Laboration 8a. Relaxation, T 1 -measurement with inversion recovery

Size: px
Start display at page:

Download "Laboration 8a. Relaxation, T 1 -measurement with inversion recovery"

Transcription

1 , T 1 -measurement with inversion recovery KR

2 Theory The way the magnetizations returns to equilibrium, relaxation, is a very important concept in NMR, for example, due to the fact that the rate of relaxation can give information about the dynamics of the molecule. Spin relaxation is a magnetic field dependent property and can be divided into two mechanisms, longitudinal relaxation and transverse relaxation. Longitudinal relaxation The part of the magnetization vector, M, that is parallel to the main magnetic field, B 0, is usually called longitudinal magnetization, designated as M z. The process for it to recover to the thermal equilibrium magnetization, M 0, is called longitudinal relaxation, which involves a time constant T 1. Longitudinal relaxation generally comes by interactions between the nucleus of interest and unexcited nuclei in the environment. T 1 is also known as "spin-lattice" relaxation T 1 can be measured by inversion-recovery experiment. Transverse relaxation The part of the magnetization vector M that is perpendicular to the main magnetic field B 0 is usually called transverse magnetization, which can be written as M xy, M T, or. The process for it to decay to zero is called transverse relaxation, which involves a time constant T 2. The transverse relaxation is dominated by interactions between nuclei which are already excited. For this reason, T 2 relaxation is called "transverse" or "spin-spin" relaxation. T 2 can be measured by a Spin-echo experiment. -2-

3 Inversion-recovery The inversion-recovery experiment allows to measure longitudinal or spin-lattice T 1 relaxation times of any nucleus. The basic pulse sequence of the inversion-recovery experiment consists of the following steps: A 180º pulse inverts the magnetization to the -z axis. During the following delay t, relaxation along the longitudinal plane takes place. Magnetization come back to the original equilibrium z-magnetization. A read 90º pulse creates transverse magnetization Acquisition is performed as usual -3-

4 Practical 1. Run a PROTON according to Bruker run manual for 500 MHz NMR", optimize sw and o1p. 2. Check the 1 H 90 o -pulse (lab 3). Experiment setup 3. edc or new and read the parameter set PROTONT1. You will find it when you are in the correct directory. Press the arrow and choose the pathway to Brukers parametersets under Experiment Dirs. /opt/topspin21/exp/stan/nmr/par (Bruker) 4. getprosol (get the preset probe and solvent specific parameters from the prosol list) or if the 1 H 90 o -pulse value need to be changed Set the measured p1 ( 1 H 90 o -pulse) getprosol 1H p1-value pl1-value (get probe and solvent specific parameters and use your p1 value to calculate other pulses) 5. If required, any acquisition parameter can be modified manually or in the AcquPars section, you can see what is valid for the parameters in PulseProg. a. Optimize the values of o1p and sw b. Define a vd-list. Go to Lists in the menu. Click on to the right of the VDList name entry box c. Select t1delay by clicking on it, click Enter the desired delays (in seconds). -4-

5 If any changes save the list in your own picked name and close it. d. Set number of scans to minimum ns=8 and ds=4. e. Set d1 to an accurate value, you find the parameter under the icon. It is very important to use a long recycle delay, usually d1=5*t1( 1 H) (d1=10 s) f. TD(f1) = is the number of experiments = number of delays in VDList. 6. The expected experimental time is displayed with the expt command or 7. Turn the spinner off, T1 experiments should be run non spinning 8. rga find the receiver gain 9. zg start the acquisition Process recorded data 10. Processing parameters can be modified manually or in the ProcPars. Be sure that SI> number of delays in VDList. 11. You have manuals in the Topspin software. Under Help you will find Manuals choose 1D and 2D step-by-step basic. Go to T1 Experiment processing and follow the instructions. 12. Your data points on the T 1 -curve should be automatically picked. To pick them manually, click. To adjust the settings, click. If not all your data points are picked, you may need to increase the number of drift points, and then re-pick. If you have too many points, correct Number of points to the same value as the number of delays in VDList. Input the vdlist file name in this parameters form. Increase the number of drift points in this parameters form if some points are missing after the Start Calculation step. DRIFT Enter the number of drift points. The maximum of a peak will be picked if it lies within DRIFT points of the position specified for the point picking. -5-

Operation of the Bruker 400 JB Stothers NMR Facility Department of Chemistry Western University

Operation of the Bruker 400 JB Stothers NMR Facility Department of Chemistry Western University Operation of the Bruker 400 JB Stothers NMR Facility Department of Chemistry Western University 1. INTRODUCTION...3 1.1. Overview of the Bruker 400 NMR Spectrometer...3 1.2. Overview of Software... 3 1.2.1.

More information

NMR PRAKTIKUM. Data processing Data acquisition... 17

NMR PRAKTIKUM. Data processing Data acquisition... 17 NMR PRAKTIKUM 1. INTRODUCTION... 2 1.1. Description of a Spectrometer... 2 1.2. Principle of a NMR Experiment... 4 1.2.1. 1D NMR experiment... 4 1.2.2. 2D NMR experiment... 5 2. PRACTICAL PART... 8 2.1.

More information

North Carolina State University Department of Chemistry Varian NMR Training Manual

North Carolina State University Department of Chemistry Varian NMR Training Manual North Carolina State University Department of Chemistry Varian NMR Training Manual by J.B. Clark IV & Dr. S. Sankar 1 st Edition 05/15/2009 Section 3: Glide Program Operations for Advanced 1D & 2D Spectra

More information

Chemistry Department

Chemistry Department Chemistry Department NMR/Instrumentation Facility Users Guide - VNMRJ Prepared by Leila Maurmann The following procedures should be used to acquire one-dimensional proton and carbon NMR data on the 400MHz

More information

It is possible to choose the temperature for each experiment by setting a temperature under the Temp pane (under the Standard panel).

It is possible to choose the temperature for each experiment by setting a temperature under the Temp pane (under the Standard panel). 1 2 The study queue gives a lot of flexibility for lining up experiments: they can be run at different temperatures or at different times. You must respect the instrument limits: do not submit experiments

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

HMQC HSQC and HMBC. Gradient HMQC, HMBC on the Bruker400 and 500

HMQC HSQC and HMBC. Gradient HMQC, HMBC on the Bruker400 and 500 1 Gradient HMQC, HMBC on the Bruker400 and 500 HMQC, HSQC - Heteronuclear Multiple Quantum Correlation. These experiments correlate the chemical shift of proton with the chemical shift of the directly

More information

BASIC NMR HANDBOOK Written by M. A. Eastman Copyright 1997, 2001, 2013, 2015, 2018

BASIC NMR HANDBOOK Written by M. A. Eastman Copyright 1997, 2001, 2013, 2015, 2018 BASIC NMR HANDBOOK Written by M. A. Eastman Copyright 1997, 2001, 2013, 2015, 2018 Basic NMR Handbook Table of Contents: Preface ii viii PART 1 Chapter 1: Introduction to NMR 1 Why Study NMR? 1 The Magnetic

More information

NMR TRAINING. What to Cover

NMR TRAINING. What to Cover NMR TRAINING MULTI-DIMENSIONAL EXPERIMENTS What to Cover Introducing a second dimension COSY, NOESY, TOCSY, SQC, MBC D Processing Proton T1/T measurement, Diffusion measurement Spectrometer Preparation

More information

Asian Journal of Chemistry; Vol. 25, No. 4 (2013),

Asian Journal of Chemistry; Vol. 25, No. 4 (2013), Asian Journal of Chemistry; Vol. 25, No. 4 (213), 214-218 http://dx.doi.org/1.14233/ajchem.213.13346 Observation of Triplet Traces Obtained with Inversion Recovery Method in Both Residual Water- and H

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

NMR Short Course Shibani Bhattacharya.

NMR Short Course Shibani Bhattacharya. NMR Short ourse Shibani Bhattacharya sbhattacharya@nysbc.org NMR Project Workflow Acquisition Processing Analysis Spectrometer Topspin 2.1/3.1 NMRPipe NMRView ARA Sparky Resonance Assignments Data Structure

More information

Carbon and Heteronuclear NMR on the Bruker

Carbon and Heteronuclear NMR on the Bruker Carbon and Heteronuclear NMR on the Bruker There are several different types of carbon spectra such as a normal qualitative spectrum, DEPT, coupled, and those with and without NOE. This handout discusses

More information

MEASURING DIFFUSION BY NMR. Bruker Instruments Inc. Sophie Kazanis Application Scientist August 2000

MEASURING DIFFUSION BY NMR. Bruker Instruments Inc. Sophie Kazanis Application Scientist August 2000 1 MEASURING DIFFUSION BY NMR Bruker Instruments Inc. Sophie Kazanis Application Scientist August 2000 2 Table of Contents Chapter 1 Section 1.1 Section 1.2 Section 1.3 Chapter 2 Chapter 3 Section 3.1 Section

More information

THE GEIGER-MULLER TUBE AND THE STATISTICS OF RADIOACTIVITY

THE GEIGER-MULLER TUBE AND THE STATISTICS OF RADIOACTIVITY GMstats. THE GEIGER-MULLER TUBE AN THE STATISTICS OF RAIOACTIVITY This experiment examines the Geiger-Muller counter, a device commonly used for detecting and counting ionizing radiation. Various properties

More information

Operation Guide for 500MHz Bruker NMR

Operation Guide for 500MHz Bruker NMR Operation Guide for 500MHz Bruker NMR NMR Laboratory University of Massachusetts Lowell Training and Operation Manual By Wendy Gavin NMR Technician 5/2017 Version 5 1 A. General Procedures page 3 1) Training

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

NMR NEWS June To find tutorials, links and more, visit our website

NMR NEWS June To find tutorials, links and more, visit our website Department of Chemistry NMR Facilities Director: Dr. Carlos A. Steren NMR NEWS June 2014 To find tutorials, links and more, visit our website www.chem.utk.edu/facilities/nmr Computers and software updates

More information

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY PRINCIPLE AND APPLICATION IN STRUCTURE ELUCIDATION Carbon 13 NMR Professor S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai

More information

Relaxation, Multi pulse Experiments and 2D NMR

Relaxation, Multi pulse Experiments and 2D NMR Relaxation, Multi pulse Experiments and 2D NMR To Do s Read Chapter 6 Complete the end of chapter problems; 6 1, 6 2, 6 3, 6 5, 6 9 and 6 10. Read Chapter 15 and do as many problems as you can. Relaxation

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

The NMR Spectrum - 13 C. NMR Spectroscopy. Spin-Spin Coupling 13 C NMR. A comparison of two 13 C NMR Spectra. H Coupled (undecoupled) H Decoupled

The NMR Spectrum - 13 C. NMR Spectroscopy. Spin-Spin Coupling 13 C NMR. A comparison of two 13 C NMR Spectra. H Coupled (undecoupled) H Decoupled Spin-Spin oupling 13 NMR A comparison of two 13 NMR Spectra 1 oupled (undecoupled) 1 Decoupled 1 Proton Decoupled 13 NMR 6. To simplify the 13 spectrum, and to increase the intensity of the observed signals,

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations

Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations Lecturer: Weiguo Hu 7-1428 weiguoh@polysci.umass.edu October 2009 1 Approximate Description 1: Energy level model Magnetic field

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation More NMR Relaxation Longitudinal Relaxation Transverse Relaxation Copyright Peter F. Flynn 2017 Experimental Determination of T1 Gated Inversion Recovery Experiment The gated inversion recovery pulse sequence

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

Apparative Methoden in der Physikalischen Chemie DIFFUSION MEASUREMENTS BY NUCLEAR MAGNETIC RESONANCE (NMR) 1 Introduction.

Apparative Methoden in der Physikalischen Chemie DIFFUSION MEASUREMENTS BY NUCLEAR MAGNETIC RESONANCE (NMR) 1 Introduction. Apparative Methoden in der Physikalischen Chemie DIFFUSION MEASUREMENTS BY NUCLEAR MAGNETIC RESONANCE (NMR) 12th March 2008 Before reading the following script it is recommended first obtain basic knowledge

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Relaxation times in nuclear magnetic resonance

Relaxation times in nuclear magnetic resonance Relaxation times in TEP Related topics Nuclear spins, atomic nuclei with a magnetic moment, precession movement of the nuclear spins, Landau-Lifshitz equation, Bloch equation, magnetisation, resonance

More information

NMR Data workup using NUTS

NMR Data workup using NUTS omework 1 Chem 636, Fall 2008 due at the beginning of the 2 nd week lab (week of Sept 9) NMR Data workup using NUTS This laboratory and homework introduces the basic processing of one dimensional NMR data

More information

Slow symmetric exchange

Slow symmetric exchange Slow symmetric exchange ϕ A k k B t A B There are three things you should notice compared with the Figure on the previous slide: 1) The lines are broader, 2) the intensities are reduced and 3) the peaks

More information

Experiment 4: Equilibrium Thermodynamics of a Keto-Enol Tautomerism Reaction

Experiment 4: Equilibrium Thermodynamics of a Keto-Enol Tautomerism Reaction Experiment 4: Equilibrium Thermodynamics of a Keto-Enol Tautomerism Reaction Reading: SGN: Experiment 21 (p.256-263), Experiment 43 (p.456-459). Quanta: Nuclear magnetic resonance, Relaxation All reactions

More information

Mnova Software for Analyzing Reaction Monitoring NMR Spectra

Mnova Software for Analyzing Reaction Monitoring NMR Spectra Mnova Software for Analyzing Reaction Monitoring NMR Spectra Version 10 Chen Peng, PhD, VP of Business Development, US & China Mestrelab Research SL San Diego, CA, USA chen.peng@mestrelab.com 858.736.4563

More information

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE Foreword Preface Acknowledgements V VI I X Chapter 1. Introduction 1.1. The development of high-resolution NMR 1 1.2. Modern

More information

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy Topics: 1. Some Common Experiments 2. Anatomy of a 2D experiment 3. 3D NMR spectroscopy no quantum mechanics! Some Common 2D Experiments Very

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Lecture 12 February 11, 2016

Lecture 12 February 11, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 2016 Elements of Modern Signal Processing Lecture 12 February 11, 2016 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates 1 Outline

More information

2D NMR: HMBC Assignments and Publishing NMR Data Using MNova

2D NMR: HMBC Assignments and Publishing NMR Data Using MNova Homework 10 Chem 636, Fall 2014 due at the beginning of lab Nov 18-20 updated 10 Nov 2014 (cgf) 2D NMR: HMBC Assignments and Publishing NMR Data Using MNova Use Artemis (Av-400) or Callisto (Av-500) for

More information

Winmostar tutorial Quantum ESPRESSO Spin Polarization V X-Ability Co,. Ltd. 2017/8/8

Winmostar tutorial Quantum ESPRESSO Spin Polarization V X-Ability Co,. Ltd. 2017/8/8 Winmostar tutorial Quantum ESPRESSO Spin Polarization V7.025 X-Ability Co,. Ltd. question@winmostar.com 2017/8/8 Contents I. SCF calculation II. Bands calculation III. Fermi surface 2 Environment setting

More information

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems Agilent s new solution for obtaining routinely quantitative results from NMR measurements. 1 Magnetic Resonance Systems The Scope of Analytical Chemistry Analytical Chemistry is the study of the separation,

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in Chemical Kinetics I: The Dry Lab Up until this point in our study of physical chemistry we have been interested in equilibrium properties; now we will begin to investigate non-equilibrium properties and

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Light irradiation experiments with coumarin [1]

Light irradiation experiments with coumarin [1] Materials and instruments All the chemicals were purchased from commercial suppliers and used as received. Thin-layer chromatography (TLC) analysis was carried out on pre-coated silica plates. Column chromatography

More information

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins.

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins. RAD229: Midterm Exam 2015/2016 October 19, 2015 ---- 75 Minutes Name: Student ID: General Instructions: 1. Write your name legibly on this page. 2. You may use notes including lectures, homework, solutions

More information

NMR FACILITY NEWSLETTER

NMR FACILITY NEWSLETTER NMR Newsletter NMR FACILITY NEWSLETTER Department of Chemistry and Biochemistry Matt Revington-Facility Coordinator mrevingt@uwindsor.ca Ext 3997 500 MHz NMR upgraded The 500 MHz NMR has received a $250,000

More information

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Physical Background Of Nuclear Magnetic Resonance Spectroscopy Physical Background Of Nuclear Magnetic Resonance Spectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography University of North Carolina Wilmington What is Spectroscopy?

More information

Lecture #6 (The NOE)

Lecture #6 (The NOE) Lecture #6 (The OE) 2/18/15 Clubb Determining Protein tructures by MR: Measure thousands of shorter inter-hydrogen atom distances. Use these to restrain the structure of protein computationally. Distance

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Magnetic Resonance Imaging in a Nutshell

Magnetic Resonance Imaging in a Nutshell Magnetic Resonance Imaging in a Nutshell Oliver Bieri, PhD Department of Radiology, Division of Radiological Physics, University Hospital Basel Department of Biomedical Engineering, University of Basel,

More information

APPENDIX 1 Version of 8/24/05 11:01 AM Simulation of H-NMR without a structure*:

APPENDIX 1 Version of 8/24/05 11:01 AM Simulation of H-NMR without a structure*: WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals.

More information

NMRPredict Functional Block Diagram

NMRPredict Functional Block Diagram NMRPredict Functional Block Diagram 2 Submit to server. NMRPredict Server NMRPredict DeskTop Software Review results. 3 1 Input structure. Starting the NMRPredict Interface Click on the NMRPredict icon.

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

Fragment-based drug discovery

Fragment-based drug discovery Fragment-based drug discovery Dr. Till Kühn VP Applications Development MRS, Bruker BioSpion User s meeting, Brussels, November 2016 Innovation with Integrity The principle of Fragment Based Screening

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

A fast method for the measurement of long spin lattice relaxation times by single scan inversion recovery experiment

A fast method for the measurement of long spin lattice relaxation times by single scan inversion recovery experiment Chemical Physics Letters 383 (2004) 99 103 www.elsevier.com/locate/cplett A fast method for the measurement of long spin lattice relaxation times by single scan inversion recovery experiment Rangeet Bhattacharyya

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Experiment 20 : Studying light absorption in terphenyl I. Background theory. 1. 2. 3. 4. 5. 6. 7. Electromagnetic

More information

Simulation of Second Order Spectra Using SpinWorks. CHEM/BCMB 8190 Biomolecular NMR UGA, Spring, 2005

Simulation of Second Order Spectra Using SpinWorks. CHEM/BCMB 8190 Biomolecular NMR UGA, Spring, 2005 Simulation of Second Order Spectra Using SpinWorks CHEM/BCMB 8190 Biomolecular NMR UGA, Spring, 2005 Introduction Although we frequently assume that scalar couplings are small compared to the differences

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

Longitudinal-relaxation enhanced fast-pulsing techniques: New tools for biomolecular NMR spectroscopy

Longitudinal-relaxation enhanced fast-pulsing techniques: New tools for biomolecular NMR spectroscopy Longitudinal-relaxation enhanced fast-pulsing techniques: New tools for biomolecular NMR spectroscopy Bernhard Brutscher Laboratoire de Résonance Magnétique Nucléaire Institut de Biologie Structurale -

More information

La RMN quantitative appliquée aux petites molécules

La RMN quantitative appliquée aux petites molécules La RMN quantitative appliquée aux petites molécules Fabrice Moriaud - Applications Development - Fällanden 30ème Réunion d Utilisateurs RMN Bruker December 9, 2016 1 Covered in this presentation Quantification

More information

Login -the operator screen should be in view when you first sit down at the spectrometer console:

Login -the operator screen should be in view when you first sit down at the spectrometer console: Lab #2 1D 1 H Double Resonance (Selective Decoupling) operation of the 400 MHz instrument using automated sample insertion (robot) and automated locking and shimming collection of 1D 1 H spectra retrieving

More information

Extended Phase Graphs (EPG)

Extended Phase Graphs (EPG) Extended Phase Graphs (EPG) Purpose / Definition Propagation Gradients, Relaxation, RF Diffusion Examples 1 EPG Motivating Example: RF with Crushers RF G z Crushers are used to suppress spins that do not

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Introductory MRI Physics

Introductory MRI Physics C HAPR 18 Introductory MRI Physics Aaron Sodickson EXRNAL MAGNETIC FIELD, PROTONS AND EQUILIBRIUM MAGNETIZATION Much of the bulk of the magnetic resonance imaging (MRI) scanner apparatus is dedicated to

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

Extended Phase Graphs (EPG)

Extended Phase Graphs (EPG) Extended Phase Graphs (EPG) Purpose / Definition Propagation Gradients, Relaxation, RF Diffusion Examples 133 EPG Motivating Example: RF with Crushers RF G z Crushers are used to suppress spins that do

More information

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti-

More information

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure 1 Basic p rinciples Introduction 1 Atomic structure 1 Motion in the atom 2 MR active nuclei 2 The hydrogen nucleus 4 Alignment 4 Precession 8 The Larmor equation 9 Introduction The basic principles of

More information

Magnetic Fields. Experiment 1. Magnetic Field of a Straight Current-Carrying Conductor

Magnetic Fields. Experiment 1. Magnetic Field of a Straight Current-Carrying Conductor General Physics Lab Department of PHYSICS YONSEI University Lab Manual (Lite) Magnetic Fields Ver.20181029 NOTICE This LITE version of manual includes only experimental procedures for easier reading on

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

NMR Predictor. Introduction

NMR Predictor. Introduction NMR Predictor This manual gives a walk-through on how to use the NMR Predictor: Introduction NMR Predictor QuickHelp NMR Predictor Overview Chemical features GUI features Usage Menu system File menu Edit

More information

How to perform 2D NMR Experiments on the Varian/Agilent VNMRS 500 when using the Chempack interface

How to perform 2D NMR Experiments on the Varian/Agilent VNMRS 500 when using the Chempack interface How to perform 2D NMR Experiments on the Varian/Agilent VNMRS 500 when using the Chempack interface 1 June 3, 2014 To start: 1. Insert your sample 2. If running any 2D spectrum or even just a 1D 13 C spectrum

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

Supplementary Information. Figure S1. 1 H NMR (600 MHz, CDCl 3 ) of 1.

Supplementary Information. Figure S1. 1 H NMR (600 MHz, CDCl 3 ) of 1. Supplementary Information Figure S1. 1 H NMR (600 MHz, CDCl 3 ) of 1. Mar. Drugs 2014, 12 2 Figure S2. 13 C NMR (125 MHz, CDCl 3 ) of 1. Mar. Drugs 2014, 12 3 Figure S3. gcosy (600 MHz, CDCl 3 ) of 1.

More information

Homonuclear Broadband Decoupling via PSYCHE Element Benjamin Görling, Aitor Moreno, Wolfgang Bermel

Homonuclear Broadband Decoupling via PSYCHE Element Benjamin Görling, Aitor Moreno, Wolfgang Bermel Homonuclear Broadband Decoupling via PSYCHE Element Benjamin Görling, Aitor Moreno, Wolfgang Bermel Bruker BioSpin GmbH Homonuclear broadband decoupling of proton spectra is a challenging task since standard

More information

1H 1D-NOE Difference Spectra and Spin-Saturation Transfer Experiments on the GN500

1H 1D-NOE Difference Spectra and Spin-Saturation Transfer Experiments on the GN500 UGN526 VVM-21JUN88CD VVM-31OCT91UD 1H 1D-NOE Difference Spectra and Spin-Saturation Transfer Experiments on the GN500 Double-resonance experiments are techniques which use a second irradiating field (B

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13 Nuclear magnetic resonance spectroscopy II. 13 NMR Reading: Pavia hapter 6.1-6.5, 6.7, 6.11, 6.13 1. General - more/better/additional structural information for larger compounds -problems: a) isotopes

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ecole Polytechnique Département de Chimie CHI 551 Dr. Grégory Nocton Bureau 01 30 11 A Tel: 44 02 Ecole polytechnique / CNRS Laboratoire de Chimie Moléculaire E-mail:

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

NMR at UNC: Tips, Tricks, and Techniques

NMR at UNC: Tips, Tricks, and Techniques NMR at UNC: Tips, Tricks, and Techniques Laura Adduci UNC-Chapel Hill Graduate student Gagné Lab NMR Assistant Chemistry Department Topics and Examples 1. 2D spectra 2. Selective 1D spectra 3. Homonuclear

More information

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005 Polarised Nucleon Targets for Europe, nd meeting, Bochum Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals H. Štěpánková, J. Englich, J. Kohout,

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

X-Nucleus NMR: 31 P and 19 F

X-Nucleus NMR: 31 P and 19 F Chem 636, Fall 2008 HW #9 Due at the beginning of lab, the week of Oct 28 (cgf: updated 12 July 2010) X-ucleus MR: 31 P and 19 F Many nuclei in MR can be detected in a manner similar to 13 C. 31 P and

More information

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory 1. Introduction 64-311 Laboratory Experiment 11 NMR Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. This experiment will introduce to

More information

Quantum Information Processing with Liquid-State NMR

Quantum Information Processing with Liquid-State NMR Quantum Information Processing with Liquid-State NMR Pranjal Vachaspati, Sabrina Pasterski MIT Department of Physics (Dated: May 8, 23) We demonstrate the use of a Bruker Avance 2 NMR Spectrometer for

More information

LASCAD Tutorial No. 4: Dynamic analysis of multimode competition and Q-Switched operation

LASCAD Tutorial No. 4: Dynamic analysis of multimode competition and Q-Switched operation LASCAD Tutorial No. 4: Dynamic analysis of multimode competition and Q-Switched operation Revised: January 17, 2014 Copyright 2014 LAS-CAD GmbH Table of Contents 1 Table of Contents 1 Introduction...

More information