Sample average approximation and cascading failures of power grids. Daniel Bienstock, Guy Grebla, Tingjun Chen, Columbia University GraphEx 15

Size: px
Start display at page:

Download "Sample average approximation and cascading failures of power grids. Daniel Bienstock, Guy Grebla, Tingjun Chen, Columbia University GraphEx 15"

Transcription

1 Sample average approximation and cascading failures of power grids Daniel Bienstock, Guy Grebla, Tingjun Chen, Columbia University GraphEx 15

2 August Approximately 50 million people affected

3 Other large-scale cascading failures Italy, 2003 San Diego, 2011 India, 2012 At fault: unexpected event, cascading mechanism, noise and human error

4 Cascade cartoon Load (demand) Generator

5 Cascade cartoon

6 Cascade cartoon

7 Cascade cartoon

8 Cascade cartoon

9 Cascade cartoon = lost demand

10 Cascade cartoon

11 Cascade cartoon

12 A quote from: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations, (U.S.-Canada Power System Outage Task Force) Cause 1 of the blackout was inadequate system understanding

13 A quote from: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations, (U.S.-Canada Power System Outage Task Force) Cause 1 of the blackout was inadequate system understanding (stated at least twenty times)

14 A quote from: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations, (U.S.-Canada Power System Outage Task Force) Cause 1 of the blackout was inadequate system understanding (stated at least twenty times) Cause 2 of the blackout was inadequate situational awareness

15 Very approximate cascade model Initial fault event takes place (an act of God ). For t = 1, 2,..., 1. Reconfigure demands and generator output levels (if islanding occurs).

16 supply > demand Islanding

17 The swing equation A second-order differential equation used to explain swings in a motor s frequency in response to a change of loads. To properly analyize islanding, we need to consider systems of swing equations, plus physics of power flows. Which is a very difficult computational problem. Primary, secondary frequency response.

18 Very approximate cascade model Initial fault event takes place (an act of God ). For t = 1, 2,..., 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated.

19 Power flow problem in rectangular coordinates, simplest form Variables: Complex voltages e k + jf k, power flows P km, Q km Notation: For a bus k, δ(k) = set of lines incident with k; V = set of buses km : P km = g km (e 2 k + f 2 k) g km (e k e m + f k f m ) + b km (e k f m f k e m ) (1a) km : Q km = b km (e 2 k + f 2 k) + b km (e k e m + f k f m ) + g km (e k f m f k e m ) (1b) km : P km 2 + Q km 2 U km (1c) k : k : P min k Q min k km δ(k) km δ(k) P km P max k Q km Q max k (1d) (1e) k : V min k e 2 k + f 2 k V max k. (1f)

20 Solving AC power flow problems When considering a grid in stable operation, Newton-Raphson or similar works very well. Convergence in seconds But no theoretical foundation for this behavior exists. When studying a grid under distress, Newton-Raphson (or similar) does not work well. Non-convergence. Recently, renewed interest in semidefinite relaxations, and techniques from real algebraic geometry. These methodologies are much more accurate but also much slower. The mathematics is the same as that for systems of polynomial equations: Hilbert s and Smale s 17th problems.

21 Very approximate cascade model Initial fault event takes place (an act of God ). For t = 1, 2,..., 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated. 3. The next set of faults takes place.

22 Line tripping 1. If a power line carries too much power, it will overheat. 2. At a critical temperature, the line will fail. 3. Before that point, the line will sag. A physical contact would lead to immeadite tripping. 4. If a line is overloaded for too long, it will be protectively tripped. 5. Simplification: there is a line limit beyond which a line is considered overloaded. 5. IEEE Standard 738. An adaptation of the heat equation so as to take into account...

23 Line tripping 1. If a power line carries too much power, it will overheat. 2. At a critical temperature, the line will fail. 3. Before that point, the line will sag. A physical contact would lead to immeadite tripping. 4. If a line is overloaded for too long, it will be protectively tripped. 5. Simplification: there is a line limit beyond which a line is considered overloaded. 5. IEEE Standard 738. An adaptation of the heat equation so as to take into account... the state of the universe, pretty much (current work: appropriate stochastic variants of the heat equation)

24 Very approximate cascade model Initial fault event takes place (an act of God ). For t = 1, 2,..., 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated. 3. The next set of faults takes place. 4. STOP if no more faults

25 Simulation of 2011 San Diego Event Joint work with A. Bernstein, D. Hay, G. Zussman, M. Uzunoglu (EE Dept. Columbia) Initiating event: human error We do not have complete or exact data Nevertheless, in our simulations a cascade does take place, with similar characteristics at the initial stages inadequate system understanding

26 Beginning (partial picture: 13K buses total)

27 More

28 More

29 More

30 Cascade control Initial fault event takes place (an act of God ). 0. Compute control on the basis of initial data.

31 Cascade control Initial fault event takes place (an act of God ). 0. Compute control on the basis of initial data. For t = 1, 2,..., T 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated.

32 Cascade control Initial fault event takes place (an act of God ). 0. Compute control on the basis of initial data. For t = 1, 2,..., T 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated. 3a. Obtain measurements.

33 Cascade control Initial fault event takes place (an act of God ). 0. Compute control on the basis of initial data. For t = 1, 2,..., T 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated. 3a. Obtain measurements. 3b. Apply control.

34 Cascade control Initial fault event takes place (an act of God ). 0. Compute control on the basis of initial data. For t = 1, 2,..., T 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated. 3a. Obtain measurements. 3b. Apply control. 3. The next set of faults takes place.

35 Cascade control Initial fault event takes place (an act of God ). 0. Compute control on the basis of initial data. For t = 1, 2,..., T 1. Reconfigure demands and generator output levels (if islanding occurs). 2. New power flows are instantiated. 3a. Obtain measurements. 3b. Apply control. 3. The next set of faults takes place. 4. If t = T proportionally shed enough load to stop cascade.

36 A basic form of affine control Control consists of nonnegative parameters u 1, u 2,..., u T. At time t, on an island C with max line overload κ C, scale demands by 1 + u t (1 κ C ) κ C > 1 implies loss of demand Easy to apply?

37 Clairvoyant control For any island C that exists at time t, a parameter u t,c. At time t, on island C with max line overload κ C, scale demands by 1 + u t,c (1 κ C ) κ C > 1 implies loss of demand Easy to apply? Does it even make sense?

38 A basic form of affine control Control consists of nonnegative parameters u 1, u 2,..., u T. At time t, on an island C with max line overload κ C, scale demands by 1 + u t (1 κ C ) κ C > 1 implies loss of demand Easy to apply?

39 An even simpler form of affine control Control consists of nonnegative parameters λ 1, λ 2,..., λ T. At time t, all demands scaled by λ t Easy to apply. But conservative?

40 Theorem On a network with m arcs, an optimal control of the above form can be computed in time O ( m T (T 1)! )

41 Theorem On a network with m arcs, an optimal control of the above form can be computed in time O ( m T (T 1)! ) What is the mathematics to explain games of this sort?

42 One-parameter control: s At time t, on an island C with max line overload κ C, scale demands by 1 + s (1 κ C ).

43 One-parameter control: s At time t, on an island C with max line overload κ C, scale demands by 1 + s (1 κ C ) yield (%) T = 5, Eastern Interconnect (23 K lines) s

44 One-parameter control: stochastic line failures At time t, on an island C with max line overload κ C, scale demands by 1 + s (1 κ C ) average - 1 dev + 1 dev 0.5 yield (%) T = 5, Eastern Interconnect (23 K lines) s

45 Robustness through noise: the sample average approach Let ˆL j be the limit of line j, j = 1,..., m (= number of lines).

46 Robustness through noise: the sample average approach Let ˆL j be the limit of line j, j = 1,..., m (= number of lines). For s = 1,..., S, sample values L t,s j, 1 t T. Here, EL t,s j = ˆL j for all t and s. Interpretation: L t,s j is a noisy estimate for ˆL j.

47 Robustness through noise: the sample average approach Let ˆL j be the limit of line j, j = 1,..., m (= number of lines). For s = 1,..., S, sample values L t,s j, 1 t T. Here, EL t,s j = ˆL j for all t and s. Interpretation: L t,s j is a noisy estimate for ˆL j. For a given s, the values {L t,s j } are called a sample of the line limits.

48 Robustness through noise: the sample average approach Let ˆL j be the limit of line j, j = 1,..., m (= number of lines). For s = 1,..., S, sample values L t,s j, 1 t T. Here, EL t,s j = ˆL j for all t and s. Interpretation: L t,s j is a noisy estimate for ˆL j. For a given s, the values {L t,s j } are called a sample of the line limits. Optimization problem Compute a control that maximizes the yield averaged across all samples. Theorem. Can be done in O(S) power flow computations.

49 Experiment: robust vs. non-robust solutions (Table shows yield) T Non-robust solution 65.46% 65.46% 74.44% 86.84% and non-robust model Non-robust solution 31.92% 30.46% 47.75% 23.07% and robust model robust solution 62.19% 62.19% 70.73% 78.36% and robust model

Power grid vulnerability analysis

Power grid vulnerability analysis Power grid vulnerability analysis Daniel Bienstock Columbia University Dimacs 2010 Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 1 Background: a power grid is three

More information

Power Grid Vulnerability to Geographically Correlated Failures - Analysis and Control Implications

Power Grid Vulnerability to Geographically Correlated Failures - Analysis and Control Implications Power Grid Vulnerability to Geographically Correlated Failures - Analysis and Control Implications Andrey Bernstein 1, Daniel Bienstock 2, David Hay 3, Meric Uzunoglu 4, Gil Zussman 5 1 Computer and Communication

More information

Cascading Outages in Power Systems. Rui Yao

Cascading Outages in Power Systems. Rui Yao Cascading Outages in Power Systems Rui Yao yaorui.thu@gmail.com Outline Understanding cascading outages Characteristics of cascading outages Mitigation of cascading outages Understanding cascading outages

More information

Cascading Failures in Power Grids - Analysis and Algorithms

Cascading Failures in Power Grids - Analysis and Algorithms Cascading Failures in Power Grids - Analysis and Algorithms Saleh Soltan 1, Dorian Mazaruic 2, Gil Zussman 1 1 Electrical Engineering, Columbia University 2 INRIA Sophia Antipolis Cascading Failures in

More information

Optimal adaptive control of cascading power grid failures 1. Version 2010-Dec-20. Daniel Bienstock Columbia University New York

Optimal adaptive control of cascading power grid failures 1. Version 2010-Dec-20. Daniel Bienstock Columbia University New York Optimal adaptive control of cascading power grid failures 1 1 Introduction Version 2010-Dec-20 Daniel Bienstock Columbia University New York Power grids have long been a source of interesting optimization

More information

Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources

Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources Proper Security Criteria Determination in a Power System with High Penetration of Renewable Resources Mojgan Hedayati, Kory Hedman, and Junshan Zhang School of Electrical, Computer, and Energy Engineering

More information

Blackouts in electric power transmission systems

Blackouts in electric power transmission systems University of Sunderland From the SelectedWorks of John P. Karamitsos 27 Blackouts in electric power transmission systems Ioannis Karamitsos Konstadinos Orfanidis Available at: https://works.bepress.com/john_karamitsos/9/

More information

Power System Security. S. Chakrabarti

Power System Security. S. Chakrabarti Power System Security S. Chakrabarti Outline Introduction Major components of security assessment On-line security assessment Tools for contingency analysis DC power flow Linear sensitivity factors Line

More information

PMU-Based Power System Real-Time Stability Monitoring. Chen-Ching Liu Boeing Distinguished Professor Director, ESI Center

PMU-Based Power System Real-Time Stability Monitoring. Chen-Ching Liu Boeing Distinguished Professor Director, ESI Center PMU-Based Power System Real-Time Stability Monitoring Chen-Ching Liu Boeing Distinguished Professor Director, ESI Center Dec. 2015 Real-Time Monitoring of System Dynamics EMS Real-Time Data Server Ethernet

More information

Reliability of Bulk Power Systems (cont d)

Reliability of Bulk Power Systems (cont d) Reliability of Bulk Power Systems (cont d) Important requirements of a reliable electric power service Voltage and frequency must be held within close tolerances Synchronous generators must be kept running

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Dynamic Voltage Stability Enhancement of a Microgrid with Static and Dynamic Loads Using Microgrid Voltage Stabilizer

Dynamic Voltage Stability Enhancement of a Microgrid with Static and Dynamic Loads Using Microgrid Voltage Stabilizer Dynamic Voltage Stability Enhancement of a Microgrid with Static and Dynamic Loads Using Microgrid Voltage Stabilizer Kenan Hatipoglu 1, Ismail Fidan 2, Ghadir Radman 3 1 Electrical and Computer Engineering

More information

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 4, JULY Stochastic Analysis of Cascading-Failure Dynamics in Power Grids

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 4, JULY Stochastic Analysis of Cascading-Failure Dynamics in Power Grids IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 4, JULY 2014 1767 Stochastic Analysis of Cascading-Failure Dynamics in Power Grids Mahshid Rahnamay-Naeini, Student Member, IEEE, Zhuoyao Wang, Nasir Ghani,

More information

Adaptive under frequency load shedding using synchrophasor measurement

Adaptive under frequency load shedding using synchrophasor measurement Adaptive under load shedding using synchrophasor measurement Abstract - The imbalance between the generation and the demand is the major factor that causes instability in a power system. Conventional Under

More information

The Impact of Distributed Generation on Power Transmission Grid Dynamics

The Impact of Distributed Generation on Power Transmission Grid Dynamics The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson Physics Dept. University of Alaska Fairbanks AK 99775 Depart. Fisica Universidad

More information

COMPARISON OF STATISTICAL ALGORITHMS FOR POWER SYSTEM LINE OUTAGE DETECTION

COMPARISON OF STATISTICAL ALGORITHMS FOR POWER SYSTEM LINE OUTAGE DETECTION COMPARISON OF STATISTICAL ALGORITHMS FOR POWER SYSTEM LINE OUTAGE DETECTION Georgios Rovatsos*, Xichen Jiang*, Alejandro D. Domínguez-García, and Venugopal V. Veeravalli Department of Electrical and Computer

More information

6. The August 14 Blackout Compared With Previous Major North American Outages

6. The August 14 Blackout Compared With Previous Major North American Outages 6. The August 14 Blackout Compared With Previous Major North American Outages Incidence and Characteristics of Power System Outages Short, localized outages occur on power systems fairly frequently. System-wide

More information

Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model

Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model Saleh Soltan, Gil Zussman Department of Electrical Engineering Columbia University, New York, NY Email: {saleh,gil}@ee.columbia.edu

More information

Role of Synchronized Measurements In Operation of Smart Grids

Role of Synchronized Measurements In Operation of Smart Grids Role of Synchronized Measurements In Operation of Smart Grids Ali Abur Electrical and Computer Engineering Department Northeastern University Boston, Massachusetts Boston University CISE Seminar November

More information

Power Grid Vulnerability to Geographically Correlated Failures

Power Grid Vulnerability to Geographically Correlated Failures Columbia University, Electrical Engineering Technical Report #20-05-06, Nov. 20 Power Grid Vulnerability to Geographically Correlated Failures Andrey Bernstein, Daniel Bienstock, David Hay, Meric Uzunoglu,

More information

Operational Defense of Power System Cascading Outages

Operational Defense of Power System Cascading Outages Operational Defense of Power System Cascading Outages James D. McCalley Professor, Iowa State University Cascading Failures & Blackouts April, 008 IEEE PES T&D Conference and Exposition Overview. Summary

More information

Trajectory Sensitivity Analysis as a Means of Performing Dynamic Load Sensitivity Studies in Power System Planning

Trajectory Sensitivity Analysis as a Means of Performing Dynamic Load Sensitivity Studies in Power System Planning 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2014 Grid of the Future Symposium Trajectory Sensitivity Analysis as a Means of Performing Dynamic Load Sensitivity Studies

More information

EXPECTATIONS FOR LOSS OF SUPPLY IN THE NEW ZEALAND POWER SYSTEM

EXPECTATIONS FOR LOSS OF SUPPLY IN THE NEW ZEALAND POWER SYSTEM EXPECTATIONS FOR LOSS OF SUPPLY IN THE NEW ZEALAND POWER SYSTEM Claire Jordan, Henning Rasmussen and Ratneesh Suri Abstract Predicting when, and how much, power may be lost on any given power grid is a

More information

Evaluating the Impact of Modeling Assumptions for Cascading Failure Simulation

Evaluating the Impact of Modeling Assumptions for Cascading Failure Simulation 1 Evaluating the Impact of Modeling Assumptions for Cascading Failure Simulation Ronan Fitzmaurice, Member, IEEE, Eduardo Cotilla-Sanchez, Graduate Student Member, IEEE, and Paul Hines, Member, IEEE Abstract

More information

ECE 476. Exam #2. Tuesday, November 15, Minutes

ECE 476. Exam #2. Tuesday, November 15, Minutes Name: Answers ECE 476 Exam #2 Tuesday, November 15, 2016 75 Minutes Closed book, closed notes One new note sheet allowed, one old note sheet allowed 1. / 20 2. / 20 3. / 20 4. / 20 5. / 20 Total / 100

More information

Energy Flow in Electrical Grids

Energy Flow in Electrical Grids Energy Flow in Electrical Grids Ruolin Fan, Stephanie Greiner, Ahmed Jasim, Weide Peng, Chihwei Yang Mentor: Steven Rosenthal and Dr. Ildar Gabitov May 13, 2014 Abstract: A theoretical and real model of

More information

Propagation of load shed in cascading line outages simulated by OPA. COMPENG 2010: Complexity in Engineering, Rome Italy, February 2010

Propagation of load shed in cascading line outages simulated by OPA. COMPENG 2010: Complexity in Engineering, Rome Italy, February 2010 Copyright 2010 IEEE. Reprinted from: Propagation of load shed in cascading line outages simulated by OPA COMPENG 2010: Complexity in Engineering, Rome Italy, February 2010 This material is posted here

More information

Geographically Correlated Failures in Power Networks Survivability Analysis

Geographically Correlated Failures in Power Networks Survivability Analysis Geographically Correlated Failures in Power Networks Survivability Analysis Andrey Bernstein, Daniel Bienstock, David Hay, Meric Uzunoglu, and Gil Zussman School of Computer and Communication Sciences,

More information

URTDSM Initiative in India and Controlled Islanding using PMU Measurements

URTDSM Initiative in India and Controlled Islanding using PMU Measurements URTDSM Initiative in India and Controlled Islanding using PMU Measurements Akhil Raj Gopal Gajjar Meenal Chougule Narayanan Rajagopal Prashant Navalkar Rajeev Gajbhiye S. A. Soman PowerAnser Labs, IIT

More information

Optimization Methods for Power Grid Reliability

Optimization Methods for Power Grid Reliability Optimization Methods for Power Grid Reliability Sean Harnett Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Power Flow VI (Refer Slide Time: 00:57) Welcome to lesson 21. In this

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 8 - Voltage Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 8 - Voltage Stability ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 8 - Voltage Stability Spring 2014 Instructor: Kai Sun 1 Voltage Stability Voltage stability is concerned with the ability of a

More information

WIDE AREA CONTROL THROUGH AGGREGATION OF POWER SYSTEMS

WIDE AREA CONTROL THROUGH AGGREGATION OF POWER SYSTEMS WIDE AREA CONTROL THROUGH AGGREGATION OF POWER SYSTEMS Arash Vahidnia B.Sc, M.Sc in Electrical Engineering A Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

More information

Vedant V. Sonar 1, H. D. Mehta 2. Abstract

Vedant V. Sonar 1, H. D. Mehta 2. Abstract Load Shedding Optimization in Power System Using Swarm Intelligence-Based Optimization Techniques Vedant V. Sonar 1, H. D. Mehta 2 1 Electrical Engineering Department, L.D. College of Engineering Ahmedabad,

More information

Dynamic state based on autoregressive model for outgoing line of high voltage stations

Dynamic state based on autoregressive model for outgoing line of high voltage stations 5th International Conference on Advanced Engineering Materials and Technology (AEMT 015) Dynamic state based on autoregressive model for outgoing line of high voltage stations Yanhong Wang1, a * Tao Xin,b

More information

NOWADAYS, power systems are strongly changing all

NOWADAYS, power systems are strongly changing all 1 Blackout probabilistic risk assessment and thermal effects: impacts of changes in generation Pierre Henneaux, Student Member, IEEE, Pierre-Etienne Labeau, and Jean-Claude Maun, Member, IEEE Abstract

More information

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University Various Techniques for Nonlinear Energy-Related Optimizations Javad Lavaei Department of Electrical Engineering Columbia University Acknowledgements Caltech: Steven Low, Somayeh Sojoudi Columbia University:

More information

Chapter 8 VOLTAGE STABILITY

Chapter 8 VOLTAGE STABILITY Chapter 8 VOTAGE STABIITY The small signal and transient angle stability was discussed in Chapter 6 and 7. Another stability issue which is important, other than angle stability, is voltage stability.

More information

An MINLP approach to forming secure islands in electricity networks

An MINLP approach to forming secure islands in electricity networks An MINLP approach to forming secure islands in electricity networks Waqquas Bukhsh, Jacek Gondzio, Andreas Grothey, Ken McKinnon, Paul Trodden School of Mathematics University of Edinburgh GOR 2012, 4-7

More information

Studying Cascading Overload Failures under High Penetration of Wind Generation

Studying Cascading Overload Failures under High Penetration of Wind Generation Studying Cascading Overload Failures under High Penetration of Wind Generation Mir Hadi Athari Department of Electrical and Computer Engineering Virginia Commonwealth University Richmond, VA, USA Email:

More information

Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation

Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation Abdullah A. Alghamdi 1 and Prof. Yusuf A. Al-Turki 2 1 Ministry Of Education, Jeddah, Saudi Arabia. 2 King Abdulaziz

More information

Risk Analysis for Assessment of Vegetation Impact on Outages in Electric Power Systems. T. DOKIC, P.-C. CHEN, M. KEZUNOVIC Texas A&M University USA

Risk Analysis for Assessment of Vegetation Impact on Outages in Electric Power Systems. T. DOKIC, P.-C. CHEN, M. KEZUNOVIC Texas A&M University USA 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2016 Grid of the Future Symposium Risk Analysis for Assessment of Vegetation Impact on Outages in Electric Power Systems

More information

Estimation for Expected Energy Not Served of Power Systems Using the Screening Methodology of Cascading Outages in South Korea

Estimation for Expected Energy Not Served of Power Systems Using the Screening Methodology of Cascading Outages in South Korea energies Article Estimation for Expected Energy Not Served of Power Systems Using the Screening Methodology of Cascading Outages in South Korea Bokyung Goo and Jin Hur * ID Department of Electrical Engineering,

More information

The N k Problem using AC Power Flows

The N k Problem using AC Power Flows The N k Problem using AC Power Flows Sean Harnett 5-19-2011 Outline Introduction AC power flow model The optimization problem Some results Goal: find a small set of lines whose removal will cause the power

More information

Optimal Tap Settings for Voltage Regulation Transformers in Distribution Networks

Optimal Tap Settings for Voltage Regulation Transformers in Distribution Networks Optimal Tap Settings for Voltage Regulation Transformers in Distribution Networks Brett A. Robbins Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign May 9, 2014

More information

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives Module 6 : Preventive, Emergency and Restorative Control Lecture 27 : Normal and Alert State in a Power System Objectives In this lecture you will learn the following Different states in a power system

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

TRANSIENT STABILITY ANALYSIS ON AHTS VESSEL ELECTRICAL SYSTEM USING DYNAMIC POSITIONING SYSTEM

TRANSIENT STABILITY ANALYSIS ON AHTS VESSEL ELECTRICAL SYSTEM USING DYNAMIC POSITIONING SYSTEM International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 02, February 2019, pp. 461-475, Article ID: IJMET_10_02_048 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=2

More information

POwer grids are vulnerable to external events, such as

POwer grids are vulnerable to external events, such as IEEE TRANSTIONS ON NETWORK SCIENCE AND ENGINEERING Comparing the Effects of Failures in Power Grids under the and Power Flow Models Hale Cetinay, Saleh Soltan, Fernando A. Kuipers, Gil Zussman, and Piet

More information

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 3 Load Modeling

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 3 Load Modeling ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 3 Load Modeling Spring 2014 Instructor: Kai Sun 1 References 1. Load Performance for Dynamic Performance Analysis, IEEE Committee

More information

Research on the Effect of Substation Main Wiring on the Power System Reliability Yuxin Zhao 1, a, Tao Liu 2,b and Yanxin Shi 3,c

Research on the Effect of Substation Main Wiring on the Power System Reliability Yuxin Zhao 1, a, Tao Liu 2,b and Yanxin Shi 3,c International Power, Electronics and aterials Engineering Conference (IPEEC 2015) esearch on the Effect of ubstation ain Wiring on the Power ystem eliability Yuxin Zhao 1, a, Tao Liu 2,b and Yanxin hi

More information

Automatic Generation Control. Meth Bandara and Hassan Oukacha

Automatic Generation Control. Meth Bandara and Hassan Oukacha Automatic Generation Control Meth Bandara and Hassan Oukacha EE194 Advanced Controls Theory February 25, 2013 Outline Introduction System Modeling Single Generator AGC Going Forward Conclusion Introduction

More information

CHANCE CONSTRAINED OPTIMAL POWER FLOW: RISK-AWARE NETWORK CONTROL UNDER UNCERTAINTY

CHANCE CONSTRAINED OPTIMAL POWER FLOW: RISK-AWARE NETWORK CONTROL UNDER UNCERTAINTY CHANCE CONSTRAINED OPTIMAL POWER FLOW: RISK-AWARE NETWORK CONTROL UNDER UNCERTAINTY DANIEL BIENSTOCK, MICHAEL CHERTKOV, AND SEAN HARNETT Abstract. When uncontrollable resources fluctuate, Optimum Power

More information

Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective

Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective Aditya Maheshwari Joint work with: Dr. Michael Ludkovski Department of Statistics and Applied Probability University

More information

Optimization over Nonnegative Polynomials: Algorithms and Applications. Amir Ali Ahmadi Princeton, ORFE

Optimization over Nonnegative Polynomials: Algorithms and Applications. Amir Ali Ahmadi Princeton, ORFE Optimization over Nonnegative Polynomials: Algorithms and Applications Amir Ali Ahmadi Princeton, ORFE INFORMS Optimization Society Conference (Tutorial Talk) Princeton University March 17, 2016 1 Optimization

More information

Estimating Failure Propagation in Models of Cascading Blackouts

Estimating Failure Propagation in Models of Cascading Blackouts 8th International Conference on Probability Methods Applied to Power Systems, Ames Iowa, September 2004 Estimating Failure Propagation in Models of Cascading Blackouts Ian Dobson Benjamin A. Carreras Vickie

More information

Criticality in a cascading failure blackout model

Criticality in a cascading failure blackout model Electrical Power and Energy Systems 28 (2006) 627 633 www.elsevier.com/locate/ijepes Criticality in a cascading failure blackout model Dusko P. Nedic a, Ian Dobson b, *, Daniel S. Kirschen a, Benjamin

More information

POWER SYSTEM STABILITY AND CONTROL

POWER SYSTEM STABILITY AND CONTROL POWER SYSTEM STABILITY AND CONTROL P. KUNDUR Vice-President, Power Engineering Powertech Labs Inc., Surrey, British Columbia Formerly Manager Analytical Methods and Specialized Studies Department Power

More information

Power Grid Vulnerability to Geographically Correlated Failures Analysis and Control Implications

Power Grid Vulnerability to Geographically Correlated Failures Analysis and Control Implications Columbia University, Electrical Engineering Technical Report #20-05-06, Nov. 20 Power Grid Vulnerability to Geographically Correlated Failures Analysis and Control Implications arxiv:206.099v [cs.sy] 6

More information

A Unified Framework for Defining and Measuring Flexibility in Power System

A Unified Framework for Defining and Measuring Flexibility in Power System J A N 1 1, 2 0 1 6, A Unified Framework for Defining and Measuring Flexibility in Power System Optimization and Equilibrium in Energy Economics Workshop Jinye Zhao, Tongxin Zheng, Eugene Litvinov Outline

More information

Controlling variability in power systems

Controlling variability in power systems Daniel APAM Nov 17 2017 A simple example: 100 100 A simple example: 100 100 Only one solution: 200 100 200 100 100 100 A simple example: 100 100 Only one solution: 200 100 200 100 100 100 But what if the

More information

Distributed Model Predictive Control for the Mitigation of Cascading Failures

Distributed Model Predictive Control for the Mitigation of Cascading Failures Distributed Model Predictive Control for the Mitigation of Cascading Failures Sarosh Talukdar, Fellow, IEEE, Dong Jia, Member, IEEE, Paul Hines, Student Member, IEEE, and Bruce H. Krogh, Fellow, IEEE.

More information

Power System Transient Stability Simulation

Power System Transient Stability Simulation Power System Transient Stability Simulation Ashley Cliff Mentors: Srdjan Simunovic Aleksandar Dimitrovski Kwai Wong Goal Overall Goal: Determine how to stabilize the system before it collapses by running

More information

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION Vol.2, Issue.1, Jan-Feb 2012 pp-424-430 ISSN: 2249-6645 SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION V.Sumadeepthi 1, K.Sarada 2 1 (Student, Department of Electrical and Electronics Engineering,

More information

Critical Points and Transitions in an Electric Power Transmission Model for Cascading Failure Blackouts

Critical Points and Transitions in an Electric Power Transmission Model for Cascading Failure Blackouts The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive royalty-free license to publish

More information

Robustness Analysis of Power Grid under False Data Attacks Against AC State Estimation

Robustness Analysis of Power Grid under False Data Attacks Against AC State Estimation Robustness Analysis of Power Grid under False Data Attacks Against AC State Estimation Presenter: Ming Jin INFORMS 2017 Ming Jin, Prof Javad Lavaei, and Prof Karl Johansson 1 Power system resilience against

More information

Performance Evaluation and Review of System Protection Scheme Design with the help of Synchrophasor Measurements

Performance Evaluation and Review of System Protection Scheme Design with the help of Synchrophasor Measurements Performance Evaluation and Review of System Protection Scheme Design with the help of Synchrophasor Measurements P. Mukhopadhyay V. Pandey Rajkumar Anumasula Chandan Kumar Sunil Patil Srinivas Chitturi

More information

Bulk Power System Reliability Assessment Considering Protection System Hidden Failures

Bulk Power System Reliability Assessment Considering Protection System Hidden Failures 2007 irep Symposium- Bulk Power System Dynamics and Control - V, Revitalizing Operational Reliability August 19-24, 2007, Charleston, SC, USA Bulk Power System Reliability Assessment Considering Protection

More information

Sensitivity-Based Line Outage Angle Factors

Sensitivity-Based Line Outage Angle Factors Sensitivity-Based Line Outage Angle Factors Kai E. Van Horn, Alejandro D. Domínguez-García, and Peter W. Sauer Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

More information

Recent Advances in Solving AC OPF & Robust UC

Recent Advances in Solving AC OPF & Robust UC Recent Advances in Solving AC OPF & Robust UC Andy Sun Georgia Institute of Technology (andy.sun@isye.gatech.edu) PSERC Webinar Oct 17, 2017 Major Challenges Non-convexity: Discrete decisions: On/off operational/maintenance

More information

A STATIC AND DYNAMIC TECHNIQUE CONTINGENCY RANKING ANALYSIS IN VOLTAGE STABILITY ASSESSMENT

A STATIC AND DYNAMIC TECHNIQUE CONTINGENCY RANKING ANALYSIS IN VOLTAGE STABILITY ASSESSMENT A STATIC AND DYNAMIC TECHNIQUE CONTINGENCY RANKING ANALYSIS IN VOLTAGE STABILITY ASSESSMENT Muhammad Nizam Engineering Faculty Sebelas Maret University (Ph.D Student of Electrical, Electronic and System

More information

Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems

Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems Contributed Talk at NetSci 2007 May 20, 2007 Le Xie (lx@ece.cmu.edu) Advisor: Marija Ilic Outline Motivation Problem Statement

More information

New criteria for Voltage Stability evaluation in interconnected power system

New criteria for Voltage Stability evaluation in interconnected power system New criteria for Stability evaluation in interconnected power system Lavanya Neerugattu Dr.G.S Raju MTech Student, Dept.Of EEE Former Director IT, BHU Email: nlr37@gmail.com Visiting Professor VNR Vignana

More information

Real Time Phasor Data Processing using Complex Number Analysis Methods R.A. DE CALLAFON 1, C.H. WELLS 2 USA

Real Time Phasor Data Processing using Complex Number Analysis Methods R.A. DE CALLAFON 1, C.H. WELLS 2 USA 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2015 Grid of the Future Symposium Real Time Phasor Data Processing using Complex Number Analysis Methods R.A. DE CALLAFON

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Engineering Review Vol. 36 Issue 2 8-86 206. 8 DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Samir Avdaković * Alija Jusić 2 BiH Electrical Utility Company

More information

A Generalized Hamiltonian Model for Power System Dynamics with Relay Action. Raja Timihiri. Project Advisor: Christopher DeMarco

A Generalized Hamiltonian Model for Power System Dynamics with Relay Action. Raja Timihiri. Project Advisor: Christopher DeMarco A Generalized Hamiltonian Model for Power System Dynamics with Relay Action by Raja Timihiri Project Advisor: Christopher DeMarco In partial fulfillment of the degree of Masters In Electrical Engineering

More information

CHANCE CONSTRAINED OPTIMAL POWER FLOW: RISK-AWARE NETWORK CONTROL UNDER UNCERTAINTY

CHANCE CONSTRAINED OPTIMAL POWER FLOW: RISK-AWARE NETWORK CONTROL UNDER UNCERTAINTY CHANCE CONSTRAINED OPTIMAL POWER FLOW: RISK-AWARE NETWORK CONTROL UNDER UNCERTAINTY DANIEL BIENSTOCK, MICHAEL CHERTKOV, AND SEAN HARNETT Abstract. When uncontrollable resources fluctuate, Optimal Power

More information

Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization

Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization G. Balakrishna 1, Dr. Ch. Sai Babu 2 1 Associate Professor,

More information

Resiliency of Power Grids After Earthquakes

Resiliency of Power Grids After Earthquakes Resiliency of Power Grids After Earthquakes John Eidinger, Alex Tang ATC 16th US - Japan - New Zealand Workshop Nara, June 27-29, 2016 eidinger@geengineeringsystems.com alexktang@mac.com No Power = No

More information

Renewable integration and primary control reserve demand in the Indian power system

Renewable integration and primary control reserve demand in the Indian power system Renewable integration and primary control reserve demand in the Indian power system Arun Kannan Division Systems Engineering and Distribution Grids Fraunhofer IWES Kassel, Germany arun.kannan@iwes.fraunhofer.de

More information

Test Case: Power System Voltage Stability

Test Case: Power System Voltage Stability Test Case: Power System Voltage Stability Mats Larsson Corporate Research Mats Larsson / 2002-02-18 / 1 2002 Corporate Research Ltd, Baden, Switzerland Preview The People from Characteristics of Power

More information

Risk-Based Composite Power System Vulnerability Evaluation to Cascading Failures Using Importance Sampling

Risk-Based Composite Power System Vulnerability Evaluation to Cascading Failures Using Importance Sampling 1 Risk-Based Composite Power System Vulnerability Evaluation to Cascading Failures Using Importance Sampling Quan Chen, Student Member, IEEE and Lamine Mili, Senior Member, IEEE Abstract Large-scale blackouts

More information

11.1 Power System Stability Overview

11.1 Power System Stability Overview 11.1 Power System Stability Overview This introductory section provides a general description of the power system stability phenomena including fundamental concepts, classification, and definition of associated

More information

Time Series Classification

Time Series Classification Distance Measures Classifiers DTW vs. ED Further Work Questions August 31, 2017 Distance Measures Classifiers DTW vs. ED Further Work Questions Outline 1 2 Distance Measures 3 Classifiers 4 DTW vs. ED

More information

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10

More information

Harmonic Modeling of Networks

Harmonic Modeling of Networks Harmonic Modeling of Networks Thomas H. Ortmeyer ECE Dept. Clarkson University Potsdam, NY 13699-5720 M. Fayyaz Akram Dept. of Elec. Eng. Univ. of Engineering and Technology Lahore, Pakistan Takashi Hiyama

More information

Short description CTC V.6.2. Current and temperature calculations of overhead conductors.

Short description CTC V.6.2. Current and temperature calculations of overhead conductors. Short description CTC V.6.2 Current and temperature calculations of overhead conductors www.sw-fr.com 1 Program features Steady-state current and temperature calculation of overhead conductors with three

More information

UNIVERSIDAD DE CASTILLA-LA MANCHA

UNIVERSIDAD DE CASTILLA-LA MANCHA UNIVERSIDAD DE CASTILLA-LA MANCHA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA, AUTOMÁTICA Y COMUNICACIONES OPTIMAL POWER FLOW WITH STABILITY CONSTRAINTS TESIS DOCTORAL AUTOR: RAFAEL ZÁRATE MIÑANO

More information

Minimization of Energy Loss using Integrated Evolutionary Approaches

Minimization of Energy Loss using Integrated Evolutionary Approaches Minimization of Energy Loss using Integrated Evolutionary Approaches Attia A. El-Fergany, Member, IEEE, Mahdi El-Arini, Senior Member, IEEE Paper Number: 1569614661 Presentation's Outline Aim of this work,

More information

Performance of Flocking-Based Control Schemes in Smart Grid Applications

Performance of Flocking-Based Control Schemes in Smart Grid Applications Performance of Flocking-Based Control Schemes in Smart Grid Applications Abdallah K. Farraj Eman M. Hammad Jin Wei Deepa Kundur Karen L. Butler-Purry Department of Electrical and Computer Engineering,

More information

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms Helwan University From the SelectedWorks of Omar H. Abdalla May, 2008 Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

More information

Structural Vulnerability Assessment of Electric Power Grids

Structural Vulnerability Assessment of Electric Power Grids Structural Vulnerability Assessment of Electric Power Grids Yakup Koç 1 Martijn Warnier 1 Robert E. Kooij 2,3 Frances M.T. Brazier 1 1 Faculty of Technology, Policy and Management, Delft University of

More information

A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations

A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations Journal of Clean Energy Technologies, Vol. 2, No. 1, January 2014 A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations Soma Biswas, S. K. Goswami, and A. Chatterjee system

More information

Real Time Voltage Control using Genetic Algorithm

Real Time Voltage Control using Genetic Algorithm Real Time Voltage Control using Genetic Algorithm P. Thirusenthil kumaran, C. Kamalakannan Department of EEE, Rajalakshmi Engineering College, Chennai, India Abstract An algorithm for control action selection

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh 849 Power System Security Analysis B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh Abstract: In this paper real time security analysis is carried out. First contingency

More information

Section 5. TADS Data Reporting Instruction Manual DRAFT Section 5 and Associated Appendices With Proposed Event Type Numbers

Section 5. TADS Data Reporting Instruction Manual DRAFT Section 5 and Associated Appendices With Proposed Event Type Numbers Section 5 TADS Data Reporting Instruction Manual DRAFT Section 5 and Associated Appendices With Proposed Event Type Numbers Rev. 5/10/2010 1 Section 5 Form for Event ID and Event Type Number Data TO s

More information

Distributed Stability Analysis and Control of Dynamic Networks

Distributed Stability Analysis and Control of Dynamic Networks Distributed Stability Analysis and Control of Dynamic Networks M. Anghel and S. Kundu Los Alamos National Laboratory, USA August 4, 2015 Anghel & Kundu (LANL) Distributed Analysis & Control of Networks

More information

Energy System Modelling Summer Semester 2018, Lecture 12

Energy System Modelling Summer Semester 2018, Lecture 12 Energy System Modelling Summer Semester 2018, Lecture 12 Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/ Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics

More information