A dynamic model of hybrid photovoltaic/thermal panel

Size: px
Start display at page:

Download "A dynamic model of hybrid photovoltaic/thermal panel"

Transcription

1 November 5-7, Sousse Tunisia A dynamic model of hybrid photovoltaic/thermal panel Majed Ben Ammar, Mohsen Ben Ammar,2 and Maher Chaabene Unité de Commande de Machines et Réseaux de Puissance (CMERP, ENIS Route de Soukra Km 3.5, BP W, 3038 Sfax, Tunisia,2 aboratoire : Modélisation, Information et systèmes (MIS, UPJV-IUP 7, Rue Moulin Neuf, 8060 Amiens, France benammarmajed@yahoo.fr, mohsen.ben.ammar@u-picardie.fr maherchaabane@yahoo.com ABSTRACT In this paper a dynamic simulation model of a photovoltaic and water heating system (PV/T is developed. The model consists of a set of mathematical equations governing the main components of the system; namely: transparent cover, solar cell, absorber plate, operating fluid and storage tank. The model is based on the analysis of the energy balance which includes the photo electric conversion and the thermal conduction, convection and radiation. The model gathers all components equations so as to reflect the electrical and thermal behaviour of the PV/T system. It delivers the state equation of the system function of the climatic parameters and the fluid flow rate. The investigation of the effect of water mass flow rate through the collector on PV/T outputs have been carried out. Keywords - PV/T, modeling, state equation, simulation.. INTRODUCTION Many researchers have improved the performance of photovoltaic system. Some investigations stated that the efficiency increases when the cell temperature decreases. Hence, a new technology combining thermal and photovoltaic effects (Photovoltaic/Thermal PV/T is developed. Considered as a hybrid system, the PV/T collector can simultaneously produce thermal and electric energy. It is composed of a flat-plate water heating collector inserted within a PV module. Many technological improvements have been introduced in literature. In fact, a thermal behavior of a copolymer PV/T solar system in low flow rate condition has been investigated []. It confirms that the utilization of a copolymer for the total design of the solar collector has numerous advantages as reducing the weight, facilitating the manufacturing and reducing the cost. Similarly, a parametric study on the performance evaluation of hybrid PV/T water/air heating system confirms that the daily efficiency of Integrated photovoltaic and thermal solar (IPVTS system with water is higher than these of all configurations except glazed without tedlar (GWT [2]. Also many applications of PV/T have been implemented. Indeed, a distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump is developed [3]. The study has improved the overall system efficiency. In the same way a hybrid photovoltaic-thermosyphon water heating system for residential application is investigated, a high final hot water temperature in the collector system can be achieved after a one-day exposure [4]. In this paper, an explicit dynamic model suitable for PV/T system simulation is introduced. The effectiveness of PV/T system compared to a photovoltaic panel (PV is underlined. The model provides the thermal state of various collector components and generates results for hourly and transient performance analysis (thermal/electrical gain. Nomenclature Number of tubes in the plane sensor Outlet temperature of the fluid ( C. Constant of Stefan (W/m 2.K 4 Ambient temperature ( C. ength of the tube (m. Temperature of the absorber ( C. Outdistance between the tubes (m. Temperature of the cell ( C. Internal diameter of the tube (m. Inlet temperature of the fluid ( C. Area of sensor (m 2. Conductivity of the insulator (W/mk. Average temperature of the fluid ( C. Conductivity of material of the tube (W/mk

2 Conductivity of the absorber (W/mk. Wind speed(m.s -. m Mass density (kg/s. Number of glass covers. m c Effective collector capacity (J/K. Incident solar irradiation (W/m 2. C. Flow mass (Kg/s.m 2. Reflectivity diffuses glazing. Conductance of the thermal losses (J/kg.K. The absorptance of the absorber. Volume through put (m 3 /s. Transmissivity of the glazing. Thermal conductivity (W/m. C. Emittance of absorber. Pranl number. Emittance of glass. Reynolds number. Photovoltaic voltage (V. Coefficient of heat loss (W/m 2 C. Photovoltaic current (A. Thermal coefficient (W/m. C. Current in standard conditions (A. Convection coefficient of exchange (W/m. C. 2. DESIGN OF THE PV/T SYSTEM Temperature coefficient of short-circuit (ma/ C. The hybrid photovoltaic thermal system is basically constructed by pasting photovoltaic solar cells directly over the absorber plate of the solar collector in conventional forced circulation type solar water heater. A PV/T solar collector is composed of: (i A transparent cover allowing sunlight to pass towards the absorber and to create an effect of greenhouse. It is composed by one or more panes. (ii A photovoltaic cell for the production of electricity. (iii A plate absorbing for transfers from energy collected to a coolant. (iv A box ensuring the protection of the whole of these elements. (v A heat insulator allowing limiting the losses by conduction through the walls back and side. The schematics of the PV/T collector are shown in Figure ; the upper cover is represented by a glass sandwich that includes PV cells. The cell area can cover the entire glazed surface or can be distributed in a grid where the spacing between adjacent columns and rows can allow a direct gain of solar radiation to the backward absorber plate. The glass sandwich looks like a chess board composed of squares with or without PV cells embedded. Different configurations of PV/T collector can be created changing the cell area density in order to balance electricity and thermal energy output of the system. (a Cross section (b View of the array Figure. Construction of a PV/T collector for water heating. 3. DYNAMIC MODE OF PV/T (a Exploded view The dynamic thermal model of the PVT collector is built upon the finite-difference control-volume technique. The PV/T collector is composed of four major components which represent the different nodes: Glass cover, solar

3 cell, absorber plate, water in channels and in storage tank. 3.. PV/T modeling The energy and fluid flow equations are developed on the bass of the four nodes. All sub-parts in each node are considered lumping together in proportion to give the average properties of the representing major component, (Figure 2. Figure 2. Modeling of PV/T system. Where T g, T c, T p, T f, T a are respectively the temperature of glazing, the solar cell, the absorber plate, the water circulation and the ambient temperature. W is the wind speed, G incident solar irradiation, m the mass flow rate of fluid, P the electric power output and Q the thermal profit. Glass cover sub model The glass cover temperature is computed by equation. dtg m C GA A ( h h ( T T g g g g g Wind r, ga a g A ( h h ( T T g cg r, cg C g ( Where m g and C g are respectively the mass and the specific heat capacity of the glass cover, α g the effective absorptivity of glass. h wind, h c-g the convective heat transfer coefficients at the outer and inner glass surfaces respectively and h r,g-a, h r,c-g the radiation heat transfer coefficients at the outer and inner glass surfaces respectively. The convective heat transfer coefficient under is given by (Watmuff at al., 977 hwind 2.8 3v wind (2 The radiation heat transfer coefficient between the front cover and the ambient environment is h 2 2 r, ga g( T g T a ( T g Ta (3 And that between the front cover and the collector plate is 2 2 ( Tg Ta.( Tg Ta h r, c g (4 g c Where ε g and ε p are the emissivity of the glazing and the collector plate respectively, and σ is the Stefan- Boltzmann constant. Solar cell sub model Similarly, the temperature of the PV solar cell depends of the glass cover temperature as dt m c c Cc c cgac Achr, gctc ( Tg Achconvgc, ( Tc Tg A S hconcp, ( Tc T p c c c GA c (5 where m c, C c are correspondingly the mass and the specific heat of the solar cell, h conv,gc, h r,gc are respectively the convective and the radiation heat transfer coefficients between glass cover and solar cell, h con,cp the conduction heat transfer between cell and absorber plate. The electric power output depends on the instantaneous operating temperature T c of the PV module, and can be expressed as a function of the electrical current of the PV module: I pv np I ph V pvrs. Ipv Vpv RS. Ipv I 0 exp VT R (6 sh K B. T a. n Where V T (7 q At the level of the PV panel the solar cell temperature is expressed as: Ut.( Tp Ta Tc Tp. (8 hc, pc hr, pc The photoelectric current is given by : G I I T T (9 SC, STC STC ( a, ref 000 ph 23 where KB J, the Boltzmann K 9 constant q.6 0 C, I 0 is the opposite current of saturation of the diode, n is the factor of nonideality (n=,62 of the diode and V T is the thermodynamic potential. In the same way, the photovoltaic module voltage with N S serial is : I SC, STC I pv V N. V ln (0 pv S T I 0 The electrical power is given by: P Vpv I ( pv pv Absorber plate sub model The temperature of the absorber plate is : - 2 -

4 dt m C P A h ( T T A h ( T T P P S concp, C P C conpa, P a (2 A h ( T T m C T F confa, f a F F f Where m p, C p are the mass and the specific heat of absorber, h cond,cp is the heat transfer coefficient between absorber and solar cells ; h cond,pa the conduction heat transfer coefficient between the absorber and the ambient environment, h con,fa the convective heat transfer coefficient of water flow in channel. The mean plate temperature is used to calculate the useful gain of a collector (Q u : Qu Ac [ S U( Tpm Ta ] (3 where S is the absorbed solar radiation. The heat loss coefficient (U is: Where U N g A C T p T a T p N g f B ( T 2 T 2 p a ( T B U t (4 A D 0, 33 p T h w C 2N g f D N N g p 0,05 g ( p p ( f h h N 2 ( 0.04 w w( 0.09 g The mean plate temperature is given by: Q ( u A T c pm T fi.( F R (5 F R. U Where the collector heat removal factor is: GCp U. F' F ( exp ( R (6 U GCp The collector efficiency factor U F' (7 lai( U ( d ( lai d F Cb dihf The effectiveness coefficient is: tanh(( lai d / 2 F (8 m ( lai d / 2 Water in channels and in storage tank sub model The fluid temperature is computed by : a dt f Tf m C f A f hc f ( TC T f C f m (9 y Where C f is the specific heat of fluid, A f the inner surface area of the flow channels per unit surface area of the collector and y is the length of channel. The convective heat transfer coefficient is given by: Nuf k f hc f D (20 h Where D h is the hydraulic diameter of the channel and k f is the thermal conductivity of fluid. The mean fluid temperature is: ( Q A T T u c fm fi.( F. U F (2 R Where F is the collector flow factor: mc p AcU F F ( exp( AcU F mc (22 p The storage tank temperature is given by : dtr mr CR mc F( TfoTfi AR hrta, ( TR Ta (23 where m R and A R are respectively the lumped mass and the outside surface area of the water tank.t fo, T fi water temperature at the inlet and outlet of the tank, h R,Ta heat loss coefficient at the outside surface of the tank, including the thermal resistance of the tank insulation STATE EQUATION OF PV/T SYSTEM By gathering the system components sub-models, the global energy balance can be written as a state equation: T ( t AT ( t B m CE (20 y ( t DT ( t T(t is a vector containing the temperatures at the 3 nodes of the PV/T system, A is the state matrix which contain the heat exchange coefficients between the system elements, B is the control matrix which encloses commands applied on the mass flow rate ( m in the PV/T system, C is the perturbation matrix acting on the perturbation inputs vector (E=[G, Ta], y(t is a vector of exit containing the electrical power, the temperature of exit of fluid and the temperature of storage tank. The detailed form of the state equation is expressed by: T c A A2 A3 T c B C C G T 2 f A 2 A22 A23 Tf B2 m C2 C22 Ta T R A3 A32 A33 TR B3 P D D2 TfoD2 D22 Tro D3 D32 D3 T c D23 Tf D33 TR (2-22 -

5 4. SIMUATION RESUTS Differential equations were converted to numerical format through finite difference scheme. The collector segments were interacted through the glass nodes, the solar cell nodes, the thermal absorber nodes and water nodes. It can simulate the transient performance of the system at a time interval of one minute. Its inputs require total solar irradiance and ambient temperature while its outputs contain the current and voltage generated by the solar cells, the temperatures of the transparent cover, solar cells, absorber plate, water inside the collector and the storage tank. The output data are analyzed and used to estimate the electrical power output, the amount of heat that can be drawn from the system. A constant wind speed of 5m/s and any hourly total solar irradiance and a daily ambient temperature are used in the simulation shown in Figure 3. The temperature of the photovoltaic modules decreases while water circulates which increases the electrical output power. Fur there, heated water may be either used as is or converted to electric energy

6 Figure 3. Simulation of the PV/T system at constant mass flow. 5. CONCUSION A PV/T dynamic model is established. Electric and thermal equations are formulated as a state equation system. The model simulation evaluates the system performances such as T fo, T p, T pvt and electric power for a considered weather conditions (G and T a and a constant operating condition ( m. It is observed that the thermal and electrical performances of PV/T system are improved when compared to separated solar thermal panel and photovoltaic panel. The developed model will be used to establish a sizing algorithm for a PV/T plant then to control the mass flow so as to bring optimum function for the system. 6. REFERENCES [] Christian Cristofori, Gilles Notton, Jean ouis Canaletti, Thermal behaviour of a copolymer PV/Th solar system in low flow rate conditions, solar energy 83 ( [2] Arvind Tiwari, M.S. Sodha, Performance evaluation of hybrid PV/thermal water/air heating system a parametric study, Renewable energy 3 ( [3] Jie Ji, Hanfeng He, Tintai Chow, Gang Pei, Wei He, Keliang iu, Distributed dynamic modeling and experimental study of PV evaporator in PV/T solar assisted heat pump, International Journal of Heat and Mass Transfer 52 ( [4] T.T. Chow, W. He, J. Ji, hybrid photovoltaicthermosyphon water heating system for residential application 80 ( [5] T.T. Chow, W. He, A..S. Chan, K.F. Fong, Z. in, J. Ji, Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system, Applied Thermal Engineering 28 ( [6] Jie Ji, Jian-Ping u, Tin-Tai Chow, Wei He, Gang Pei, A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation, Applied Energy 84 ( [7] Jie Jia, Tin-Tai Chow, Wei He, A dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, Building and Environment 38 ( [8] Y. Sukamongkol, S. Chungpaibulpatana, B. immeechokchai, and P. Sripadungtham, Simulation of Transient Performance of a Hybrid PV/T Solar Water Heating System, Technical digest of the international PVSEC-4 Tailand (2004. [9] Duffie JA, Beckman WA. Solar engineering of thermal processes, 2nd ed. New York: Wiley,

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

Thermal Analysis of a Flat-Plate Solar Collectors in Parallel and Series Connections Huseyin Gunerhan

Thermal Analysis of a Flat-Plate Solar Collectors in Parallel and Series Connections Huseyin Gunerhan Thermal Analysis of a Flat-Plate Solar Collectors in Parallel and Series Connections Huseyin Gunerhan Department of Mechanical Engineering, Faculty of Engineering Ege University, 35100 Bornova, Izmir,

More information

ANALYSIS OF FLAT PLATE PHOTOVOLTAIC-THERMAL (PVT) MODELS

ANALYSIS OF FLAT PLATE PHOTOVOLTAIC-THERMAL (PVT) MODELS ANALYSIS OF FLAT PLATE PHOTOVOLTAIC-THERMAL (PVT) MODELS J. Bilbao and A. B. Sproul School of Photovoltaic and Renewable Energy Engineering University of New South Wales Kensington, NSW 52, Australia j.bilbao@unsw.edu.au

More information

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS.

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. FLAT PLATE COLLECTORS ABSORBER PLATES OPTIMIZATION OF GEOMETRY SELECTIVE SURFACES METHODS OF TESTING TO DETERMINE THE THERMAL PERFORMANCE

More information

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 457-465 457 NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS by Vukman V. BAKI] *, Goran S. @IVKOVI], and Milada L. PEZO Laboratory

More information

EFFECT OF OPERATING PARAMETERS ON THE PERFORMANCE OF THE HYBRID SOLAR PVT COLLECTOR UNDER DIFFERENT WEATHER CONDITION

EFFECT OF OPERATING PARAMETERS ON THE PERFORMANCE OF THE HYBRID SOLAR PVT COLLECTOR UNDER DIFFERENT WEATHER CONDITION International Journal of Science, Environment and Technology, Vol. 3, No 4, 2014, 1563 1570 ISSN 2278-3687 (O) EFFECT OF OPERATING PARAMETERS ON THE PERFORMANCE OF THE HYBRID SOLAR PVT COLLECTOR UNDER

More information

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Subodh Kumar * Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India Received

More information

Performance of contact and non-contact type hybrid photovoltaic-thermal (PV-T) collectors

Performance of contact and non-contact type hybrid photovoltaic-thermal (PV-T) collectors Performance of contact and non-contact type hybrid photovoltaic-thermal (PV-T) collectors S. Khandelwal, K. S. Reddy and S. Srinivasa Murthy (corresponding author) Department of Mechanical Engineering

More information

Thermal conversion of solar radiation. c =

Thermal conversion of solar radiation. c = Thermal conversion of solar radiation The conversion of solar radiation into thermal energy happens in nature by absorption in earth surface, planetary ocean and vegetation Solar collectors are utilized

More information

Study of a new concept of photovoltaic-thermal hybrid collector

Study of a new concept of photovoltaic-thermal hybrid collector International Conference Passive and Low Energy Cooling 867 Study of a new concept of photovoltaic-thermal hybrid collector Y.B. Assoa, C. Menezo and R. Yezou Thermal Center of Lyon (CETHIL), Lyon, France

More information

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material R. Sivakumar and V. Sivaramakrishnan Abstract Flat Plate

More information

Performance Assessment of PV/T Air Collector by Using CFD

Performance Assessment of PV/T Air Collector by Using CFD Performance Assessment of /T Air Collector by Using CFD Wang, Z. Department of Built Environment, University of Nottingham (email: laxzw4@nottingham.ac.uk) Abstract Photovoltaic-thermal (/T) collector,

More information

Ndiaga MBODJI and Ali Hajji

Ndiaga MBODJI and Ali Hajji January 22 nd to 24 th, 2018 Faro Portugal 22/01/2018 Ndiaga MBODJI and Ali Hajji Process Engineering and Environment Research Unit Institut Agronomique et Vétérinaire Hassan II 1. 2. 3. 4. 2 1. 3 Solar

More information

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB 1 H.VETTRIVEL, 2 P.MATHIAZHAGAN 1,2 Assistant professor, Mechanical department, Manalula Vinayakar institute of

More information

Design and Heat Loss Calculations from Double Effect Type Solar Still Integrated with LFPC

Design and Heat Loss Calculations from Double Effect Type Solar Still Integrated with LFPC International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 108-116 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design and Heat Loss Calculations from

More information

Ceiling Radiant Cooling Panels Employing Heat-Conducting Rails: Deriving the Governing Heat Transfer Equations

Ceiling Radiant Cooling Panels Employing Heat-Conducting Rails: Deriving the Governing Heat Transfer Equations Authors may request permission to reprint or post on their personal or company Web site once the final version of the article has been published. A reprint permission form may be found at www.ashrae.org.

More information

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design Lun Jiang Chuanjin Lan Yong Sin Kim Yanbao Ma Roland Winston University of California, Merced 4200 N.Lake Rd, Merced CA 95348 ljiang2@ucmerced.edu

More information

The Electrodynamics of a Pair of PV Modules with Connected Building Resistance

The Electrodynamics of a Pair of PV Modules with Connected Building Resistance Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July 24-26, 2007 563 he Electrodynamics of a Pair of s with Connected Building

More information

StudyOn The Thermal Performance Of Flat Plate Solar Air Collectors With Dust Deposition On The Transparent Covers

StudyOn The Thermal Performance Of Flat Plate Solar Air Collectors With Dust Deposition On The Transparent Covers StudyOn The Thermal Performance Of Flat Plate Solar Air Collectors With Dust Deposition On The Transparent Covers J.Deng 1,M.Yang 2,X.D.Yang 1,*,P.S.Wang 1 1 Department of Building Science, Tsinghua University,

More information

A. Solar Walls. B. Prototype I

A. Solar Walls. B. Prototype I A Introduction There are many different technologies that are emerging to help develop the future power infrastructure. The importance of these technologies is increasing the sustainability of how our

More information

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber 558 Journal of Scientific & Industrial Research J SCI IND RES VOL 66 JULY 2007 Vol. 66, July 2007, pp. 558-564 Construction and performance analysis of a three dimensional compound parabolic concentrator

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover ABSTRACT M. AL-Khaffajy 1 and R. Mossad 2 Faculty of Engineering and Surveying, University of Southern Queensland, QLD

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1 st law of Thermodynamic in a Serpentine PVT System

Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1 st law of Thermodynamic in a Serpentine PVT System Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1 st law of Thermodynamic in a Serpentine PVT System Seyed Reza Maadi Ferdowsi University of Mashhad reza_maadi@mail.um.ac.ir Mohammad

More information

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Er. Vivek Garg Gateway Institute of Engineering and Technology, Sonipat Mechanical Engineering Department Dr. Shalini

More information

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater Renewable Energy Volume 14, Article ID 757618, 11 pages http://dx.doi.org/1.1155/14/757618 Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 3 August 2004

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 3 August 2004 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 3 August 004 Final Examination R. Culham This is a 3 hour, closed-book examination. You are permitted to use one 8.5 in. in. crib sheet (both sides),

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Development and Validation of Flat-Plate Collector Testing Procedures

Development and Validation of Flat-Plate Collector Testing Procedures Development and Validation of Flat-Plate Collector Testing Procedures Report for March, 2007 Focus on Energy (FOE) supports solar thermal systems that displace conventional fuels by offering cash-back

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017 Experimental Investigation and Fabrication of Serpentine Flat-Plate Collector to predict the Performance Srinivas Prasad Sanaka 1, P.K.Bharadwaj 2, BLVS Gupta 3 1 Professor, 2 Student, 3 Assistant Professor

More information

N. Lemcoff 1 and S.Wyatt 2. Rensselaer Polytechnic Institute Hartford. Alstom Power

N. Lemcoff 1 and S.Wyatt 2. Rensselaer Polytechnic Institute Hartford. Alstom Power N. Lemcoff 1 and S.Wyatt 2 1 Rensselaer Polytechnic Institute Hartford 2 Alstom Power Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston Background Central solar receiver steam generators

More information

Effect of Selective Coatings on Solar Absorber for Parabolic Dish Collector

Effect of Selective Coatings on Solar Absorber for Parabolic Dish Collector Indian Journal of Science and Technology, Vol 9(7), DOI: 10.1785/ijst/016/v9i7/1007, December 016 ISSN (Print) : 097-686 ISSN (Online) : 097-565 Effect of Selective Coatings on Solar Absorber for Parabolic

More information

Dynamic thermal simulation of a solar chimney with PV modules

Dynamic thermal simulation of a solar chimney with PV modules International Conerence Passive and Low Energy Cooling 89 Dynamic thermal simulation o a solar chimney with PV modules J. Martí-Herrero and M.R. Heras-Celemin Energetic Eiciency in Building, CIEMAT, Madrid,

More information

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: ,

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: , ICAER 2011 AN EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF HEAT LOSSES FROM THE CAVITY RECEIVER USED IN LINEAR FRESNEL REFLECTOR SOLAR THERMAL SYSTEM Sudhansu S. Sahoo* a, Shinu M. Varghese b, Ashwin

More information

Improved energy management method for auxiliary electrical energy saving in a passive-solar-heated residence

Improved energy management method for auxiliary electrical energy saving in a passive-solar-heated residence Energy and Buildings 34 (2002) 699 703 Improved energy management method for auxiliary electrical energy saving in a passive-solar-heated residence G.C. Bakos Department of Electrical Engineering and Electronics,

More information

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER Demiss Alemu Amibe, Alemu Tiruneh Department of Mechanical Engineering Addis Ababa Institute of Technology,

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Rabadiya, 1(7): Sep., 2012] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Effect of Wind Velocity At different Yaw Angle On Top Loss Coefficient Of Solar Flat

More information

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K PROBLEM 3. KNOWN: Temperatures and convection coefficients associated with air at the inner and outer surfaces of a rear window. FIND: (a) Inner and outer window surface temperatures, T s,i and T s,o,

More information

Experimental study on heat losses from external type receiver of a solar parabolic dish collector

Experimental study on heat losses from external type receiver of a solar parabolic dish collector IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study on heat losses from external type receiver of a solar parabolic dish collector To cite this article: V Thirunavukkarasu

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

Flow and Temperature Analysis inside Flat Plate Air Heating Solar Collectors

Flow and Temperature Analysis inside Flat Plate Air Heating Solar Collectors International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 3, September 24) Flow and Temperature Analysis inside Flat Plate

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System Engineering, 2010, 2, 832-840 doi:10.4236/eng.2010.210106 Published Online October 2010 (http://www.scirp.org/journal/eng) Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Modelling Results of Covered PVT Collectors regarding Low-E Coatings and F

Modelling Results of Covered PVT Collectors regarding Low-E Coatings and F Aix-les-Bains (France), 16-19 September 214 Modelling Results of Covered PVT Collectors regarding Low-E Coatings and F Manuel Lämmle, Thomas Kroyer, Stefan Fortuin and Michael Hermann Fraunhofer Institute

More information

Photovoltaic cell and module physics and technology

Photovoltaic cell and module physics and technology Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 6/21/2012 1 Outlines Photovoltaic Effect Photovoltaic cell

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Archimedes Solar Energy Laboratory (ASEL) Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Soteris A. Kalogirou Department of Mechanical Engineering

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: June 13, 2008 time: 14.00-17.00 Note: There are 4 questions in total. The first one consists of independent subquestions. If possible and necessary, guide numbers

More information

Thermal Analysis of Solar Collectors

Thermal Analysis of Solar Collectors Thermal Analysis of Solar Collectors Soteris A. Kalogirou Cyprus University of Technology Limassol, Cyprus Contents Types of collectors Stationary Sun tracking Thermal analysis of collectors Flat plate

More information

Energy flows and modelling approaches

Energy flows and modelling approaches Energy flows and modelling approaches Energy flows in buildings external convection infiltration & ventilation diffuse solar external long-wave radiation to sky and ground local generation fabric heat

More information

Development and Validation of Flat-Plate Collector Testing Procedures

Development and Validation of Flat-Plate Collector Testing Procedures Development and Validation of Flat-Plate Collector Testing Procedures Report for February, 2007 Focus on Energy (FOE) supports solar thermal systems that displace conventional fuels by offering cash-back

More information

= (fundamental constants c 0, h, k ). (1) k

= (fundamental constants c 0, h, k ). (1) k Introductory Physics Laboratory, Faculty of Physics and Geosciences, University of Leipzig W 12e Radiation Thermometers Tasks 1 Measure the black temperature T s of a glowing resistance wire at eight different

More information

Numerical Analysis of Three Coolants Heat Exchanger Associated to Hybrid Photovoltaic/Thermal Solar Sensor

Numerical Analysis of Three Coolants Heat Exchanger Associated to Hybrid Photovoltaic/Thermal Solar Sensor International Journal of Energy Engineering 2014, 4(3): 45-53 DOI: 10.5923/j.ijee.20140403.01 Numerical Analysis of Three Coolants Heat Exchanger Sihem Abidi 1,*, Habib Sammouda 1, Rachid Bennacer 2 1

More information

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Abdul Waheed Badar *, Reiner Buchholz, and Felix Ziegler Institut für Energietechnik, KT, FG

More information

Durability Analysis on Solar Energy Converters containing Polymeric Materials

Durability Analysis on Solar Energy Converters containing Polymeric Materials Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Durability Analysis on Solar Energy Converters containing Polymeric Materials Jochen Wirth*, Steffen Jack, Michael Köhl and Karl-Anders

More information

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy JOUL, Volume 2 Supplemental Information Storage and Recycling of Interfacial Solar Steam Enthalpy Xiuqiang Li, Xinzhe Min, Jinlei Li, Ning Xu, Pengchen Zhu, Bin Zhu, Shining Zhu, and Jia Zhu Supplemental

More information

Research Article Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream

Research Article Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream International Photoenergy Volume 2, Article ID 83968, 1 pages http://dx.doi.org/1.15/2/83968 Research Article Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced

More information

STUDY OF FLAT PLATE COLLECTOR SOLAR WATER HEATER

STUDY OF FLAT PLATE COLLECTOR SOLAR WATER HEATER STUDY OF FLAT PLATE COLLECTOR SOLAR WATER HEATER Bhagyashree P Dahane, S.P. Adhau Email : dahane.hagyashree@gmail.com, adhau_sp@yahoo.co.in Astract: In this paper experimental results of flat plate collector

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

A concrete heat accumulator for use in solar heating systems a mathematical model and experimental verification

A concrete heat accumulator for use in solar heating systems a mathematical model and experimental verification archives of thermodynamics Vol. 35(2014), No. 3, 281 295 A concrete heat accumulator for use in solar heating systems a mathematical model and experimental verification JACEK SACHARCZUK DAWID TALER Cracow

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

Solar collector angle optimization for maximum air flow rate in the solar chimney. Fei Cao, Yufei Mao, Qingjun Liu, Hong Xiao and Tianyu Zhu

Solar collector angle optimization for maximum air flow rate in the solar chimney. Fei Cao, Yufei Mao, Qingjun Liu, Hong Xiao and Tianyu Zhu 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 015) Solar collector angle optimization for maximum air flow rate in the solar chimney Fei Cao, Yufei Mao, Qingjun Liu,

More information

Available online at ScienceDirect. Energy Procedia 75 (2015 ) Multiphysics Simulations of a Thermoelectric Generator

Available online at   ScienceDirect. Energy Procedia 75 (2015 ) Multiphysics Simulations of a Thermoelectric Generator Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 633 638 The 7 th International Conference on Applied Energy ICAE2015 Multiphysics Simulations of a Thermoelectric Generator

More information

Thermal Performance Analysis of Water Heating System for a Parabolic Solar Concentrator: An Experimental Model based design

Thermal Performance Analysis of Water Heating System for a Parabolic Solar Concentrator: An Experimental Model based design Research Article International Journal of Current Engineering and Technology E-ISSN, P-ISSN - INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Thermal Performance Analysis

More information

HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS

HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS Manoj S. Chaudhari 1, Mahesh Jagadale 2 1,2 Department of Mechanical Engineering, SPP University,

More information

Analysis of a Plate Heat Pipe Solar Collector

Analysis of a Plate Heat Pipe Solar Collector SET 2004 - International Conference on Sustainable Energy Technologies Nottingham, UK, 28-30 June 2004 Page 1 of 5 Analysis of a Plate Heat Pipe Solar Collector Jorge Facão and Armando C Oliveira Faculty

More information

ScienceDirect. Experimental study on the sun tracking ability of a spherical solar collector

ScienceDirect. Experimental study on the sun tracking ability of a spherical solar collector Available online at www.sciencedirect.com ScienceDirect Energy Procedia 85 (2016) 220 227 Sustainable Solutions for Energy and Environment, EENVIRO - YRC 2015, 18-20 November 2015, Bucharest, Romania Experimental

More information

Basic information about developed Calculator for solar / wind hybrid power supply

Basic information about developed Calculator for solar / wind hybrid power supply Basic information about developed Calculator for solar / wind hybrid power supply It simulates behavior of the system for off grid power supply (components: solar panels, wind generator, batteries and

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 1 Outlines Photovoltaic Effect Photovoltaic cell structure

More information

State Feedback Control of a DC-DC Converter for MPPT of a Solar PV Module

State Feedback Control of a DC-DC Converter for MPPT of a Solar PV Module State Feedback Control of a DC-DC Converter for MPPT of a Solar PV Module Eric Torres 1 Abstract The optimum solar PV module voltage is not constant. It varies with ambient conditions. Hense, it is advantageous

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 3- Examples on problems having different heat transfer modes Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Examples Multimode heat transfer Heat exchanger

More information

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2 Heat Transfer: Physical Origins and Rate Equations Chapter One Sections 1.1 and 1. Heat Transfer and Thermal Energy What is heat transfer? Heat transfer is thermal energy in transit due to a temperature

More information

Investigations of hot water temperature changes at the pipe outflow

Investigations of hot water temperature changes at the pipe outflow Investigations of hot water temperature changes at the pipe outflow Janusz Wojtkowiak 1,*, and Czesław Oleśkowicz-Popiel 1 1 Poznan University of Technology, Faculty of Civil and Environmental Engineering,

More information

CFD model to estimate the Effect of Tilt and Height on the Natural Air Flow inside a Solar Chimney

CFD model to estimate the Effect of Tilt and Height on the Natural Air Flow inside a Solar Chimney 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 2007 53 CFD model to estimate the Effect of Tilt and Height on the Natural

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE Chapter 2 Energy and the 1st Law of Thermodynamics 1 2 Homework Assignment # 2 Problems: 1, 7, 14, 20, 30, 36, 42, 49, 56 Design and open end problem: 2.1D Due Monday 22/12/2014 3 Work and Kinetic Energy

More information

Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures

Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures Peer Reviewed Paper Piratheepan Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures Abstract M Piratheepan 1, T N Anderson 1, S Saiful 1 1 Auckland University of

More information

Research Article Modeling and Characteristic Parameters Analysis of a Trough Concentrating Photovoltaic/Thermal System with GaAs and Super Cell Arrays

Research Article Modeling and Characteristic Parameters Analysis of a Trough Concentrating Photovoltaic/Thermal System with GaAs and Super Cell Arrays International Photoenergy Volume 01, Article ID 78560, 10 pages doi:10.1155/01/78560 Research Article Modeling and Characteristic Parameters Analysis of a Trough Concentrating Photovoltaic/Thermal System

More information

COMBINATION OF TAGUCHI METHOD AND ARTIFICIAL INTELLIGENCE TECHNIQUES FOR THE OPTIMAL DESIGN OF FLAT-PLATE COLLECTORS

COMBINATION OF TAGUCHI METHOD AND ARTIFICIAL INTELLIGENCE TECHNIQUES FOR THE OPTIMAL DESIGN OF FLAT-PLATE COLLECTORS COMBINATION OF TAGUCHI METHOD AND ARTIFICIAL INTELLIGENCE TECHNIQUES FOR THE OPTIMAL DESIGN OF FLAT-PLATE COLLECTORS Soteris A. Kalogirou Cyprus University of Technology, P. O. Box 509, 60, Limassol, Cyprus

More information

Available online at ScienceDirect. Energy Procedia 57 (2014 ) ISES Solar World Congress

Available online at   ScienceDirect. Energy Procedia 57 (2014 ) ISES Solar World Congress Available online at www.sciencedirect.com ScienceDirect Energy Procedia 57 (214 ) 1613 1622 213 ISES Solar World Congress Theoretical and Experimental Comparison of Box Solar Cookers with and without Internal

More information

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 11: Heat Exchangers Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of

More information

Comparison of PV Cell Temperature Estimation by Different Thermal Power Exchange Calculation Methods

Comparison of PV Cell Temperature Estimation by Different Thermal Power Exchange Calculation Methods European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ International Conference on Renewable Energies and Power Quality (ICREPQ 1 Santiago de Compostela (Spain,

More information

Monthly performance of passive and active solar stills for different Indian climatic conditions

Monthly performance of passive and active solar stills for different Indian climatic conditions Monthly performance of passive and active solar stills for different Indian climatic conditions H.N. Singh, G.N.Tiwari* Centre for Energy Studies, llt Delhi, Haus Khas, New Delhi 11 O0 16, India Fax: +91

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

PERFORMANCE EVALUATION OF REFLECTIVE COATINGS ON ROOFTOP UNITS

PERFORMANCE EVALUATION OF REFLECTIVE COATINGS ON ROOFTOP UNITS PERFORMANCE EVALUATION OF REFLECTIVE COATINGS ON ROOFTOP UNITS Report on DRAFT Prepared for: California Energy Commission 1516 9th Street Sacramento, CA 95814 Prepared by: Design & Engineering Services

More information

1D and 3D Simulation. C. Hochenauer

1D and 3D Simulation. C. Hochenauer Solar thermal flat-plate l t collectors 1D and 3D Simulation C. Hochenauer Introduction Description of a solar thermal flat-plate collector 1D Simulation - Description of the model - Simulation vs. measurement

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.2: Characterizing Device Parameters in OPVs Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information