Analysis of a Plate Heat Pipe Solar Collector

Size: px
Start display at page:

Download "Analysis of a Plate Heat Pipe Solar Collector"

Transcription

1 SET International Conference on Sustainable Energy Technologies Nottingham, UK, June 2004 Page 1 of 5 Analysis of a Plate Heat Pipe Solar Collector Jorge Facão and Armando C Oliveira Faculty of Engineering, University of Porto (DeptMecEng Rua Dr Roberto Frias, Porto, Portugal ABSTRACT: The thermal behaviour of a plate heat pipe solar collector was analysed numerically and experimentally The numerical model is based on energy balance equations assuming a quasisteady state condition The major simplification was that the temperature in the heat pipe was considered to be uniform and equal to the saturation temperature This assumption is not far from the truth, since heat pipes are considered as isothermal devices A small-scale solar collector, with an aperture area of about 01 m 2, was experimentally tested during the Summer season in Porto Two types of tests were made: the first was the determination of the instantaneous efficiency curve and the second was the determination of the collector time constant, a measure of its thermal inertia Results showed a collector optical efficiency of 64% and an overall loss coefficient of 55 W/(m 2 K, for a non-selective surface coating There was a good agreement between numerical and experimental results Keywords: plate heat pipe solar collector, model, experiment NOMENCLATURE A area [m 2 ] c p pressure specific heat [J/(KgK] F collector efficiency factor h heat transfer coefficient [W/(m 2 K] I incident solar radiation on collector tilted surface [W/m 2 ] Q m useful energy gain [W] mass flow rate [kg/s] T temperature [K] U overall heat loss coefficient [W/(m 2 K] Greek letters α absorptance ε emissivity η collector efficiency τ transmittance σ Stefan-Boltzmann constant [W/m 2 /K 4 ] Subscripts a ambient back back c cover cond condenser fm fluid mean = (inlet+outlet/2 in inlet out outlet p plate p-c plate to cover sat saturation sky sky w wind 1 INTRODUCTION Heat pipes are devices that can transfer large quantities of heat Since they use the latent heat of vaporization, the difference between the temperature of the two heat sources is small The manufacturing process consists in inserting a small quantity of fluid (eg water in an evacuated closed pipe with a wick Inside the heat pipe there are only liquid and vapour The temperature of the fluid is the saturation temperature, between triple and critical point Heat pipes can be used to provide a uniform temperature, generating isothermal surfaces They can be used for temperature control in electronic applications, to cool processors and as thermal diodes They have the advantage of being silent, operating independently of gravity, not needing servicing and having no moving parts In addition, freezing of the heat pipe is not destructive [1] They exist in several geometries: pipes, plates, with annular or rectangular sections Since the advent of heat pipes in 1960, their importance in solar applications such as solar collectors for domestic water heating, space heating, and cooling of buildings has received increasing attention [2] A heat-pipe solar collector operates like a thermal diode where the flow of heat is in one direction only [3] Whenever the temperature of the storage tank is higher than condenser temperature, the heat pipe stops, preventing the circulation of storage tank fluid to the solar collector Bienert and Wolf [4] carried out one of the first studies of heat pipes in solar collectors, in 1976 Their results were neither conclusive nor optimistic The water manifold was so bulky that the energy collected and lost easily offseted any advantages the heat pipe may have had Ramsey et al [5] obtained a collector

2 SET2004 International Conference on Sustainable Energy Technologies Nottingham, UK, June 2004 Page 2 of 5 efficiency of 50% at 300ºC for a selective coated heat pipe collector using single axis tracking parabolic trough concentrator Ortabasi and Feher [6] analysed a heat pipe concentrator solar collector with selective surface, cusp mirror and vacuum insulation Vries et al [7] developed a resistance analogue model for heat pipe and conventional solar collector They concluded that the performance of the heat pipe collector used without fluid circulation control was as good as that of a conventional collector used with control Hull [8] showed theoretically that arrays with less than 10 heat pipes connected to a single manifold, had a significantly lower efficiency than a similar conventional open-loop thermosyphon hot water heater, based on the same plate area Akyurt [9] compared the thermal behaviour of two conventional thermosyphon collectors with a heat pipe solar collector This one had an efficiency 50% higher than the conventional collectors Bong [3] presented a theoretical model for the determination of the efficiency, the heat removal factor, and the outlet water temperature of a single collector and an array of flat-pipe heat-pipe collectors The model was validated by testing 16 heat pipe collectors The results showed an optical efficiency of 44% and an overall heat loss coefficient of 285 W/(m 2 K El-Nasr and El-Haggar [10] designed and tested a wickless solar collector using R11, acetone and water as working fluids at different charging pressures, under the climatic conditions of Cairo, Egypt Ismail and Abodgderah [11] presented a comparative theoretical and experimental analysis of a heat pipe solar collector The theoretical model for the heat pipe solar collector was based on the method by Duffie and Beckman [12], modified to include heat pipes for energy transportation The working fluid in the heat pipes was methanol The condenser was wickless and inclined 15 deg more than the inclination of evaporators, to facilitate condensate return The instantaneous efficiency was higher than the one of a conventional collector, when the heat pipes reached their operating temperatures Ghaddar and Nasr [13] investigated experimentally the performance of a heat pipe solar collector using R11 as a working fluid in Beirut, Lebanon The instantaneous efficiency varied from 60 to 20 % Mathioulakis and Belessiotis [1] investigated theoretically and experimentally the performance of a solar hot water system with an integrated heat pipe The system used a wickless gravity assisted heat pipe with ethanol as working fluid The condenser was inserted directly inside the tank They got an instantaneous efficiency up to 60% All the solar collectors reported in the previous paragraph were made with circular heat pipes, and some were evacuated The collector analysed in this work uses a plate heat pipe manufactured by Thermacore Europe Ltd (UK The plate was coated with black paint (Nextel 3101c10, with emissivity and absorptance for solar radiation of approximately 096 in a wide spectrum of wavelength non selective coating The condenser was implemented under the plate through a rectangular section channel see figure 1 The water that circulates in the channel is in direct contact with the plate, minimizing the thermal resistance The plate was encased in a 434 mm x 325 mm x 100 mm aluminium box with 50 mm of rock wool insulation The cover was a window glass (354 mm x 250 mm placed at 20 mm from the plate heat pipe Figure 2 shows a view of the solar collector Figure 1 Plate heat pipe representation and dimensions Figure 2 View of plate heat pipe solar collector 2 ENERGY BALANCE MODEL The model assumes a quasi-steady state condition in each collector component The major simplification was that the temperature in the plate heat pipe was considered to be uniform and equal to the saturation temperature This assumption is not far from the truth, since heat pipes are considered as isothermal devices

3 SET2004 International Conference on Sustainable Energy Technologies Nottingham, UK, June 2004 Page 3 of 5 is: The energy balance equation on the glass cover 4 4 Tsat Tc αci + σ + hp c Tc = εc ε p = εσ T 4 T 4 + h T T (1 ( ( c c sky w c a The energy balance equation on the plate is: 4 4 Tsat Tc ατ p ciac = σap + hp cap Tc εc ε p T T T T + Uback Aback Ta + Acondhcond T T ( ( sat in sat out ( The energy balance on the condenser is: ( p out in cond cond sat out ( Tin Ta ( Ta Uback ( Tin Ta ( T T mc T T = A h A cond out a (2 (3 A non-linear system of equations has to be solved, with 3 equations and 3 unknown variables: T sat, T c and T out The model was implemented in the EES [14] computer environment T in, T a and I are considered to be known The useful heat collected can be given by ( ( τα ( Q= mc T T = IA UA T T p out in c p p a (4 Difficulties in knowing directly the plate temperature, T p, make it more convenient to present the efficiency as a function of fluid temperature, T f Since T f <T p, a factor less than unity, F - collector efficiency factor, is needed This factor represents the ratio of the actual useful energy gain to the useful gain that would result if the collector absorbing surface was at the fluid temperature, and heat transfer coefficient in the condenser, h cond, was calculated using the study of Shah and London [15] Note that efficiency characteristics (F τ c α p and F U are fairly good, with a loss factor lower than the typical value for non-selective flat-plate collectors (in the range 7-8 W/(m 2 K η η = (T fm /I (T fm /I [ºCm 2 /W] Figure 3 Collector efficiency obtained with the model 3 PERFORMANCE TESTS The collector was tested in open circuit in outdoor conditions, according to the Portuguese Standard NP 1802 [18] To get results for different inlet temperatures an electric heater with variable power was used The nominal mass flow rate was 20 g/s/m 2 (0019 kg/s and measured with an ultra-low rate flowmeter accuracy of +-3% To stabilise the pressure and flow rate at collector inlet, an atmospheric pressure tank was used see figure 4 representing the experimental facility for solar collector testing The inlet and outlet water temperature was measured with calibrated type T thermocouples The solar radiation was measured with a Kipp & Zonen pyranometer, with a sensitivity of 1320 V/(Wm² and a maximum error of ±5% The ambient air temperature was measured with an Mo 1000 sensor with a maximum error of 046ºC The data acquisition system used a data logger HP 34970A and HP VEE as software Pyranometer ( τα c p ' ( fm a Q= F' IA F UA T T (5 Solar collector This equation is known in the literature as the Hottel-Whillier-Bliss equation, [16], [17] The collector efficiency expresses the fraction of incident energy that is collected by the working fluid: ( fm Ta Q F ' U T η = = F '( τcαp (6 IA I Figure 3 shows the simulated instantaneous efficiency of the solar collector It was obtained by varying the different model inputs: T in, T a and I The Tin Heater m T a Tank Figure 4 Experimental facility for solar collector testing

4 SET2004 International Conference on Sustainable Energy Technologies Nottingham, UK, June 2004 Page 4 of 5 Two types of tests were made: the first was the determination of the instantaneous efficiency curve, for incident angles of direct beam radiation smaller than 30º and global radiation higher than 630 W/m 2, and the second was the determination of the collector time constant, a measure of its thermal inertia Figure 5 shows the comparison of measured instantaneous efficiency and model efficiency There is a good agreement between numerical and experimental results Experimental results confirm the collector good performance: F U value of 55 W/(m 2 K compared to 7-8 for a normal flat-plate collector η η fitting = (T fm /I R 2 = 084 η model = (T fm /I experiment exp fit model (T fm /I [ºCm 2 /W] Figure 5 Comparison of experimental and model efficiency The time constant is defined as the time required for the fluid leaving the collector to change its temperature by (1-1/e, or 0632, of the total difference between its initial and its final steady-state value, after a change in the incident radiation [12] The fluid inlet temperature must be controlled near ambient temperature The time at which the equality for equation 9 is reached is the time constant: 1 = = 0368 T T e out, init in (9 Figure 6 shows the time-temperature plot under a sudden reduction of the solar radiation on the collector to zero The calculated time constant was equal to 410 s (6 min and 50 s This is a low value, which confirms the assumption of quasi-steady state used in the model 4 CONCLUSIONS The thermal performance of a plate heat pipe solar collector was evaluated numerically and experimentally The model involved the solution of a set of nonlinear algebraic equations The major simplification was that the temperature in the plate heat pipe was considered uniform A small solar collector was tested and the results showed an optical efficiency of 64% and an overall loss coefficient of 55 W/(m 2 K The collector time constant is equal to 6 min and 50 s The simulated efficiency is in good agreement with experimental results The results indicate a performance for the plate heat pipe collector, which is better than the one for normal flat-plate collectors (non-selective Temperature [ºC] Time [s] Tin Ta Figure 6 Time-temperature plot for a sudden reduction of solar radiation on the collector to zero Acknowledgments The authors wish to thank Fundação para a Ciência e a Tecnologia (P, for the scholarship of the first author They also wish to express their gratitude to the European Commission (DG Research for partially funding the work done, under the Hybrid- CHP research project (contract ENK5-CT The other partners of the project are also acknowledged REFERENCES [1] Mathioulakis, E, Belessiotis, V 2002 A New heat-pipe solar domestic hot water system Solar Energy Vol 72 No 1 pp13-20 [2] Susheela, N, Sharp, M K 2001 Heat pipe augmented passive solar system for heating of buildings Journal of Energy Engineering Vol 127 No 1 April pp18-36 [3] Bong, T Y, Ng, K C, Bao, H 1993 Thermal performance of flat-plat heat-pipe collector array Solar Energy Vol 50 No 6 pp [4] Bienert, W B, Wolf, D A 1976 Heat pipes in flat plate solar collectors, ASME paper No 76- WA/Sol-12 [5] Ramsey, J W, Gupta, B P, Knowles, G R 1976 Experimental evaluation of cylindrical parabolic solar collector, ASME paper No 76-WA/HT 13 [6] Ortabasi, U, Feher, F P 1980 Cusp mirrorheat pipe evacuated tubular solar thermal collector Solar Energy Vol 24 pp [7] Vries, de, H F W, Kamminga, W, Francken, J C 1980 Fluid circulation control in conventional and heat pipe planar solar collectors Solar Energy Vol 24 pp [8] Hull, J R 1986 Analysis of heat transfer factors for a heat-pipe absorber array connected to a commom manifold Journal of Solar Energy Engineering, Transactions of the ASME Vol 108 No 1 pp11-16

5 SET2004 International Conference on Sustainable Energy Technologies Nottingham, UK, June 2004 Page 5 of 5 [9] Akyurt, M 1986 AWSWAH The heat-pipe solar water heater J Engng Appl Sci Vol 3 No 1-2 pp23-28 [10] Nasr, El, Haggar, El 1995 Analysis of a wickless solar collector in Cairo Renewable Energy Vol 5 pp [11] Ismail, K A R, Abogderah, M M 1998 Performance of a heat pipe solar collector Journal of Solar Energy Engineering, Transactions of the ASME Vol 120 February pp51-59 [12] Duffie, J A, Beckman, W A 1991 Solar Engineering of Thermal Processes, second edition John Wiley & Sons, Inc [13] Ghaddar, N, Nasr, Y 1998 Experimental study of refrigerant charged solar collector International Journal of Energy Research Vol 22 pp [14] Klein, S A 2004 Enginering Equation Solver F-Chart Software Middleton, USA [15] Shah, R K, London 1978 Laminar flow forced convection in ducts in Supplement 1 to Advances in Heat Transfer edited by Irvine, T F, Hartnett, J P Academic Press New York [16] Hottel, H C, Whillier, W 1955 Evaluation of flat plate solar collector performance Trans Conf Use of Solar Energy Thermal Processes Tuscon AZ [17] Bliss, R W 1959 The derivation of several plate efficiency factors useful in the design of the flat plate solar heat collector Solar Energy Vol 4 pp55-64 [18] NP Colectores Solares, Determinação da Curva de rendimento Instantâneo

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

Simulation of a linear Fresnel solar collector concentrator

Simulation of a linear Fresnel solar collector concentrator *Corresponding author: acoliv@fe.up.pt Simulation of a linear Fresnel solar collector concentrator... Jorge Facão and Armando C. Oliveira * Faculty of Engineering, University of Porto-New Energy Tec. Unit,

More information

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber 558 Journal of Scientific & Industrial Research J SCI IND RES VOL 66 JULY 2007 Vol. 66, July 2007, pp. 558-564 Construction and performance analysis of a three dimensional compound parabolic concentrator

More information

StudyOn The Thermal Performance Of Flat Plate Solar Air Collectors With Dust Deposition On The Transparent Covers

StudyOn The Thermal Performance Of Flat Plate Solar Air Collectors With Dust Deposition On The Transparent Covers StudyOn The Thermal Performance Of Flat Plate Solar Air Collectors With Dust Deposition On The Transparent Covers J.Deng 1,M.Yang 2,X.D.Yang 1,*,P.S.Wang 1 1 Department of Building Science, Tsinghua University,

More information

Thermal Analysis of a Flat-Plate Solar Collectors in Parallel and Series Connections Huseyin Gunerhan

Thermal Analysis of a Flat-Plate Solar Collectors in Parallel and Series Connections Huseyin Gunerhan Thermal Analysis of a Flat-Plate Solar Collectors in Parallel and Series Connections Huseyin Gunerhan Department of Mechanical Engineering, Faculty of Engineering Ege University, 35100 Bornova, Izmir,

More information

DETAILED MODELING OF SOLAR FLAT-PLATE COLLECTORS WITH DESIGN TOOL KOLEKTOR 2.2

DETAILED MODELING OF SOLAR FLAT-PLATE COLLECTORS WITH DESIGN TOOL KOLEKTOR 2.2 1 2 3 4 5 6 7 8 9 10 DETAILED MODELING OF SOLAR FLAT-PLATE COLLECTORS WITH DESIGN TOOL KOLEKTOR 2.2 ABSTRACT Tomas Matuska, Vladimir Zmrhal, and Juliane Metzger Department of Environmental Engineering,

More information

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: ,

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: , ICAER 2011 AN EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF HEAT LOSSES FROM THE CAVITY RECEIVER USED IN LINEAR FRESNEL REFLECTOR SOLAR THERMAL SYSTEM Sudhansu S. Sahoo* a, Shinu M. Varghese b, Ashwin

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017 Experimental Investigation and Fabrication of Serpentine Flat-Plate Collector to predict the Performance Srinivas Prasad Sanaka 1, P.K.Bharadwaj 2, BLVS Gupta 3 1 Professor, 2 Student, 3 Assistant Professor

More information

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS.

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. FLAT PLATE COLLECTORS ABSORBER PLATES OPTIMIZATION OF GEOMETRY SELECTIVE SURFACES METHODS OF TESTING TO DETERMINE THE THERMAL PERFORMANCE

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material R. Sivakumar and V. Sivaramakrishnan Abstract Flat Plate

More information

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB 1 H.VETTRIVEL, 2 P.MATHIAZHAGAN 1,2 Assistant professor, Mechanical department, Manalula Vinayakar institute of

More information

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover ABSTRACT M. AL-Khaffajy 1 and R. Mossad 2 Faculty of Engineering and Surveying, University of Southern Queensland, QLD

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 457-465 457 NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS by Vukman V. BAKI] *, Goran S. @IVKOVI], and Milada L. PEZO Laboratory

More information

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER Demiss Alemu Amibe, Alemu Tiruneh Department of Mechanical Engineering Addis Ababa Institute of Technology,

More information

Experimental study on heat losses from external type receiver of a solar parabolic dish collector

Experimental study on heat losses from external type receiver of a solar parabolic dish collector IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study on heat losses from external type receiver of a solar parabolic dish collector To cite this article: V Thirunavukkarasu

More information

ANALYSIS OF FLAT PLATE PHOTOVOLTAIC-THERMAL (PVT) MODELS

ANALYSIS OF FLAT PLATE PHOTOVOLTAIC-THERMAL (PVT) MODELS ANALYSIS OF FLAT PLATE PHOTOVOLTAIC-THERMAL (PVT) MODELS J. Bilbao and A. B. Sproul School of Photovoltaic and Renewable Energy Engineering University of New South Wales Kensington, NSW 52, Australia j.bilbao@unsw.edu.au

More information

Development and Validation of Flat-Plate Collector Testing Procedures

Development and Validation of Flat-Plate Collector Testing Procedures Development and Validation of Flat-Plate Collector Testing Procedures Report for March, 2007 Focus on Energy (FOE) supports solar thermal systems that displace conventional fuels by offering cash-back

More information

EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR

EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR THERMAL SCIENCE, Year 217, Vol. 21, No. 5, pp. 211-219 211 EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR Introduction by Ramalingam

More information

Thermal conversion of solar radiation. c =

Thermal conversion of solar radiation. c = Thermal conversion of solar radiation The conversion of solar radiation into thermal energy happens in nature by absorption in earth surface, planetary ocean and vegetation Solar collectors are utilized

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector ICCHT2010 5 th International Conference on Cooling and Heating Technologies, Bandung, Indonesia 911 December 2010 The Comparison beteen the ffects of Using To Plane Mirrors Concentrator and that ithout

More information

ENERGETIC AND EXERGETIC ANALYSIS OF SOLAR PTC WITH DIFFERENT REFLECTOR MATERIAL

ENERGETIC AND EXERGETIC ANALYSIS OF SOLAR PTC WITH DIFFERENT REFLECTOR MATERIAL International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 1, October 217, pp. 1 8, Article ID: IJMET_8_1_1 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=1

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Abdul Waheed Badar *, Reiner Buchholz, and Felix Ziegler Institut für Energietechnik, KT, FG

More information

Thermal Analysis of Solar Collectors

Thermal Analysis of Solar Collectors Thermal Analysis of Solar Collectors Soteris A. Kalogirou Cyprus University of Technology Limassol, Cyprus Contents Types of collectors Stationary Sun tracking Thermal analysis of collectors Flat plate

More information

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction CALIFORNIA INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering ME 96 Free and Forced Convection Experiment Revised: 25 April 1994 1. Introduction The term forced convection refers to heat transport

More information

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System Engineering, 2010, 2, 832-840 doi:10.4236/eng.2010.210106 Published Online October 2010 (http://www.scirp.org/journal/eng) Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated

More information

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR Yogender Kumar 1, Avadhesh Yadav 2 1,2 Department of Mechanical Engineering, National Institute of Technology, Kurukshetra,

More information

Thermal Performance Analysis of Water Heating System for a Parabolic Solar Concentrator: An Experimental Model based design

Thermal Performance Analysis of Water Heating System for a Parabolic Solar Concentrator: An Experimental Model based design Research Article International Journal of Current Engineering and Technology E-ISSN, P-ISSN - INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Thermal Performance Analysis

More information

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Archimedes Solar Energy Laboratory (ASEL) Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Soteris A. Kalogirou Department of Mechanical Engineering

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

Performance Assessment of PV/T Air Collector by Using CFD

Performance Assessment of PV/T Air Collector by Using CFD Performance Assessment of /T Air Collector by Using CFD Wang, Z. Department of Built Environment, University of Nottingham (email: laxzw4@nottingham.ac.uk) Abstract Photovoltaic-thermal (/T) collector,

More information

Chapter 3. Basic Principles. Contents

Chapter 3. Basic Principles. Contents Chapter 3. Basic Principles Contents 3.1 Introduction 3.2 Heat 3.3 Sensible Heat 3.4 Latent Heat 3.5 Evaporative Cooling 3.6 Convection 3.7 Transport 3.8 Energy Transfer Mediums 3.9 Radiation 3.10 Greenhouse

More information

Performance of contact and non-contact type hybrid photovoltaic-thermal (PV-T) collectors

Performance of contact and non-contact type hybrid photovoltaic-thermal (PV-T) collectors Performance of contact and non-contact type hybrid photovoltaic-thermal (PV-T) collectors S. Khandelwal, K. S. Reddy and S. Srinivasa Murthy (corresponding author) Department of Mechanical Engineering

More information

Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures

Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures Peer Reviewed Paper Piratheepan Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures Abstract M Piratheepan 1, T N Anderson 1, S Saiful 1 1 Auckland University of

More information

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Subodh Kumar * Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India Received

More information

Thermal Performance Characterization of Embedded Pulsating Heat Pipe Radiators by Infrared Thermography

Thermal Performance Characterization of Embedded Pulsating Heat Pipe Radiators by Infrared Thermography Thermal Performance Characterization of Embedded Pulsating Heat Pipe Radiators by Infrared Thermography Vadiraj A. Hemadri 1, Sameer Khandekar 2 1: Dept. of Mechanical Engineering, IIT Kanpur, India, vadiraj@iitk.ac.in

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER

HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER C.B.Pawar*, K.R.Aharwal 1 and Alok Chaube 2 1. Department of Mechanical Engineering, Shri

More information

Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions

Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions Available online at www.sciencedirect.com Solar Energy 84 (2010) 1382 1396 www.elsevier.com/locate/solener Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors

More information

Chapter 2 Available Solar Radiation

Chapter 2 Available Solar Radiation Chapter 2 Available Solar Radiation DEFINITIONS Figure shows the primary radiation fluxes on a surface at or near the ground that are important in connection with solar thermal processes. DEFINITIONS It

More information

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE Thamer Khalif Salem Mechanical Engineering, College of Engineering, Tikrit University, IRAQ. thamer_khalif@yahoo.com

More information

EXPERIMENTAL STUDY ON A CASCADED PCM STORAGE RECEIVER FOR PARABOLIC DISH COLLECTOR

EXPERIMENTAL STUDY ON A CASCADED PCM STORAGE RECEIVER FOR PARABOLIC DISH COLLECTOR International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 217, pp. 91 917, Article ID: IJMET_8_11_92 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

Development and Validation of Flat-Plate Collector Testing Procedures

Development and Validation of Flat-Plate Collector Testing Procedures Development and Validation of Flat-Plate Collector Testing Procedures Report for February, 2007 Focus on Energy (FOE) supports solar thermal systems that displace conventional fuels by offering cash-back

More information

Design and Heat Loss Calculations from Double Effect Type Solar Still Integrated with LFPC

Design and Heat Loss Calculations from Double Effect Type Solar Still Integrated with LFPC International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 108-116 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design and Heat Loss Calculations from

More information

Greenhouse Steady State Energy Balance Model

Greenhouse Steady State Energy Balance Model Greenhouse Steady State Energy Balance Model The energy balance for the greenhouse was obtained by applying energy conservation to the greenhouse system as a control volume and identifying the energy terms.

More information

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Er. Vivek Garg Gateway Institute of Engineering and Technology, Sonipat Mechanical Engineering Department Dr. Shalini

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

Collector test according to EN ,2:2002

Collector test according to EN ,2:2002 Test Report: KTB Nr. 2003-18-b-en Collector test according to EN 12975-1,2:2002 for: RM Solar Ltd Brand Name: S-Class Responsible for Testing: Dipl.-Ing. (FH) A. Schäfer Date: 17th July 2006 Address: Fraunhofer-Institute

More information

Performance Investigation of Cavity Absorber for Parabolic Dish Solar Concentrator

Performance Investigation of Cavity Absorber for Parabolic Dish Solar Concentrator Volume 117 No. 7 217, 345-358 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Performance Investigation of Cavity Absorber for Parabolic Dish Solar

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES Dr. Mahesh Kumar. P Department of Mechanical Engineering Govt College of Engineering, Kannur Parassinikkadavu (P.O), Kannur,

More information

Experimental Analysis of Wire Sandwiched Micro Heat Pipes

Experimental Analysis of Wire Sandwiched Micro Heat Pipes Experimental Analysis of Wire Sandwiched Micro Heat Pipes Rag, R. L. Department of Mechanical Engineering, John Cox Memorial CSI Institute of Technology, Thiruvananthapuram 695 011, India Abstract Micro

More information

Effect of Selective Coatings on Solar Absorber for Parabolic Dish Collector

Effect of Selective Coatings on Solar Absorber for Parabolic Dish Collector Indian Journal of Science and Technology, Vol 9(7), DOI: 10.1785/ijst/016/v9i7/1007, December 016 ISSN (Print) : 097-686 ISSN (Online) : 097-565 Effect of Selective Coatings on Solar Absorber for Parabolic

More information

THE SIMPLIFIED CALCULUS OF THE FLAT PLATE SOLAR COLLECTOR

THE SIMPLIFIED CALCULUS OF THE FLAT PLATE SOLAR COLLECTOR Annals of the University of Craiova, lectrical ngineering series, No. 30, 006 TH SIMPLIFID CALCULUS OF TH FLAT PLAT SOLAR COLLCTOR Andrei Ştefan JRCAN Student - University of Craiova, Faculty of lectric

More information

Monthly performance of passive and active solar stills for different Indian climatic conditions

Monthly performance of passive and active solar stills for different Indian climatic conditions Monthly performance of passive and active solar stills for different Indian climatic conditions H.N. Singh, G.N.Tiwari* Centre for Energy Studies, llt Delhi, Haus Khas, New Delhi 11 O0 16, India Fax: +91

More information

Minhhung Doan, Thanhtrung Dang

Minhhung Doan, Thanhtrung Dang An Experimental Investigation on Condensation in Horizontal Microchannels Minhhung Doan, Thanhtrung Dang Department of Thermal Engineering, Hochiminh City University of Technology and Education, Vietnam

More information

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS Mark Luther 1, Timothy Anderson 2, and Tim Brain 3 1 School of Architecture and Building, Deakin University, Geelong, Australia 2 School

More information

NEGST. New generation of solar thermal systems. Advanced applications ENEA. Comparison of solar cooling technologies. Vincenzo Sabatelli

NEGST. New generation of solar thermal systems. Advanced applications ENEA. Comparison of solar cooling technologies. Vincenzo Sabatelli NEGST New generation of solar thermal systems Advanced applications Comparison of solar cooling technologies Vincenzo Sabatelli ENEA vincenzo.sabatelli@trisaia.enea.it NEGST Workshop - Freiburg - June

More information

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR Int. J. Mech. Eng. & Rob. Res. 2013 Basavanna S and K S Shashishekar, 2013 Research Paper ISSN 2278 0149 www.imerr.com Vol. 2, No. 1, January 2013 2013 IJMERR. All Rights Reserved CFD ANALYSIS OF TRIANGULAR

More information

Advances and Applications in Mechanical Engineering and Technology Volume 2, Number 1/2, 2010, Pages 1-18

Advances and Applications in Mechanical Engineering and Technology Volume 2, Number 1/2, 2010, Pages 1-18 Advances and Applications in Mechanical Engineering and Technology Volume 2, Number 1/2, 2010, Pages 1-18 COMPARATIVE ANALYSIS BETWEEN A PARABOLIC TROUGH COLLECTOR AND A COMPACT LINEAR FRESNEL REFLECTOR

More information

Principles of Solar Thermal Conversion

Principles of Solar Thermal Conversion Principles of Solar Thermal Conversion Conversion to Work Heat from a solar collector may be used to drive a heat engine operating in a cycle to produce work. A heat engine may be used for such applications

More information

Comparative Performance Analysis of Conventional Solar Air Heater with Longitudinal Rectangular and Triangular Fins Attached Absorber

Comparative Performance Analysis of Conventional Solar Air Heater with Longitudinal Rectangular and Triangular Fins Attached Absorber Comparative Performance Analysis of Conventional Solar Air Heater with Longitudinal Rectangular and Triangular Fins Attached Absorber Authors S.F. Hussain 1, Dhruv Kumar 2, Prabha Chand 3, Abhishek Priyam

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

Simulation Application for Optimization of Solar Collector Array

Simulation Application for Optimization of Solar Collector Array RESEARCH ARTICLE OPEN ACCESS Simulation Application for Optimization of Solar Collector Array Igor Shesho*, Done Tashevski** *(Department of Thermal Engineering, Faculty of Mechanical Engineering, "Ss.

More information

Comparative Study of Two Phase Closed Thermosyphon with Different Fluids and Fill Volume Ratio

Comparative Study of Two Phase Closed Thermosyphon with Different Fluids and Fill Volume Ratio IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 11, Issue 6 Ver. II (Nov- Dec. 214), PP 82-92 Comparative Study of Two Phase Closed Thermosyphon

More information

Vertical Mantle Heat Exchangers for Solar Water Heaters

Vertical Mantle Heat Exchangers for Solar Water Heaters for Solar Water Heaters Y.C., G.L. Morrison and M. Behnia School of Mechanical and Manufacturing Engineering The University of New South Wales Sydney 2052 AUSTRALIA E-mail: yens@student.unsw.edu.au Abstract

More information

EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS

EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS Panna Lal Singh *1, R.M Sarviya and J.L. Bhagoria 2 1. Central Institute of Agricultural Engineering, Berasia Road, Bhopal-462038

More information

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater Renewable Energy Volume 14, Article ID 757618, 11 pages http://dx.doi.org/1.1155/14/757618 Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Handout 10: Heat and heat transfer. Heat capacity

Handout 10: Heat and heat transfer. Heat capacity 1 Handout 10: Heat and heat transfer Heat capacity Consider an experiment in Figure 1. Heater is inserted into a solid substance of mass m and the temperature rise T degrees Celsius is measured by a thermometer.

More information

Parametric Evaluation of a Parabolic Trough Solar Collector

Parametric Evaluation of a Parabolic Trough Solar Collector Parametric Evaluation of a Parabolic Trough Solar Collector Adeoye O.F 1 * Ayodeji O 2. 1. Mechanical Engineering Technology Department Rufus Giwa Polytechnic, P.M.B 1019, Owo, Nigeria. 2. Teco Mills &

More information

HEAT LOSS MEASUREMENTS ON PARABOLIC TROUGH RECEIVERS

HEAT LOSS MEASUREMENTS ON PARABOLIC TROUGH RECEIVERS HEAT LOSS MEASUREMENTS ON PARABOLIC TROUGH RECEIVERS Sebastian Dreyer, Paul Eichel, Tim Gnaedig, Zdenek Hacker, Sebastian Janker, Thomas Kuckelkorn, Kamel Silmy, Johannes Pernpeintner 2 and Eckhard Luepfert

More information

HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS

HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS Manoj S. Chaudhari 1, Mahesh Jagadale 2 1,2 Department of Mechanical Engineering, SPP University,

More information

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR 5 th International Conference on Energy Sustainability ASME August 7-10, 2011, Grand Hyatt Washington, Washington DC, USA ESFuelCell2011-54254 HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING

More information

Ndiaga MBODJI and Ali Hajji

Ndiaga MBODJI and Ali Hajji January 22 nd to 24 th, 2018 Faro Portugal 22/01/2018 Ndiaga MBODJI and Ali Hajji Process Engineering and Environment Research Unit Institut Agronomique et Vétérinaire Hassan II 1. 2. 3. 4. 2 1. 3 Solar

More information

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System Numerical Study of PCM Melting in Evacuated Collector Storage System MOHD KHAIRUL ANUAR SHARIF, SOHIF MAT, MOHD AFZANIZAM MOHD ROSLI, KAMARUZZAMAN SOPIAN, MOHD YUSOF SULAIMAN, A. A. Al-abidi. Energy Research

More information

Analytical Design of Isolations for Cryogenic Tankers

Analytical Design of Isolations for Cryogenic Tankers , July 3-5, 2013, London, U.K. Analytical Design of Isolations for Cryogenic Tankers R. Miralbes, D. Valladares, L. Castejon, J. Abad, J.L. Santolaya, Member, IAENG Abstract In this paper it is presented

More information

Performance Evaluation of Low Inertia Multi- Stage Solar Still

Performance Evaluation of Low Inertia Multi- Stage Solar Still Performance Evaluation of Low Inertia Multi- Stage Solar Still Prem Singh, Parmpal Singh, Jagdeep Singh, Ravi Inder Singh and Krishnendu Kundu Abstract In an attempt to increase distillation yield per

More information

Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector

Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector Tanzeen Sultana 1, Graham L Morrison 1, Andrew Tanner 2, Mikal Greaves 2, Peter Le Lievre 2 and Gary Rosengarten 1 1 School of Mechanical

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR

More information

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE Bastos S., Fernández-Seara

More information

Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems Manuscript submitted to: Volume 2, Issue 1, 99-115. AIMS Energy DOI: 10.3934/energy.2014.1.99 Received date 17 January 2014, Accepted date 6 March 2014, Published date 20 March 2014 Research Article Carbon

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Rabadiya, 1(7): Sep., 2012] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Effect of Wind Velocity At different Yaw Angle On Top Loss Coefficient Of Solar Flat

More information

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger Journal of Physics: Conference Series PAPER OPEN ACCESS An eperimental investigation on condensation of R134a refrigerant in microchannel heat echanger To cite this article: A S Shamirzaev 218 J. Phys.:

More information

Modelling Results of Covered PVT Collectors regarding Low-E Coatings and F

Modelling Results of Covered PVT Collectors regarding Low-E Coatings and F Aix-les-Bains (France), 16-19 September 214 Modelling Results of Covered PVT Collectors regarding Low-E Coatings and F Manuel Lämmle, Thomas Kroyer, Stefan Fortuin and Michael Hermann Fraunhofer Institute

More information

Flow and Temperature Analysis inside Flat Plate Air Heating Solar Collectors

Flow and Temperature Analysis inside Flat Plate Air Heating Solar Collectors International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 3, September 24) Flow and Temperature Analysis inside Flat Plate

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1 Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe M. G. Mousa Abstract The goal of this

More information

Solar water heating. Chapter Introduction

Solar water heating. Chapter Introduction Chapter 5 Solar water heating 5.1 Introduction An obvious use of solar energy is for heating air and water. Dwellings in cold climates need heated air for comfort, and in all countries hot water is used

More information

Experimental Study of the Performance of Compound Parabolic Concentrating Solar Collector

Experimental Study of the Performance of Compound Parabolic Concentrating Solar Collector Al-Khwarizmi Engineering Journal,Vol. 12, No. 1, P.P. 15-25 (2016) Al-Khwarizmi Engineering Journal Experimental Study of the Performance of Compound Parabolic Concentrating Solar Collector Qussai Jihad

More information

DESIGN, SIMULATION, AND OPTIMIZATION OF A SOLAR DISH COLLECTOR WITH SPIRAL-COIL THERMAL ABSORBER

DESIGN, SIMULATION, AND OPTIMIZATION OF A SOLAR DISH COLLECTOR WITH SPIRAL-COIL THERMAL ABSORBER ThSci 4-2016-part II 11 TR UR AD PDF REV OŠ ThSci2016.049 25974 karaktera. Datum: 8/23/2016 Pavlović, S. R., et al.: Design, Simulation, and Optimization of a Solar Dish THERMAL SCIENCE, Year 2016, Vol.

More information

Stratified Flow Condensation of CO 2 in a Tube at Low Temperatures Pei-hua Li 1, a, Joe Deans 2,b and Stuart Norris 3,c

Stratified Flow Condensation of CO 2 in a Tube at Low Temperatures Pei-hua Li 1, a, Joe Deans 2,b and Stuart Norris 3,c Applied Mechanics and Materials Submitted: 2015-05-13 ISSN: 1662-7482, Vols. 789-790, pp 184-192 Accepted: 2015-05-22 doi:10.4028/www.scientific.net/amm.789-790.184 Online: 2015-09-02 2015 Trans Tech Publications,

More information