Extended average-atom model with semiclassical electrons allowing for ion correlations

Size: px
Start display at page:

Download "Extended average-atom model with semiclassical electrons allowing for ion correlations"

Transcription

1 Extended average-atom model with semiclassical electrons allowing for ion correlations A. L. Falkov 1,2, A. A. Ovechkin 1, P. A. Loboda 1,2 1. Russian Federal Nuclear Center Zababakhin All-Russian research institute of technical physics (P.O.Box 245, Snezhinsk, Chelyabinsk region, Russia 45677) 2. National Research Nuclear University "MEPhI" (Kashirskoe sh.,31, Moscow, Russia 11549) Moscow, NPP-215

2 Table of contents Ion correlation treatment in various models of dense plasmas Self-consistent dense plasma model by C. E. Starrett and D. Saumon Calculation of ion-ion radial distribution functions (RDFs) Comparision with the results of QMD (DFT-MD) modeling Comparision with the results of TFMD (OFMD) modeling Comparision with the experimental RDF data for melted metals under the athmospheric pressure (H. F. Y. Waseda) Deviations in average ionization due to ionic nonideality X-ray Thomson scattering experiments with Al in WDM state Elastic X-ray scattering. Some notes for WDM state ¾Omega-6 experiment with compressed Al (T = 1 ev; ρ = 3ρ ) LCLS-MEC experiment with compressed Al (T = 1.75 ev; ρ = 2.32ρ ) Results of wide-range EOS data calculations Principal Hugoniot (σ, P ) for Al Conclusions Main results of research work Possible advances in further work 2

3 Correlative treatment of ions in various models TFD, VAAQP g II (r) = Θ ( r r I ) ; gii from Ornstein- Zernike (OZ) equations; RESEOS, CP-SC Phenomenology charged hard spheres: ion's intrinstic volume eects + OCP of ions; SCAALP Free arguments for g II (r,...); F. Perrot, Y. Rosenfeld et al. TF + V eff II [r, g II, V tot [g II ]] + + Ornstein-Zernike equations (OZ-HNC) for g II (r); V el [g II ] n e [V el ] V II [n e, c Ie, c ee,...] g II (r) QHNC Average atom TCP (e-i) model "jellium"; B. F. Rozsnyai c Ie, c II "pure Coulomb- without LFC + g II from OZ equations; TFSC, QMSC (C. E. Starrett and D. Saumon) c Ie, c II with LFC + g II from OZ set of equations with hypernetted chain (HNC) closure;... 3

4 Self-consistent description for dense {e, I} plasmas General scheme of modicated C. E. Starrett's and D. Saumon's model [1, 2, 3] Input data 1. Temperature 2. Density 3. Nuclear charge 4. Atomic weight I Complete electron subtask Approximations 1. Electron response function 2. Exchange energy 3. Closure for OZ set of equations «Out» iterations II «External» electron subtask «Out» iterations Output data 1. Ion-ion RDF 2. Average ionization 3. Helmholtz free energy III Ionic subtask (OZ + closure) 4

5 r s Ornstein-Zernike framework for {r, s} systems h rr (k) = c rr (k) + n rc rr (k)h rr (k) + n sc rs (k)h rs (k), h ss (k) = c ss (k) + n sc ss (k)h ss (k) + n rc rs (k)h rs (k), h rs (k) = c rs (k) + n sc ss (k)h rs (k) + n rc rs (k)h rr (k). c(r,s) h(r,r), c(s,s) h(s,s), c(r,r) c(r,s) h(r,s) c(s,s) h(r,s), c(r,s) s r c(r,s) h(r,s) h(s,s) h(r,r) c(r,r) h(r,r) c(s,s) s h(r,s) 3 r r 3 r 1 c(1,3) 1 h(3,2) h(1,2), c(1,2) h II (k) = c II (k) + n I c II(k)h II (k) + n e c Ie (k)h Ie k), h Ie (k) = χ ee(k) [ cie n (k) + n Ic Ie (k)h II (k) + n e c ee (k)h Ie (k) ], e β h ee (k) = c ee (k) + n e c ee (k)h ee (k) + n Ic Ie (k)h Ie (k). r 2 2 QTCP, J. Chihara, [4]. 5

6 QTCP reduction to an eective ionic OCP g II (r) g(r), n I = invar { h(k) = c(k) + n I c(k)h(k), 1 + h(r) = exp ( βv (r) + h(r) c(r) + E(r)) ; χ ee(k), βv (k) = 4πβ ( c ee (k), k 2 Z 2 c Ie k, n e ) n SCR e (k); ( n SCR e (k) c Ie k, n e ) = β nscr e (k) ; χ e (k) χ χ e (k) ee(k) 1 + χ ee(k)c ee (k)/β. n SCR e χ ee(k), c ee (k) χ e (k), n SCR e (k) c Ie (k) V (k) h(r), c(r) c ee (k) = 4πβ k 2 (1 G ee(k)) ("jellium approximation"+ LFC); (r) n P e A (r) n ion e, n P e A (r) n e (r) n ext e Z = drn SCR e V χ ee(k) Lindhard function, n ion e (r) from [5], LFC G ee (k) from [6]. 6 (r).

7 Relationships among n e, n ext e, n P e A, n ion e, and n SCR e TFSC for W at ρ = 4 g/cm 3 and T = 1 ev 4πr 2 n e (r) n e ext n e PA n e ion n e SCR n e n e PA = ne - n e ext n e SCR = ne PA - ne ion (r/r ),5 7

8 I. III. II. Self-consistent TFSC model { h(k) = c(k) + n I c(k)h(k), g(r) 1 + h(r) = exp ( βv (r) + h(r) c(r) + E(r)) ; ( )) n e (r) = C T F I 1/2 (β µ id e V eff Ne (r), β = 1/T, V eff Ne (r) = Z r + dr n e (r ) n eg(r ) V r r [ ] +Vee xc [n e (r)] Vee xc n e ; ( ( n ext e (r) = C T F I 1/2 β µ id e Ve eff,ext (r) )), Ve eff,ext (r) = dr V next e (r ) n eg(r ) r r [ ] +Vee xc [n ext e (r)] Vee xc n e ; ( ) V e,c Z n Ie [n I(r)] = I Z β V + V e,c Ie [n I (r)]+ + V e,c Ie [n I (r)]+ dr ( c Ie r r, n e ) (g(r ) 1), n () I n IΘ ( r r I ), TFIS: ni (r) = n (1) I (r), TFCS: n I (r) n Ig(r) 8

9 Ion-ion RDFs for Al: comparision with the QMD ) RDF for Al at ρ = 2,7 g/cm 3 and various T Al 1 ev 2,7 g/cm 3 4) Al 1 ev 2,7 g/cm QMD HNC-Y TFSC TFSC-MS QMD HNC-Y TFSC 2) Al 2 ev 5) Al 15 ev 2,7 g/cm 3 2,7 g/cm 3 g II (r) ) Al 6 ev 2,7 g/cm 3 6) Al 3 ev 2,7 g/cm r/r I r/r I QMD [3, 7, 8]. 9

10 RDF for shock compressed Fe plasmas Program TFSC (OZ-HNC-AA) for Fe ρ(1 ev) = 22,5 g/cm 3 ; T = 1 ev, TFMD, CEA, 26 ρ(1 ev) = 39,65 g/cm 3 T = 1 ev, TFSC, LANL, 214 T = 1 ev, TFSC, VNIITF, 214 T = 1 ev, TFMD, CEA, 26 T = 1 ev, TFSC, LANL, 214 T = 1 ev, TFSC, VNIITF, 214 g II (r) 1 E F (1 ev) = 6,43 ev; E F (1 ev) = 16,61 ev; Γ(1 ev) = 19,8;.5 Γ(1 ev) = 8,1736; <Z>(1 ev) = 8,786; <Z>(1 ev) = 21,62; r (1 ev) = 1,8796 a B ; r (1 ev) = 1,5561 a B N 1 = 8192 r(a B ) r end = 65 / 97,5 r TFMD, CEA [9]; TFSC, LANL [2]. 1

11 Isochoric Γ-plateau eect for W (ρ = 2ρ ) 2 W, ρ = 4 g/cm ev 2 ev 3 ev g II (r) ev 12 ev 4 ev TFSC OFMD HNC-Y MHNC-Y.5 8 ev ev r (a B ) 5 ev OFMD [1]. 11

12 RDFs for melted Mg and Al (ρ ρ ) g II (r) RDF for liquid metalls (Mg and Al) Mg 953K 1,546 g/cm 3 TFSC experiment Mg 163K 1,433 g/cm 3 Mg 1153K 1,3 g/cm 3 Al 943K 2,366 g/cm 3 Al 123K 2,348 g/cm 3 Al 1323K 2,272 g/cm r (angstrom) r (angstrom) Experimental data [11]. 12

13 Isochores of average ionic charge for C plasmas 5.5 C, ρ =,2 g/cm <Z> Experiment TFIS TFSC T (ev) Experimental data [12]. 13

14 Deviations in average ionization due to ionic nonideality ɛ = 2 ( Z Z ) / ( Z + Z ) 14

15 Theoretical base for calculation of S el (k) elastic static sctructure factor of photonic scatternig S tot (k, ω) = S el (k)δ (ω) + S ne (k, ω) + S ee (k, ω) = = f I (k) + q(k) 2 S II (k) δ (ω) + Z S }{{} ee (k, ω) + S }{{} bf (k, ω), }{{} S el (k) free free bound free S II (k) = 1 + n F I s [g(r) 1], q(k) = F [ s n SCR e (r) ], lim q(k) = Z drn SCR e (r), k V f I (k) = F s [ n ion e (r) ], f I (k) q I (k). k = k 1 k, k = 2k sin (Θ s /2), Recording of S el (k) data: X-ray Thomson scattering experiments with pre-compressed laser plasmas in WDM state. 15

16 ¾Omega-6 experiment with Al WDM (213214) Discrepancies δ (4 45) % from [13, 14] data near absolute maximum of S el (k) TFSC / QMIS for Al at ρ = 8,1 g/cm 3 and T = 1 ev k (a B -1 ) 16 (exp) S el (k) (TFSC, HNC) 2S II (k) (QMIS, HNC) 2S II (k) (TFSC, HNC) S el (k) (QMIS, HNC) S el (k)

17 Renunciation of HNC? Alternative OZ closures PY Percus-Yevick [15], MS Martynov-Sarkisov [16] OZ closure: HNC or Percus-Yevik? QMIS for Al at ρ = 8,1 g/cm 3 and T = 1 ev k (a B -1 ) 17 (exp) S el (k) (HNC) 2S II (k) (PY) 2S II (k) (MS) 2S II (k) (HNC) S el (k) (PY) S el (k) (MS) S el (k)

18 TFSC LCLS-MEC experiment (214215) TFSC for Al at ρ = 6,3 g/cm 3 and T = 1,75 ev LCLS-MEC experiment VASP TFSC (HNC) TFIS (MHNC) S el (k) k (Α -1 ) Experimental data, VASP [17]; MHNC closure [18]. 18

19 QMIS LCLS-MEC experiment (214215) QMIS for Al at ρ = 6,3 g/cm 3 and T = 1,75 ev LCLS-MEC experiment VASP QMIS (HNC) QMIS (MHNC) S el (k) k (Α -1 ) Experimantal data, VASP [17]; MHNC closure [18]. 19

20 Principal Hugoniot (σ, P ) for Al 1 6 ρ = 2,712 g/cm ρ stfd = ρ TFSC = 2,818 g/cm 3 P, GPa L. V. Al tshuler et al., 196 L. V. Al tshuler et al., 1977 L. P. Volkov et al., 1981 A. S. Vladimirov et al., 1984 C. E. Ragan, 1982 C. E. Ragan, 1984 V. A. Simonenko et al., 1985 E. N. Avrorin et al., 1986 M. D. Knudson et al., 23 VNIITF, stfd VNIITF, TFSC, σ = ρ / ρ Experimental data from [19]. 2

21 Main results of the work A close agreement of ion-ion RDFs (H, Be, C, Al, Fe, and W) calculated according to the TFSC model with the results of ab initio TFMD (OFMD), QMD (DFT-MD), QLMD modeling, and PIMC calculations. TFSC model application for calculating RDFs in liquid metals (Mg, Al, and Ti) with near-normal density. Agreement with the X-ray scattering experiments. 5 15% deviations (primarily decreasing) in average ionization Z = Z (T, ρ, Z, g(r)) due to ionic nonideality. The results of recent experimental studies of warm (1.75 ev and 1 ev) compressed (ρ = 2.32ρ and ρ = 3ρ ) aluminium are explained. Using some alternative closures (Percus-Yevick, Martynov- Sarcisov, Ietomy-Ogata-Ichimary (MHNC)) for OZ set of equations considerably improves elastic static structure factor S el (k) calculated from TFSC/QMIS models. 21

22 Possible advances in the future work Improvement for the semiclassical TCP plasmas models (TFIS and TFSC): Vee xc (T = ) Vee xc (T ),... Improvement for the methods of Helmholtz free energy calculation in models with ionic correlations: F = ( ) ( FI id + Fe id + F el + F el) + + (F xc + F xc Ie + F xc II + F xc ee ). TFIS/TFSC nodels generalization in case of dense multicomponent mixtures. Thermodynamic properties of dense mixture plasmas. Hybrid PAMD method i.e. TFSC + (classical) pseudo-atom molecular dynamics. Independent calcultaion of ionic transport coecients 22

23 Pseudoatom molecular dynamics (PAMD) For ion-ion RDFs, EOS, and viscosity calculations [2] N = 64 N = 343 N = 512 TFSC g (r) r / r 23

24 1. Starrett C. E. and Saumon D. Phys. Rev. E, 85:2643(1)2643(1), Starrett C. E. and Saumon D. Phys. Rev. E, 87:1314(1)1314(14), Saumon D., Starrett C. E., Anta J. A. et al. arxiv: v1 [physics.plasm-ph], Chihara J. J. Phys.: Condens. Matter, 3: , Ofer D., Nardi E., and Rosenfeld Y. Phys. Rev. A, 38: , Ichimaru S. and Utsumi K. Phys. Rev. B, 24(12): , Starrett C. E. and Saumon D. HEDP, 8:11 14, Surh M. P., Barbee III T. W., and Yang L. H. Phys. Rev. Lett., 86(26): , Recoules V., Lambert F., Decoster A. et al. Phys. Rev. Lett., 12:752(1)752(4), Cl erouin J., Robert G., Arnault Ph. et al. Phys. Rev. E, 87:6111(R)(1)6111(R)(5), Waseda H. F. Y. The structure of non-cristalline materials Gregori G., Cumpbell K. M., Dewald E. L. et al. Phys. Rev. Lett., 11:453, Ma T., D oppner T., Falcone R. W. et al. Phys. Rev. Lett., 11:651(1)651(5), Ma T., Fletcher L., Pak A. et al. Phys. Plasmas, 21: , Percus J. K. and Yevick G. J. Phys. Rev., 1(11):113, Ã. À. Ìàðòûíîâ. Êëàññè åñêàÿ ñòàòèñòè åñêàÿ ìåõàíèêà. Òåîðèÿ æèäêîñòåé, Fletcher L. B., Lee H. J., D oppner T. et al. Nat. Phot.,DOI: 1.138/NPHOTON S 18. Iyetomy H., Ogata Sh., and Ichimary S. Phys. Rev. A, 46(2):151158, À. Â. Áóøìàí, È. Â. Ëîìîíîñîâ, Ê. Â. Õèùåíêî Ä. Ê. Ðàïàïîðò. Èñêóññòâî ìîëåêóëÿðíîé äèíàìèêè,

Structure Factor and Electronic Structure. of Compressed Liquid Rubidium arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Jan 1998

Structure Factor and Electronic Structure. of Compressed Liquid Rubidium arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Jan 1998 Structure Factor and Electronic Structure of Compressed Liquid Rubidium arxiv:cond-mat/9801116v1 [cond-mat.mtrl-sci] 13 Jan 1998 Junzo Chihara Advanced Photon Research Center, Japan Atomic Energy Research

More information

Xray Scattering from WDM

Xray Scattering from WDM from WDM in the Approximation W. R. Johnson, Notre Dame Collaborators: Joe Nilsen & K. T. Cheng, LLNL Computational Challenges in WDM Outline 1 2 Scattering by Free Electrons Inelastic Scattering by Bound

More information

Classical-Map Hypernetted Chain Calculations for Dense Plasmas

Classical-Map Hypernetted Chain Calculations for Dense Plasmas Early View publication on www.wileyonlinelibrary.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Contrib. Plasma Phys., No. X, 1 8 (2014) / DOI 10.1002/ctpp.201400080

More information

SIMULATION OF ABSORPTION OF FEMTOSECOND LASER PULSES

SIMULATION OF ABSORPTION OF FEMTOSECOND LASER PULSES SIMULATION OF ABSORPTION OF FEMTOSECOND LASER PULSES IN SOLID-DENSITY DENSITY COPPER P.A. Loboda, N.A. Smirnov, A.A. Shadrin, N.G. N Karlykhanov Russian Federal Nuclear Center All-Russian Institute of

More information

Dynamical Structure Factor in Warm Dense Matter and Applications to X-Ray Thomson Scattering

Dynamical Structure Factor in Warm Dense Matter and Applications to X-Ray Thomson Scattering Dynamical Structure Factor in Warm Dense Matter and Applications to X-Ray Thomson Scattering Carsten Fortmann Lawrence Livermore National Laboratory University of California Los Angeles IPAM, May 24, 212

More information

Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted chain approximation

Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted chain approximation PHYSICAL REVIEW B VOLUME 61, NUMBER 17 1 MAY 2000-I Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted chain approximation J. A. Anta* Physical and Theoretical

More information

Thomson Scattering from WDM

Thomson Scattering from WDM from WDM Average-Atom Approximation W. R. Johnson, Notre Dame J. Nilsen & K. T. Cheng, LLNL The cross section for Thomson scattering of x-rays by warm dense matter is studied within the framework of the

More information

Density Functional Theory Methods for Transport and Optical Properties: Application to Warm Dense Silicon

Density Functional Theory Methods for Transport and Optical Properties: Application to Warm Dense Silicon Density Functional Theory Methods for Transport and Optical Properties: Application to Warm Dense Silicon 2200 Si, T = 62.5 kk K-edge position (ev) 2100 2000 1900 DFT (shifted by 50 ev) AOT Significant

More information

STRUCTURE OF LIQUID ALKALINE EARTH METALS AND METAL ALLOYS USING A NEW TRANSFERABLE LOCAL PSEUDOPOTENTIAL

STRUCTURE OF LIQUID ALKALINE EARTH METALS AND METAL ALLOYS USING A NEW TRANSFERABLE LOCAL PSEUDOPOTENTIAL Journal of Optoelectronics and Advanced Materials Vol. 5 No. 5 003 p. 181-191 STRUCTURE OF LIQUID ALKALINE EARTH METALS AND METAL ALLOYS USING A NEW TRANSFERABLE LOCAL PSEUDOPOTENTIAL H. Kes a S. S. Dalgic

More information

arxiv: v1 [physics.plasm-ph] 29 Jun 2007

arxiv: v1 [physics.plasm-ph] 29 Jun 2007 Equation-of-state model for shock compression of hot dense matter arxiv:77.1v1 [physics.plasm-ph] 29 Jun 27 J.C. Pain June 4, 218 Abstract A quantum equation-of-state model is presented and applied to

More information

A New Uniform Phase Bridge Functional: Test and Its Application to Non-uniform Phase Fluid

A New Uniform Phase Bridge Functional: Test and Its Application to Non-uniform Phase Fluid Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 231 237 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 A New Uniform Phase Bridge Functional: Test and Its Application to Non-uniform

More information

Ab Initio EOS for Planetary Matter and Implications for Giant Planets

Ab Initio EOS for Planetary Matter and Implications for Giant Planets Introduction Ab initio EOS H-He phase separation Ab Initio EOS for Planetary Matter and Implications for Giant Planets Winfried Lorenzen, Bastian Holst, Nadine Nettelmann, Ronald Redmer Planet Formation

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

CLASSICAL REPRESENTATION OF QUANTUM SYSTEMS AT EQUILIBRIUM

CLASSICAL REPRESENTATION OF QUANTUM SYSTEMS AT EQUILIBRIUM CLASSICAL REPRESENTATION OF QUANTUM SYSTEMS AT EQUILIBRIUM By SANDIPAN DUTTA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

The inverse problem for simple classical liquids: a density functional approach

The inverse problem for simple classical liquids: a density functional approach J. Phys.: Condens. Matter 9 (1997) L89 L98. Printed in the UK PII: S0953-8984(97)79859-X LETTER TO THE EDITOR The inverse problem for simple classical liquids: a density functional approach Yaakov Rosenfeld

More information

Correlations in Hot Dense Helium

Correlations in Hot Dense Helium Correlations in Hot Dense Helium Burkhard Militzer University of California, Berkeley, Departments of Earth and Planetary Science and Astronomy, Berkeley, CA 947, USA (Dated: February 4, 9) Hot dense helium

More information

Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter?

Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter? Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter? Kabir Ramola Martin Fisher School of Physics, Brandeis University August 19, 2016 Kabir Ramola Disordered

More information

Theory of liquids and polymers Prof. Dr. Walter Schirmacher, WS 2010/11, Univ. Mainz

Theory of liquids and polymers Prof. Dr. Walter Schirmacher, WS 2010/11, Univ. Mainz Theory of liquids and polymers Prof. Dr. Walter Schirmacher, WS /, Univ. Mainz Contents Introduction Structure of Liquids. Molecular distribution functions.................................. Scattering

More information

Combining quantum and classical density functional theory for ion electron mixtures

Combining quantum and classical density functional theory for ion electron mixtures Journal of Non-Crystalline Solids 312 314 (2002) 60 68 www.elsevier.com/locate/jnoncrysol Combining quantum and classical density functional theory for ion electron mixtures A.A. Louis a, *,H.Xu b, J.A.

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Study of matter in extreme conditions using 4th generation FEL light sources

Study of matter in extreme conditions using 4th generation FEL light sources Study of matter in extreme conditions using 4th generation FEL light sources Sam Vinko Department of Physics Clarendon Laboratory University of Oxford Workshop on Science with Free Electron Lasers Shanghai,

More information

Chapter 5 Ph D (Thesis) # 5.1

Chapter 5 Ph D (Thesis) # 5.1 Chapter 5 Ph D (Thesis) # 5.1 5.1 Structure and properties of liquid metals Introduction As said earlier, developing an understanding of the liquid state (l state) of matter is a formidable challenge,

More information

Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter

Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter Article Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter M. W. C. Dharma-wardana 1,2 1 National Research Council of Canada, 1200, Montreal Rd, Ottawa, ON K1A 0R6, Canada;

More information

The Uniform Electron Gas at Warm Dense Matter Conditions

The Uniform Electron Gas at Warm Dense Matter Conditions The Uniform Electron Gas at Warm Dense Matter Conditions Tobias Dornheim, Simon Groth, and Michael Bonitz, Physics Reports 744, 1-86 (2018) Institute of Theoretical Physics and Astrophysics Kiel University

More information

Simulating Quantum High Energy Density Plasmas: Approximations According to the Time-Dependent Variational Principle

Simulating Quantum High Energy Density Plasmas: Approximations According to the Time-Dependent Variational Principle Simulating Quantum High Energy Density Plasmas: Approximations According to the Time-Dependent Variational Principle (LANL) with contributions from Andreas Markmann (Yale), Mike Surh (LLNL), Michael S.

More information

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

Kinetic Theory for Matter Under Extreme Conditions. Abstract

Kinetic Theory for Matter Under Extreme Conditions. Abstract Kinetic Theory for Matter Under Extreme Conditions James Dufty and Jeffrey Wrighton Department of Physics, University of Florida (Dated: December 5, 217) Abstract The calculation of dynamical properties

More information

Path Integral Monte Carlo Simulations on the Blue Waters System. Burkhard Militzer University of California, Berkeley

Path Integral Monte Carlo Simulations on the Blue Waters System. Burkhard Militzer University of California, Berkeley Path Integral Monte Carlo Simulations on the Blue Waters System Burkhard Militzer University of California, Berkeley http://militzer.berkeley.edu Outline 1. Path integral Monte Carlo simulation method

More information

UNIVERSITY OF CINCINNATI

UNIVERSITY OF CINCINNATI UNIVERSITY OF CINCINNATI DATE: August 14, 2002 I, Manuel Valera, hereby submit this as part of the requirements for the degree of: DOCTORATE OF PHILOSOPHY (Ph.D.) in: Physics It is entitled: Density Functional

More information

Low-Frequency Conductivity in the Average-Atom Approximation

Low-Frequency Conductivity in the Average-Atom Approximation Low-Frequency Conductivity in the Average-Atom Approximation Walter Johnson, Notre Dame University Collaborators: Joe Nilsen, K.T. Cheng, Jim Albritton, Michael Kuchiev, C. Guet, G. Bertsch Related Contributions:

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2007

AAPT UNITED STATES PHYSICS TEAM AIP 2007 007 Semifinal Exam Solutions 1 AAPT UNITED STATES PHYSICS TEAM AIP 007 Solutions to Problems Part A Question 1 a. There is a high degree of symmetry present. Points b, c, and e are at the same potential;

More information

X-RAY SCATTERING FROM DENSE PLASMAS

X-RAY SCATTERING FROM DENSE PLASMAS X-RAY SCATTERING FROM DENSE PLASMAS E. Nardi, Y. Rosenfeld, D. Ofer To cite this version: E. Nardi, Y. Rosenfeld, D. Ofer. X-RAY SCATTERING FROM DENSE PLASMAS. Journal de Physique Colloques, 1988, 49 (C7),

More information

Mean spherical model-structure of liquid argon

Mean spherical model-structure of liquid argon Prami0a, Vol. 6, No 5, 1976, pp. 284-290. Printed in ndia. Mean spherical model-structure of liquid argon R V GOPALA RAO and T NAMMALVAR Department of Physical Chemistry, Jadavpur University, Calcutta

More information

PLASMA PHASE TRANSITION IN THE WARM DENSE HYDROGEN

PLASMA PHASE TRANSITION IN THE WARM DENSE HYDROGEN the Seventh International EMMI Workshop on Plasma Physics with Intense Heavy Ion and Laser Beams at FAIR PLASMA PHASE TRANSITION IN THE WARM DENSE HYDROGEN G.E. Norman I.M. Saitov V.V. Stegailov December

More information

The Electronic Theory of Chemistry

The Electronic Theory of Chemistry JF Chemistry CH1101 The Electronic Theory of Chemistry Dr. Baker bakerrj@tcd.ie Module Aims: To provide an introduction to the fundamental concepts of theoretical and practical chemistry, including concepts

More information

Phase Field Crystal (PFC) Model and Density Functional Theory (DFT) of Freezing

Phase Field Crystal (PFC) Model and Density Functional Theory (DFT) of Freezing Phase Field Crystal (PFC) Model and Density Functional Theory (DFT) of Freezing Pyrite Project Meeting October 14 th 2010 Arvind Baskaran John Lowengrub Density functional Theory of Freezing [ Ramakrishnan

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas

Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas LLNL-PROC-564720 Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas J. Nilsen, W. R. Johnson, K. T. Cheng July 17, 2012 13th International Conference on X-ray Lasers Paris,

More information

Transport coefficients in plasmas spanning weak to strong correlation

Transport coefficients in plasmas spanning weak to strong correlation Transport coefficients in plasmas spanning weak to strong correlation Scott D. Baalrud 1,2 and Jerome Daligault 1 1 Theoretical Division, Los Alamos National Laboratory 2 Department of Physics and Astronomy,

More information

Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium

Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium B. Militzer Departments of Earth and Planetary Science and Astronomy, University of California, Berkeley,

More information

The Projector Augmented Wave method

The Projector Augmented Wave method The Projector Augmented Wave method Advantages of PAW. The theory. Approximations. Convergence. 1 The PAW method is... What is PAW? A technique for doing DFT calculations efficiently and accurately. An

More information

arxiv: v1 [cond-mat.stat-mech] 1 Oct 2009

arxiv: v1 [cond-mat.stat-mech] 1 Oct 2009 Shell Structure of Confined Charges at Strong Coupling J. Wrighton, J. Dufty, M. Bonitz, 2 and H. Kählert 2 Department of Physics, University of Florida, Gainesville, FL 326 arxiv:9.76v [cond-mat.stat-mech]

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Electronic Kohn-Sham potential profile of a charged monolayer MoTe 2 calculated using PBE-DFT. Plotted is the averaged electronic Kohn- Sham potential

More information

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter 3rd EMMI Workshop on Plasma Physics with intense Lasers and Heavy Ion Beams Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter Eckhart Förster X-ray Optics Group - IOQ - Friedrich-Schiller-University

More information

arxiv:astro-ph/ v1 26 Jul 2006

arxiv:astro-ph/ v1 26 Jul 2006 LA-UR-06-1067 The Pseudo-continuum Bound-free Opacity of Hydrogen and its Importance in Cool White Dwarf Atmospheres Piotr M. Kowalski arxiv:astro-ph/0607606v1 26 Jul 2006 Department of Physics and Astronomy,

More information

Radiative-collisional processes in electron-tungsten ions collisions: quasiclassical calculations and data

Radiative-collisional processes in electron-tungsten ions collisions: quasiclassical calculations and data RRC Kurchatov Institute, Moscow, Russia Radiative-collisional processes in electron-tungsten ions collisions: quasiclassical calculations and data Valery S. Lisitsa First Research Coordination Meeting

More information

SIMULATION OF DOUBLE-PULSE LASER ABLATION OF METALS

SIMULATION OF DOUBLE-PULSE LASER ABLATION OF METALS SIMULATION OF DOUBLE-PULSE LASER ABLATION OF METALS M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures, RAS, Moscow, Russia povar@ihed.ras.ru T. Itina Laboratoire Hubert

More information

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 27 Mar 2001

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 27 Mar 2001 Velocity correlations and the structure of nonequilibrium hard core fluids arxiv:cond-mat/8359v3 [cond-mat.stat-mech] 27 Mar 21 James F. Lutsko Physics Division, Starlab Rue Engelandstraat 555 B-118 Brussels,

More information

Multilevel wavelet solver for the Ornstein-Zernike equation

Multilevel wavelet solver for the Ornstein-Zernike equation Key words. Wavelets, Ornstein-Zernike equation, integral equations, multilevel method Multilevel wavelet solver for the Ornstein-Zernike equation M. V. Fedorov Theory and Computation Group, Centre for

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen ! Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen WHO DID THE WORK? Miguel Morales, Livermore Carlo Pierleoni: L Aquila, Italy Jeff McMahon

More information

Hydrogen-Helium Mixtures in the Interiors of Giant Planets

Hydrogen-Helium Mixtures in the Interiors of Giant Planets To be submitted to Physical Review B, 2006 Hydrogen-Helium Mixtures in the Interiors of Giant Planets J Vorberger, 1 I Tamblyn, 2 B Militzer, 1 and SA Bonev 2 1 Geophysical Laboratory, Carnegie Institution

More information

Structure and phase behaviour of colloidal dispersions. Remco Tuinier

Structure and phase behaviour of colloidal dispersions. Remco Tuinier Structure and phase behaviour of colloidal dispersions Remco Tuinier Yesterday: Phase behaviour of fluids and colloidal dispersions Colloids are everywhere Hard sphere fluid at the base understanding fluids

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Physics 127c: Statistical Mechanics. Weakly Interacting Fermi Gas. The Electron Gas

Physics 127c: Statistical Mechanics. Weakly Interacting Fermi Gas. The Electron Gas Physics 7c: Statistical Mechanics Wealy Interacting Fermi Gas Unlie the Boson case, there is usually no ualitative change in behavior going from the noninteracting to the wealy interacting Fermi gas for

More information

Entropy of bcc L, fcc L, and fcc bcc Phase Transitions of Elemental Substances as Function of Transition Temperature

Entropy of bcc L, fcc L, and fcc bcc Phase Transitions of Elemental Substances as Function of Transition Temperature Doklady Physics, Vol. 45, No. 7, 2, pp. 311 316. ranslated from Doklady Akademii Nauk, Vol. 373, No. 3, 2, pp. 323 328. Original Russian ext Copyright 2 by Udovskiœ. PHYSICS Entropy of bcc, fcc, and fcc

More information

High-order Chin actions in path integral Monte Carlo

High-order Chin actions in path integral Monte Carlo High-order Chin actions in path integral Monte Carlo High-order actions and their applications, Barcelona 2009 Jordi Boronat Departament de Física i Enginyeria Nuclear Universitat Politècnica de Catalunya

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

Part II Particle and Nuclear Physics Examples Sheet 4

Part II Particle and Nuclear Physics Examples Sheet 4 Part II Particle and Nuclear Physics Examples Sheet 4 T. Potter Lent/Easter Terms 018 Basic Nuclear Properties 8. (B) The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Geometry explains the large difference in the elastic properties of fcc and hcp crystals of hard spheres Sushko, N.; van der Schoot, P.P.A.M.

Geometry explains the large difference in the elastic properties of fcc and hcp crystals of hard spheres Sushko, N.; van der Schoot, P.P.A.M. Geometry explains the large difference in the elastic properties of fcc and hcp crystals of hard spheres Sushko, N.; van der Schoot, P.P.A.M. Published in: Physical Review E DOI: 10.1103/PhysRevE.72.067104

More information

CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina

CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina P.N.Lebedev Physical Institute, Russian Academy of Sciences Moscow, Russia Theoretical approaches

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

EMISSION SPECTRA OF WARM DENSE MATTER PLASMAS

EMISSION SPECTRA OF WARM DENSE MATTER PLASMAS EMSION SPECTRA OF WARM DENSE MATTER PLASMAS G. Miloshevsky ξ, A. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA

More information

Mass and energy dependence of nuclear spin distributions

Mass and energy dependence of nuclear spin distributions Mass and energy dependence of nuclear spin distributions Till von Egidy Physik-Department, Technische Universität München, Germany Dorel Bucurescu National Institute of Physics and Nuclear Engineering,

More information

Author copy. Structure factors of binary liquid metal alloys within the square-well model. 1. Introduction. Central European Journal of Physics

Author copy. Structure factors of binary liquid metal alloys within the square-well model. 1. Introduction. Central European Journal of Physics Cent. Eur. J. Phys. 7(3) 2009 584-590 DOI: 10.2478/s11534-009-0064-2 Central European Journal of Physics Structure factors of binary liquid metal alloys within the square-well model Research Article Nikolay

More information

The potential of Potential Functional Theory

The potential of Potential Functional Theory The potential of Potential Functional Theory IPAM DFT School 2016 Attila Cangi August, 22 2016 Max Planck Institute of Microstructure Physics, Germany P. Elliott, AC, S. Pittalis, E.K.U. Gross, K. Burke,

More information

Calculations of nuclear excitation by electron capture (NEET) in nonlocal thermodynamic equilibrium plasmas

Calculations of nuclear excitation by electron capture (NEET) in nonlocal thermodynamic equilibrium plasmas PHYSICAL REVIEW C 81, 034609 (2010) Calculations of nuclear excitation by electron capture (NEET) in nonlocal thermodynamic equilibrium plasmas P. Morel, V. Méot, G. Gosselin, G. Faussurier, and C. Blancard

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0154-05 Chinese Physics and IOP Publishing Ltd lectronic state and potential energy function for UH 2+* Wang Hong-Yan( Ψ) a)y,

More information

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms PSAS 28 International Conference on Precision Physics of Simple Atomic Systems Windsor, July 21-26, 28 A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms M.P. Faifman

More information

Modified Enskog kinetic theory for strongly coupled plasmas

Modified Enskog kinetic theory for strongly coupled plasmas PHYSICAL REVIEW E 9, 637 (5) Modified Enskog kinetic theory for strongly coupled plasmas Scott D. Baalrud and Jérôme Daligault Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 54,

More information

Direct Simulation Monte Carlo Calculation: Strategies for Using Complex Initial Conditions

Direct Simulation Monte Carlo Calculation: Strategies for Using Complex Initial Conditions Mat. Res. Soc. Symp. Proc. Vol. 731 2002 Materials Research Society Direct Simulation Monte Carlo Calculation: Strategies for Using Complex Initial Conditions Michael I. Zeifman 1, Barbara J. Garrison

More information

Schrodinger equation

Schrodinger equation CH1. Atomic Structure orbitals periodicity 1 Schrodinger equation - (h 2 /2p 2 m e2 ) [d 2 Y/dx 2 +d 2 Y/dy 2 +d 2 Y/dz 2 ] + V Y = E Y h = constant m e = electron mass V = potential E gives quantized

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Long-Time ab initio Simulation of Sharply-Expanding Nonideal Plasmas

Long-Time ab initio Simulation of Sharply-Expanding Nonideal Plasmas International Workshop: Beyond Molecular Dynamics: Long Time Atomic-Scale Simulations 26-29 March 2012 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany Long-Time ab initio Simulation

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

equivalent to a random-phase approximation (RPA) for electron-ion correlations. As such, we shall label these

equivalent to a random-phase approximation (RPA) for electron-ion correlations. As such, we shall label these PHYSICAL REVIEW A VOLUME 41, NUMBER 2 15 JANUARY 1990 Electron-ion correlation potentials in the density-functional theory of H and He plasmas F. Perrot Centre detudes de Limeil- Valenton, Bo&e Postale

More information

arxiv: v4 [physics.plasm-ph] 9 Nov 2017

arxiv: v4 [physics.plasm-ph] 9 Nov 2017 Interaction of ultracold non-ideal ion-electron plasma with a uniform magnetic field I. L. Isaev 1, A. P. Gavriliuk 1,2, 1 Institute of Computational Modeling, Russian Academy of Sciences, Krasnoyarsk,

More information

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Overview Motivations Experiment Definition of Experimental Spin

More information

Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies

Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies DOE/NV/25946--1257 M. J. Berninger National Security Technologies, LLC, Los Alamos, NM 87544 T. J. T. Kwan,

More information

arxiv: v1 [cond-mat.soft] 23 Nov 2018

arxiv: v1 [cond-mat.soft] 23 Nov 2018 Bulk structural informations from density functionals for patchy particles arxiv:8.9388v [cond-mat.soft] 3 Nov 8 Daniel Stopper,, Frank Hirschmann, Martin Oettel,, and Roland Roth Institute for Theoretical

More information

arxiv:astro-ph/ v1 9 Sep 1999

arxiv:astro-ph/ v1 9 Sep 1999 MODELING PRESSURE-IONIZATION OF HYDROGEN IN THE CONTEXT OF ASTROPHYSICS arxiv:astro-ph/9909168v1 9 Sep 1999 D. SAUMON Dept. of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA G. CHABRIER

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Density Functional Theory for Superconductors

Density Functional Theory for Superconductors Density Functional Theory for Superconductors M. A. L. Marques marques@tddft.org IMPMC Université Pierre et Marie Curie, Paris VI GDR-DFT05, 18-05-2005, Cap d Agde M. A. L. Marques (IMPMC) DFT for superconductors

More information

Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium

Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium Introduction Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium S.K. Grishechkin, V.K. Gryaznov 2, M.V. Zhernokletov, R.I. Il'kaev,

More information

Bottomonia physics at RHIC and LHC energies

Bottomonia physics at RHIC and LHC energies Bottomonia physics at RHIC and LHC energies Georg Wolschin Heidelberg University Institut für Theoretische Physik Philosophenweg 16 D-69120 Heidelberg ISMD_2017_Tlaxcala Topics 1. Introduction: ϒ suppression

More information

First-Principles Prediction of the Softening of the Silicon Shock. Hugoniot Curve

First-Principles Prediction of the Softening of the Silicon Shock. Hugoniot Curve First-Principles Prediction of the Softening of the Silicon Shock Hugoniot Curve S. X. Hu ( 胡素兴 ), 1,* B. Militzer, 2,3 L. A. Collins, 4 K. P. Driver 2, and J. D. Kress 4 1 Laboratory for Laser Energetics,

More information

Iso-g (2) Processes in Equilibrium Statistical Mechanics

Iso-g (2) Processes in Equilibrium Statistical Mechanics Iso-g (2) Processes in Equilibrium Statistical Mechanics Frank H. Stillinger a,b, Salvatore Torquato b,c,juanm.eroles b,c, and Thomas M. Truskett d a Bell Laboratories, Lucent Technologies, Murray Hill,

More information

Transport properties of dense plasmas within the PAW formalism

Transport properties of dense plasmas within the PAW formalism Transport properties of dense plasmas within the PAW formalism S. Mazevet, V. Recoules, M. Torrent LUTH,Observatoire de Paris-Meudon, CNRS UMR8102, Université Paris Diderot, 92195 Meudon France CEA, DAM,

More information

ModelofHighTemperatureHeatTransferinMetals

ModelofHighTemperatureHeatTransferinMetals Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Volume 17 Issue 4 Version 1.0 Year 2017 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Computer modelling of molten halides using diffraction data

Computer modelling of molten halides using diffraction data D. K. BELASHCHENKO and O. I. OSTROVSKI. Computer modelling of molten halides using diffraction data. VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

Model of non-ideal detonation of condensed high explosives

Model of non-ideal detonation of condensed high explosives Journal of Physics: Conference Series PAPER OPEN ACCESS Model of non-ideal detonation of condensed high explosives To cite this article: E B Smirnov et al 2016 J. Phys.: Conf. Ser. 774 012076 View the

More information