solutio of the correct PDE. Covergece A method is coverget if the error E k satises E k (, t) as k, t. (2) Stability A method + = H k is stable if for each T > there exist costats C ad k, such that H k C k T, < k < k. (3) The importace of stability is made clear by the Lax equivalece theorem. I class we saw a proof of oe directio of this equivalece: if a method + = H k is cosistet ad stable, the it is coverget. From the proof it is clear that stability allows us, i priciple, to approximate a solutio at ay ite time iterval [, T ], ad to ay degree of accuracy. Exercise 2.2 (b) is give by Let u be a smooth solutio of u t + au x =. The local trucatio error for the Leapfrog scheme kt k (x, t) = u(x, t + k) u(x, t k) + ak h (u (x + h, t) u (x h, t)). (4) Next, we expad all the terms o the right had side of the last equatio about (x, t). For example, we have u(x, t + k) ad u(x, t k) give by u(x, t + k) = u + u t k + 2 u ttk 2 + O ( k 3) (5) ad u(x, t k) = u u t k + 2 u ttk 2 + O ( k 3), (6) where for simplicity of otatio we have replaced u (x, t), u t (x, t) ad u tt (x, t) by u, u t ad u tt, respectively. It is, thus, clear that u(x, t + k) u(x, t k) = 2ku t + O ( k 3). (7) By repeatig the calculatio also for the shifts i space u(x ± h, t), we get kt k (x, t) = 2ku t + O ( k 3) + ak h ( 2hux + O ( h 3)), (8) which implies T k (x, t) = 2 (u t + au x ) + O ( k 2) + O ( h 2). (9) Sice u satises u t + au x =, the local trucatio error is simply O ( k 2) + O ( h 2). (c) Observe that at the th time level, to calculate +, the Leapfrog scheme requires the values, ot oly of, but also of. Compared to the LF ad LW schemes which use oly to calculate +, this is a clear disadvatage. I computatios, keepig the umerical solutio at more tha oe time level multiplies the size of memory required for the program.

2 Exercise 2.3 (a) To show that the LF scheme is stable provided a k h, () we will show that H is bouded for all, where H is the operator satisfyig + = H. To do so, we calculate + = h + j = h ( 2 j+ + ak ( j ) 2h j+ ) j j j h ( ak 2 h j+ + + ak h ) j j ( ak 2 h + + ak ) h. () Owig to the calculatio above, wheever () holds, we have H = + (2) ad therefore H H =, 2,.... (3) (b), (c) The CFL coditio requires that the domai of depece of the coservatio law is cotaied i the umerical domai of depece. Therefore, the CFL coditio is ecessary for stability, however, as the example i (e) shows, it is ot suciet. (d) Sice the CFL coditio is ecessary for stability, ad () esures stability, it is clear that () implies that the CFL coditio is satised. Notice that i this example, the CFL coditio is i fact ecessary ad suciet for stability. (e) The CFL coditio is ot always suciet for stability. For example The CFL coditio of the scheme + j = j ak ( 2h j+ j ) is give by a k/h, the same as the CFL of the LF scheme. However, we kow that (4) is ucoditioally ustable. Exercise 2.4 (a) Matlab code for implemetig the schemes to solve the advectio ca be foud o the last two pages of this solutio maual. (b) I Figure, u (x, t =.5)) is plotted as solved by the pwid, Lax- Friedrichs, Lax-Wro ad Beam-Warmig methods. (c) Both pwid ad Lax-Friedrichs catch the jump, but we observe less umerical dissipatio from the upwid scheme. This is because the upwid scheme exploits that iformatio is oly movig i oe directio. The higher order methods Lax-Wro ad Beam-warmg both itroduce oscillatios aroud the discotiuities. (d,e) See Figure 2. (f ) Notice how, o this problem with o-smooth solutios, the rate of covergece of the rst order methods is ow O ( h /2), while the rate of covergece of the secod order methods are O ( h 2/3) at best. Such a low order of accuracy is ot practical for the solutio of real problems, ad i the ext lecture other methods that hadle discotiuities better are itroduced. (4) 2

3 .5 Lax-Friedrichs.5 pwid (a) (b).5 Lax-Wro.5 Beam-Warmig (c) (d) Figure : The aalytical solutio ad the umerical solutio u(x, t =.5) for the advectio equatio o Riema iitial data with a =, h =.5, k h =.5. Lax-Friedrichs. Slope = pwid. Slope = (a) (b) Lax-Wro. Slope = Beam-Warmig. Slope = (c) (d) Figure 2: The error as a fuctio of resolutio. The error is measured i -orm, the resolutio is measured as the umber of discretizatio poits i the x dimesio. 3

4 % solutio2.m clear all,clc % This script was writte for EPFL MATH459, Numerical Methods for Coservatio Laws % ad tested with Octave The scalar advectio equatio du/dx + a * du/dt = % with riema iitial data is solved usig a Leapfrog, pwid, Lax Friedirch, Lax % Wroff or Beam Warmig umerical scheme. % The solutio is visualized ad the accuracy of the scheme tested. % Choose SolverNumber % : pwid % 2: LaxFriedrich % 3: LaxWroff % 4: BeamWarmig SolverNumber = ; PlotSolutio = ; TestAccuracy = ; % Fuctio declaratio fuctio [A] = pwid(c,x) A = diag(c*oes(x,), )+diag(( C)*oes(X,),); fuctio [A] = LaxFriedrich(C,X) A = diag(.5*(+c)*oes(x,), )+diag(.5*( C)*oes(X,),); fuctio [A] = LaxWroff(C,X) A = diag(.5*(c^2+c)*oes(x,), )+diag(( C^2)*oes(X,),)+... diag(.5*(c^2 C)*oes(X,),); fuctio [A] = BeamWarmig(C,X) A = diag((.5*c+.5*c^2)*oes(x,),)+diag((2*c C^2)*oes(X,), )+... diag((.5*c+.5*c^2)*oes(x 2,), 2); fuctio [A,ame] = GetMatrix(SolverNumber,C,X) switch SolverNumber case A = pwid(c,x); ame = 'pwid'; case 2 A = LaxFriedrich(C,X); ame = 'Lax Friedrichs'; case 3 A = LaxWroff(C,X); ame = 'Lax Wroff'; case 4 A = BeamWarmig(C,X); ame = 'Beam Warmig'; 4

5 % Visualizatio if PlotSolutio a = ; % Discretizatio h =.25; k =.5*h; X = :h:; X = umel(x); T = :k:.5; T = umel(t); % Geerate correct solutio u = zeros(x,t); for i = :T u(fid(x<=a*t(i)),i) = ; % Solve usig the umerical scheme [A,ame] = GetMatrix(SolverNumber,a*k/h,X); = zeros(x,t); (:,) = u(:,); for i = :T (:,i+) = A*(:,i); (:2,i+) = ; % Make a plot for i = :T plot(x,(:,i),' r',x,u(:,i),' b'); ylim([.5.5]);grid o;title(ame); drawow % Accuracy test if TestAccuracy H = [.8,.4,.2,.,.5,.25,.25]; E = zeros(umel(h),); = zeros(umel(h),); % Fid Error for i = :umel(h) a = ; % Discretizatio h = H(i); k =.5*h; X = :h:; X = umel(x); T = :k:.5; T = umel(t); % Geerate correct solutio u = zeros(x,); u(fid(x<=a*t())) = ; % Solve usig the umerical scheme = zeros(x,);(fid(x<=)) = ; [A,ame] = GetMatrix(SolverNumber,a*k/h,X); for j = 2:T = A*; (:2) = ; % Measure error i orm E(i) = sum(abs((:,) u))/x; (i) = X; % Make loglog plot p = polyfit(log(),log(e),); loglog(,e,' ok');grid o; xlabel('resolutio');ylabel('error'); title([ame,'. Slope = ',um2str(p())]); 5

Computational Fluid Dynamics. Lecture 3

Computational Fluid Dynamics. Lecture 3 Computatioal Fluid Dyamics Lecture 3 Discretizatio Cotiued. A fourth order approximatio to f x ca be foud usig Taylor Series. ( + ) + ( + ) + + ( ) + ( ) = a f x x b f x x c f x d f x x e f x x f x 0 0

More information

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH Taylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. A ay poit i the eighbourhood of 0, the fuctio ƒ() ca be represeted by a power series of the followig form: X 0 f(a) f() f() ( ) f( ) ( )

More information

Accuracy. Computational Fluid Dynamics. Computational Fluid Dynamics. Computational Fluid Dynamics

Accuracy. Computational Fluid Dynamics. Computational Fluid Dynamics. Computational Fluid Dynamics http://www.d.edu/~gtryggva/cfd-course/ Computatioal Fluid Dyamics Lecture Jauary 3, 7 Grétar Tryggvaso It is clear that although the umerical solutio is qualitatively similar to the aalytical solutio,

More information

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5!

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5! aylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. At ay poit i the eighbourhood of =0, the fuctio ca be represeted as a power series of the followig form: X 0 f(a) f() ƒ() f()= ( ) f( ) (

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Lecture 8: Solving the Heat, Laplace and Wave equations using finite difference methods

Lecture 8: Solving the Heat, Laplace and Wave equations using finite difference methods Itroductory lecture otes o Partial Differetial Equatios - c Athoy Peirce. Not to be copied, used, or revised without explicit writte permissio from the copyright ower. 1 Lecture 8: Solvig the Heat, Laplace

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Hyperbolic PDEs: Coupled system/noliear coservatio laws/a oliear Lax-Wedroff scheme (Lecture 18, Week 6 Markus Schmuck Departmet of Mathematics ad Maxwell Istitute for Mathematical

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

On Strongly Consistent Finite Dierence Approximations

On Strongly Consistent Finite Dierence Approximations D.Michels et al. (KAUST,JINR,SSU) Strogly Cosistet Approximatios 17 April 2018 1 / 25 O Strogly Cosistet Fiite Dierece Approximatios Domiik Michels 1, Vladimir Gerdt 2, Dmitry Lyakhov 1, ad Yuri Blikov

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

Numerical Solution of the First-Order Hyperbolic Partial Differential Equation with Point-Wise Advance

Numerical Solution of the First-Order Hyperbolic Partial Differential Equation with Point-Wise Advance Iteratioal oural of Sciece ad Research (ISR) ISSN (Olie): 39-74 Ide Copericus Value (3): 4 Impact Factor (3): 4438 Numerical Solutio of the First-Order Hyperbolic Partial Differetial Equatio with Poit-Wise

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations Numerical Methods for Partial Differetial Equatios Eric de Sturler Uiversity of Illiois at Urbaa-Champaig Cosider the liear first order hyperbolic equatio Øu Øu Øt + a(x, t) Øx = 0 I spite of its simple

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

In this section, we show how to use the integral test to decide whether a series

In this section, we show how to use the integral test to decide whether a series Itegral Test Itegral Test Example Itegral Test Example p-series Compariso Test Example Example 2 Example 3 Example 4 Example 5 Exa Itegral Test I this sectio, we show how to use the itegral test to decide

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

More Elementary Aspects of Numerical Solutions of PDEs!

More Elementary Aspects of Numerical Solutions of PDEs! ttp://www.d.edu/~gtryggva/cfd-course/ Outlie More Elemetary Aspects o Numerical Solutios o PDEs I tis lecture we cotiue to examie te elemetary aspects o umerical solutios o partial dieretial equatios.

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Math 210A Homework 1

Math 210A Homework 1 Math 0A Homework Edward Burkard Exercise. a) State the defiitio of a aalytic fuctio. b) What are the relatioships betwee aalytic fuctios ad the Cauchy-Riema equatios? Solutio. a) A fuctio f : G C is called

More information

Numerical Astrophysics: hydrodynamics

Numerical Astrophysics: hydrodynamics Numerical Astrophysics: hydrodyamics Part 1: Numerical solutios to the Euler Equatios Outlie Numerical eperimets are a valuable tool to study astrophysical objects (where we ca rarely do direct eperimets).

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Math 257: Finite difference methods

Math 257: Finite difference methods Math 257: Fiite differece methods 1 Fiite Differeces Remember the defiitio of a derivative f f(x + ) f(x) (x) = lim 0 Also recall Taylor s formula: (1) f(x + ) = f(x) + f (x) + 2 f (x) + 3 f (3) (x) +...

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n.

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n. 0_0905.qxd //0 :7 PM Page SECTION 9.5 Alteratig Series Sectio 9.5 Alteratig Series Use the Alteratig Series Test to determie whether a ifiite series coverges. Use the Alteratig Series Remaider to approximate

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Lecture 2: Finite Difference Methods in Heat Transfer

Lecture 2: Finite Difference Methods in Heat Transfer Lecture 2: Fiite Differece Methods i Heat Trasfer V.Vuorie Aalto Uiversity School of Egieerig Heat ad Mass Trasfer Course, Autum 2016 November 1 st 2017, Otaiemi ville.vuorie@aalto.fi Overview Part 1 (

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

Section 1.4. Power Series

Section 1.4. Power Series Sectio.4. Power Series De itio. The fuctio de ed by f (x) (x a) () c 0 + c (x a) + c 2 (x a) 2 + c (x a) + ::: is called a power series cetered at x a with coe ciet sequece f g :The domai of this fuctio

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Math 525: Lecture 5. January 18, 2018

Math 525: Lecture 5. January 18, 2018 Math 525: Lecture 5 Jauary 18, 2018 1 Series (review) Defiitio 1.1. A sequece (a ) R coverges to a poit L R (writte a L or lim a = L) if for each ǫ > 0, we ca fid N such that a L < ǫ for all N. If the

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Error estimates on the random projection methods for hyperbolic conservation laws with stiff reaction terms

Error estimates on the random projection methods for hyperbolic conservation laws with stiff reaction terms Applied Numerical Mathematics 43 2002) 315 333 wwwelseviercom/locate/apum Error estimates o the radom projectio methods for hyperbolic coservatio laws with stiff reactio terms Weizhu Bao a,,shiji b,1 a

More information

Streamfunction-Vorticity Formulation

Streamfunction-Vorticity Formulation Streamfuctio-Vorticity Formulatio A. Salih Departmet of Aerospace Egieerig Idia Istitute of Space Sciece ad Techology, Thiruvaathapuram March 2013 The streamfuctio-vorticity formulatio was amog the first

More information

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3 Exam Problems (x. Give the series (, fid the values of x for which this power series coverges. Also =0 state clearly what the radius of covergece is. We start by settig up the Ratio Test: x ( x x ( x x

More information

Numerical Method for Blasius Equation on an infinite Interval

Numerical Method for Blasius Equation on an infinite Interval Numerical Method for Blasius Equatio o a ifiite Iterval Alexader I. Zadori Omsk departmet of Sobolev Mathematics Istitute of Siberia Brach of Russia Academy of Scieces, Russia zadori@iitam.omsk.et.ru 1

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

is also known as the general term of the sequence

is also known as the general term of the sequence Lesso : Sequeces ad Series Outlie Objectives: I ca determie whether a sequece has a patter. I ca determie whether a sequece ca be geeralized to fid a formula for the geeral term i the sequece. I ca determie

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

The Advection-Diffusion equation!

The Advection-Diffusion equation! ttp://www.d.edu/~gtryggva/cf-course/! Te Advectio-iffusio equatio! Grétar Tryggvaso! Sprig 3! Navier-Stokes equatios! Summary! u t + u u x + v u y = P ρ x + µ u + u ρ y Hyperbolic part! u x + v y = Elliptic

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

1 Lecture 2: Sequence, Series and power series (8/14/2012)

1 Lecture 2: Sequence, Series and power series (8/14/2012) Summer Jump-Start Program for Aalysis, 202 Sog-Yig Li Lecture 2: Sequece, Series ad power series (8/4/202). More o sequeces Example.. Let {x } ad {y } be two bouded sequeces. Show lim sup (x + y ) lim

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information

Metric Space Properties

Metric Space Properties Metric Space Properties Math 40 Fial Project Preseted by: Michael Brow, Alex Cordova, ad Alyssa Sachez We have already poited out ad will recogize throughout this book the importace of compact sets. All

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

ENGI Series Page 6-01

ENGI Series Page 6-01 ENGI 3425 6 Series Page 6-01 6. Series Cotets: 6.01 Sequeces; geeral term, limits, covergece 6.02 Series; summatio otatio, covergece, divergece test 6.03 Stadard Series; telescopig series, geometric series,

More information

Math 113 Exam 4 Practice

Math 113 Exam 4 Practice Math Exam 4 Practice Exam 4 will cover.-.. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for

More information

MTH 246 TEST 3 April 4, 2014

MTH 246 TEST 3 April 4, 2014 MTH 26 TEST April, 20 (PLEASE PRINT YOUR NAME!!) Name:. (6 poits each) Evaluate lim! a for the give sequece fa g. (a) a = 2 2 5 2 5 (b) a = 2 7 2. (6 poits) Fid the sum of the telescopig series p p 2.

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Partial Differential Equations

Partial Differential Equations Partial Differetial Equatios Part 2 Massimo Ricotti ricotti@astro.umd.edu Uiversity of Marylad Partial Differetial Equatios p.1/15 Upwid differecig I additio to amplitude errors (istability or dampig),

More information

Computational Fluid Dynamics. Lecture 5

Computational Fluid Dynamics. Lecture 5 Time differecig cotiued. Three level schemes. B. Modified L-F schemes. C. Higher order methods. Three level schemes Computatioal Fluid Dyamics Lecture 5 ψ = α α β tf β cosistet schemes if α α = ad β β

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

APPM 4360/5360 Exam #2 Solutions Spring 2015

APPM 4360/5360 Exam #2 Solutions Spring 2015 APPM 436/536 Exam # Solutios Sprig 5 O the frot of your bluebook, write your ame ad make a gradig table. You re allowed oe sheet (letter-sized, frot ad back of otes. You are ot allowed to use textbooks,

More information

Finite Difference Approximation for Transport Equation with Shifts Arising in Neuronal Variability

Finite Difference Approximation for Transport Equation with Shifts Arising in Neuronal Variability Iteratioal Joural of Sciece ad Research (IJSR) ISSN (Olie): 39-764 Ide Copericus Value (3): 64 Impact Factor (3): 4438 Fiite Differece Approimatio for Trasport Equatio with Shifts Arisig i Neuroal Variability

More information

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian?

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian? NBHM QUESTION 7 NBHM QUESTION 7 NBHM QUESTION 7 Sectio : Algebra Q Let G be a group of order Which of the followig coditios imply that G is abelia? 5 36 Q Which of the followig subgroups are ecesarily

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016 Lecture 3 Digital Sigal Processig Chapter 3 z-trasforms Mikael Swartlig Nedelko Grbic Begt Madersso rev. 06 Departmet of Electrical ad Iformatio Techology Lud Uiversity z-trasforms We defie the z-trasform

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment. Stability of Numerical Schemes for PDE's. Rodolfo R. Rosales. MIT, Friday February, 999. Abstract The purpose of these otes is to give some examples illustratig how aive umerical approximatios to PDE's

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Finite Difference Approximation for First- Order Hyperbolic Partial Differential Equation Arising in Neuronal Variability with Shifts

Finite Difference Approximation for First- Order Hyperbolic Partial Differential Equation Arising in Neuronal Variability with Shifts Iteratioal Joural of Scietific Egieerig ad Research (IJSER) wwwiseri ISSN (Olie): 347-3878, Impact Factor (4): 35 Fiite Differece Approimatio for First- Order Hyperbolic Partial Differetial Equatio Arisig

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2017

SCORE. Exam 2. MA 114 Exam 2 Fall 2017 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Carleton College, Winter 2017 Math 121, Practice Final Prof. Jones. Note: the exam will have a section of true-false questions, like the one below.

Carleton College, Winter 2017 Math 121, Practice Final Prof. Jones. Note: the exam will have a section of true-false questions, like the one below. Carleto College, Witer 207 Math 2, Practice Fial Prof. Joes Note: the exam will have a sectio of true-false questios, like the oe below.. True or False. Briefly explai your aswer. A icorrectly justified

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkasas Tech Uiversity MATH 94: Calculus II Dr Marcel B Fia 85 Power Series Let {a } =0 be a sequece of umbers The a power series about x = a is a series of the form a (x a) = a 0 + a (x a) + a (x a) +

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

Council for Innovative Research

Council for Innovative Research ABSTRACT ON ABEL CONVERGENT SERIES OF FUNCTIONS ERDAL GÜL AND MEHMET ALBAYRAK Yildiz Techical Uiversity, Departmet of Mathematics, 34210 Eseler, Istabul egul34@gmail.com mehmetalbayrak12@gmail.com I this

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics:

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics: Chapter 6 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals (which is what most studets

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

An efficient time integration method for extra-large eddy simulations

An efficient time integration method for extra-large eddy simulations A efficiet time itegratio method for extra-large eddy simulatios M.A. Scheibeler Departmet of Mathematics Master s Thesis A efficiet time itegratio method for extra-large eddy simulatios M.A. Scheibeler

More information

x = Pr ( X (n) βx ) =

x = Pr ( X (n) βx ) = Exercise 93 / page 45 The desity of a variable X i i 1 is fx α α a For α kow let say equal to α α > fx α α x α Pr X i x < x < Usig a Pivotal Quatity: x α 1 < x < α > x α 1 ad We solve i a similar way as

More information

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1. Math 7 Sprig 06 PROBLEM SET 5 SOLUTIONS Notatios. Give a real umber x, we will defie sequeces (a k ), (x k ), (p k ), (q k ) as i lecture.. (a) (5 pts) Fid the simple cotiued fractio represetatios of 6

More information

MATH 6101 Fall Problems. Problems 11/9/2008. Series and a Famous Unsolved Problem (2-1)(2 + 1) ( 4) 12-Nov-2008 MATH

MATH 6101 Fall Problems. Problems 11/9/2008. Series and a Famous Unsolved Problem (2-1)(2 + 1) ( 4) 12-Nov-2008 MATH /9/008 MATH 60 Fall 008 Series ad a Famous Usolved Problem = = + + + + ( - )( + ) 3 3 5 5 7 7 9 -Nov-008 MATH 60 ( 4) = + 5 48 -Nov-008 MATH 60 3 /9/008 ( )! = + -Nov-008 MATH 60 4 3 4 5 + + + + + + +

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0. 40 RODICA D. COSTIN 5. The Rayleigh s priciple ad the i priciple for the eigevalues of a self-adjoit matrix Eigevalues of self-adjoit matrices are easy to calculate. This sectio shows how this is doe usig

More information

Chapter 7: Numerical Series

Chapter 7: Numerical Series Chapter 7: Numerical Series Chapter 7 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals

More information

COMM 602: Digital Signal Processing

COMM 602: Digital Signal Processing COMM 60: Digital Sigal Processig Lecture 4 -Properties of LTIS Usig Z-Trasform -Iverse Z-Trasform Properties of LTIS Usig Z-Trasform Properties of LTIS Usig Z-Trasform -ve +ve Properties of LTIS Usig Z-Trasform

More information

Analysis of a Numerical Scheme An Example

Analysis of a Numerical Scheme An Example http://www.d.edu/~gtryggva/cfd-course/ Computatioal Fluid Dyamics Lecture 3 Jauary 5, 7 Aalysis of a Numerical Scheme A Example Grétar Tryggvaso Numerical Aalysis Example Use the leap-frog method (cetered

More information