Optimal Tap Settings for Voltage Regulation Transformers in Distribution Networks

Size: px
Start display at page:

Download "Optimal Tap Settings for Voltage Regulation Transformers in Distribution Networks"

Transcription

1 Optimal Tap Settings for Voltage Regulation Transformers in Distribution Networks Brett A. Robbins Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign May 9, 2014

2 Introduction Distribution systems are undergoing significant transformations in structure and functionality advanced communication, sensing, and control variable generation, e.g., photovoltaics storage-capable loads, e.g., plug-in electric vehicles 1/17

3 Introduction Distribution systems are undergoing significant transformations in structure and functionality advanced communication, sensing, and control variable generation, e.g., photovoltaics storage-capable loads, e.g., plug-in electric vehicles Incorporating DERs has many engineering challenges potential voltage rise and reversal of active power flow additional power demand variability introduced could impact component lifetimes 1/17

4 Controlled Behavior 1.05 Voltage [p.u.] Bus 2/17

5 Controlled Behavior 1.05 Voltage [p.u.] Bus 2/17

6 Controlled Behavior 1.05 Voltage [p.u.] Bus 2/17

7 Controlled Behavior 1.05 Tap Settings Voltage [p.u.] Reactive Power Support Bus 2/17

8 Controlled Behavior 1.05 This Presentation Voltage [p.u.] Different Presentation Bus 2/17

9 Overview Introduction Problem Derivation Transformer Model Semidefinite Programming Problem Statement Distributed vs. Centralized Solvers Distributed Solver Case Studies Concluding Remarks

10 Transformer Notation + V pt I pt a t : 1 + V s t y pts t I st + V st For transformer t we define p t is the primary-side bus s t is the secondary-side bus s t is the secondary-side virtual bus a t is the turns ratio 3/17

11 Transformer Notation V 1 y 1pt V pt V s t y pt s t V st S pt S pt s t S pt s t For transformer t we define p t is the primary-side bus s t is the secondary-side bus s t is the secondary-side virtual bus a t is the turns ratio S pts t is the power transferred through the transformer 3/17

12 Transformer Notation V 1 y 1pt V pt z t V s t y pt s t V st S pt S pt s t S pt s t For transformer t we define p t is the primary-side bus s t is the secondary-side bus s t is the secondary-side virtual bus a t is the turns ratio S pts t is the power transferred through the transformer 3/17

13 Set Notation Consider an n-bus power system with r transformers T := {1, 2,..., r} is the set of transformers N p := {p t t T } are buses incident to the primary-side N s := {s t t T } are buses incident to the secondary-side N s := {s t t T } are the secondary-side virtual buses N b := {1, 2,..., m} are standard system buses The set of physical buses will be and the augmented network is N = N b N p N s N a = N N s 4/17

14 Overview Introduction Problem Derivation Transformer Model Semidefinite Programming Problem Statement Distributed vs. Centralized Solvers Distributed Solver Case Studies Concluding Remarks

15 Semidefinite Programming Consider the positive semidefinite matrix W = VV H = V1 2 V 1 Vn+r..... V1 V n+r Vn+r 2, where V, S C (n+r) and W C (n+r) (n+r) has a rank of 1. 5/17

16 Semidefinite Programming Consider the positive semidefinite matrix W = VV H = V1 2 V 1 Vn+r..... V1 V n+r Vn+r 2, where V, S C (n+r) and W C (n+r) (n+r) has a rank of 1. The power flow equations S i = V i [Y ] ik Vk k H i can be rewritten linearly in W as S i = Tr (H i W ), H i C (n+r) (n+r) 5/17

17 Semidefinite Programming convex relaxation The graphical relationship between the original non-convex problem and the SDP relaxation rank(w ) = 1 rank(w ) > 1 Line Loss Limit P ik P ik Pki Pki 6/17

18 Overview Introduction Problem Derivation Transformer Model Semidefinite Programming Problem Statement Distributed vs. Centralized Solvers Distributed Solver Case Studies Concluding Remarks

19 Problem Statement The minimization problem will have the form Minimize Cost Function C( ) such that and Power Flow Power Flow on the Primary-Side Power Flow on the Virtual Secondary-Side Primary- and Secondary-Side Voltage Voltage and Tap Limits 7/17

20 Problem Statement such that [Y ] ptk min C (V, a) V, a, S ps [Y ] ik Vi Vk e jθ ik Si = 0, i N \N p k H i V pt V k e jθ pt k Spt + S pts t = 0, t T and k H p t k H s t [Y ] s t k V s t V k e jθ s t k S pts t = 0, t T V pt a t V s t = 0, t T V V i V, i N a a t a, t T 8/17

21 Problem Statement SDP Approach such that and min C (W ) W 0, S ps Tr (H i W ) S i = 0, i N \N p Tr (H pt W ) S pt + S pts t = 0, t T Tr ( H s t W ) S pts t = 0, t T V 2 [W ] ii V 2, i N a 2 [W ] ptp t [W ] s t s t a2 [W ] ptp t, t T and rank(w ) = 1 9/17

22 Problem Statement Convex Relaxation such that and min C (W ) W 0, S ps Tr (H i W ) S i = 0, i N \N p Tr (H pt W ) S pt + S pts t = 0, t T Tr ( H s t W ) S pts t = 0, t T V 2 [W ] ii V 2, i N a 2 [W ] ptp t [W ] s t s t a2 [W ] ptp t, t T 9/17

23 Overview Introduction Problem Derivation Transformer Model Semidefinite Programming Problem Statement Distributed vs. Centralized Solvers Distributed Solver Case Studies Concluding Remarks

24 Distributed Solver Our goal is to solve the optimization problem distributively computed with either a centralized or distributed system architecture the complexity scales with size of the partitions rather than the network size W = W = VV H 10/17

25 Distributed Solver Our goal is to solve the optimization problem distributively computed with either a centralized or distributed system architecture the complexity scales with size of the partitions rather than the network size W (1) W = 10/17

26 Distributed Solver Our goal is to solve the optimization problem distributively computed with either a centralized or distributed system architecture the complexity scales with size of the partitions rather than the network size W (1) W = W (2) 10/17

27 Distributed Solver Our goal is to solve the optimization problem distributively computed with either a centralized or distributed system architecture the complexity scales with size of the partitions rather than the network size W (1) W = W (2,1) W (2) 10/17

28 Distributed Solver Our goal is to solve the optimization problem distributively computed with either a centralized or distributed system architecture the complexity scales with size of the partitions rather than the network size W (1) W = W (1,2) W (2) 10/17

29 Boundary Conditions W (1) W (1,2) = W (2,1) W (2) The power flow equations are not separable due to the line (2, 3) introduce auxiliary variables E (1,2) = E (2,1) R 2 2 and F (1,2) = F (2,1) R 2 2 enforce in each area Re { W (1,2)} = E (1,2) Re { W (2,1)} = E (2,1) Im { W (1,2)} = F (1,2) Im { W (2,1)} = F (2,1) 11/17

30 Distributed Solver The boundary conditions enable us to reformulation the minimization problem separable per area Alternating Direction Method of Multipliers (ADMM) uses the Augmented Lagrangian L c (x, y) = f (x) + y T (Ax b) + c 2 Ax b 2 2, separate minimizations for local power flow and boundary variables solve using the dual ascent 12/17

31 Overview Introduction Problem Derivation Transformer Model Semidefinite Programming Problem Statement Distributed vs. Centralized Solvers Distributed Solver Case Studies Concluding Remarks

32 Partitions 15-Bus Distribution System The system is divided into two partitions: W (1) and W (2) The centralized problem will have 1763 optimization variables W (1) Feeder The distributed solution will have 1379 variables total 21.8% reduction same solution as the centralized scheme W (2) 13/17

33 Three-Phase Results 15-Bus Distribution System Tap Ratio t a t b tc C(W ) C(W ) C (1) (W (1) ) C (2) (W (2) ) ,000 Iteration ,000 Iteration Power [p.u.] 10 5 S pas a S pbs b S pc s c ,000 Iteration 14/17

34 IEEE 123-Bus Distribution System # # #3 # Feeder 15/17

35 IEEE 123-Bus Distribution System Comprehensive system that includes mostly unbalanced loads overhead/underground transmission lines with various phasing four voltage regulators required to solve for 259 phases divided into 6 areas The centralized solution vs. the distributed solution 269,854 vs. 59,436 optimization variables the objective function 6 ( C(W ) = vs C (i) W (i)) = i=1 16/17

36 Concluding Remarks Slow Time-Scale Control (Hardware Dispatch) improve distributed solver incorporate voltage regulation Fast Time-Scale Control (Reactive Power Support) time-varying active power injections/loads explore possible solvers Time domain simulations 17/17

Preliminaries Overview OPF and Extensions. Convex Optimization. Lecture 8 - Applications in Smart Grids. Instructor: Yuanzhang Xiao

Preliminaries Overview OPF and Extensions. Convex Optimization. Lecture 8 - Applications in Smart Grids. Instructor: Yuanzhang Xiao Convex Optimization Lecture 8 - Applications in Smart Grids Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 32 Today s Lecture 1 Generalized Inequalities and Semidefinite Programming

More information

A Data-driven Voltage Control Framework for Power Distribution Systems

A Data-driven Voltage Control Framework for Power Distribution Systems A Data-driven Voltage Control Framework for Power Distribution Systems Hanchen Xu, Alejandro D. Domínguez-García, and Peter W. Sauer arxiv:1711.04159v1 [math.oc] 11 Nov 2017 Abstract In this paper, we

More information

Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids

Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids Alejandro D. Domínguez-García Coordinated Science Laboratory Department of Electrical and Computer Engineering

More information

Optimal Power Flow in Distribution Networks

Optimal Power Flow in Distribution Networks Optimal Power Flow in Distribution Networks Lingwen Gan, Na Li, Ufuk Topcu, and Steven H. Low Abstract The optimal power flow (OPF) problem seeks to control the generation/consumption of generators/loads

More information

Networked Feedback Control for a Smart Power Distribution Grid

Networked Feedback Control for a Smart Power Distribution Grid Networked Feedback Control for a Smart Power Distribution Grid Saverio Bolognani 6 March 2017 - Workshop 1 Future power distribution grids Traditional Power Generation transmission grid It delivers power

More information

The N k Problem using AC Power Flows

The N k Problem using AC Power Flows The N k Problem using AC Power Flows Sean Harnett 5-19-2011 Outline Introduction AC power flow model The optimization problem Some results Goal: find a small set of lines whose removal will cause the power

More information

POWER flow studies are the cornerstone of power system

POWER flow studies are the cornerstone of power system University of Wisconsin-Madison Department of Electrical and Computer Engineering. Technical Report ECE-2-. A Sufficient Condition for Power Flow Insolvability with Applications to Voltage Stability Margins

More information

STATE ESTIMATION IN DISTRIBUTION SYSTEMS

STATE ESTIMATION IN DISTRIBUTION SYSTEMS SAE ESIMAION IN DISRIBUION SYSEMS 2015 CIGRE Grid of the Future Symposium Chicago (IL), October 13, 2015 L. Garcia-Garcia, D. Apostolopoulou Laura.GarciaGarcia@ComEd.com Dimitra.Apostolopoulou@ComEd.com

More information

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University Various Techniques for Nonlinear Energy-Related Optimizations Javad Lavaei Department of Electrical Engineering Columbia University Acknowledgements Caltech: Steven Low, Somayeh Sojoudi Columbia University:

More information

Optimal Power Flow in Tree Networks

Optimal Power Flow in Tree Networks 52nd IEEE Conference on Decision and Control December 10-13, 2013. Florence, Italy Optimal Power Flow in Tree Networks Lingwen Gan, Na Li, Ufuk Topcu, and Steven H. Low Abstract The optimal power flow

More information

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10

More information

A Julia JuMP-based module for polynomial optimization with complex variables applied to ACOPF

A Julia JuMP-based module for polynomial optimization with complex variables applied to ACOPF JuMP-dev workshop 018 A Julia JuMP-based module for polynomial optimization with complex variables applied to ACOPF Gilles Bareilles, Manuel Ruiz, Julie Sliwak 1. MathProgComplex.jl: A toolbox for Polynomial

More information

Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 31, NO. 4, JULY 2016 2809 Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions Emiliano Dall Anese, Member, IEEE, Sairaj V. Dhople, Member,

More information

Equivalent relaxations of optimal power flow

Equivalent relaxations of optimal power flow Equivalent relaxations of optimal power flow 1 Subhonmesh Bose 1, Steven H. Low 2,1, Thanchanok Teeraratkul 1, Babak Hassibi 1 1 Electrical Engineering, 2 Computational and Mathematical Sciences California

More information

Distributed and Real-time Predictive Control

Distributed and Real-time Predictive Control Distributed and Real-time Predictive Control Melanie Zeilinger Christian Conte (ETH) Alexander Domahidi (ETH) Ye Pu (EPFL) Colin Jones (EPFL) Challenges in modern control systems Power system: - Frequency

More information

Q-V droop control using fuzzy logic and reciprocal characteristic

Q-V droop control using fuzzy logic and reciprocal characteristic International Journal of Smart Grid and Clean Energy Q-V droop control using fuzzy logic and reciprocal characteristic Lu Wang a*, Yanting Hu a, Zhe Chen b a School of Engineering and Applied Physics,

More information

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let Chapter 6: Power Flow Network Matrices Network Solutions Newton-Raphson Method Fast Decoupled Method Bus Admittance Matri Let I = vector of currents injected into nodes V = vector of node voltages Y bus

More information

ELEC4612 Power System Analysis Power Flow Analysis

ELEC4612 Power System Analysis Power Flow Analysis ELEC462 Power Sstem Analsis Power Flow Analsis Dr Jaashri Ravishankar jaashri.ravishankar@unsw.edu.au Busbars The meeting point of various components of a PS is called bus. The bus or busbar is a conductor

More information

Robustness Analysis of Power Grid under False Data Attacks Against AC State Estimation

Robustness Analysis of Power Grid under False Data Attacks Against AC State Estimation Robustness Analysis of Power Grid under False Data Attacks Against AC State Estimation Presenter: Ming Jin INFORMS 2017 Ming Jin, Prof Javad Lavaei, and Prof Karl Johansson 1 Power system resilience against

More information

OPTIMAL POWER FLOW (OPF) is a tool that has been

OPTIMAL POWER FLOW (OPF) is a tool that has been IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005 773 Cumulant-Based Probabilistic Optimal Power Flow (P-OPF) With Gaussian and Gamma Distributions Antony Schellenberg, William Rosehart, and

More information

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017 Solution to EE 67 Mid-erm Exam, Fall 207 November 2, 207 EE 67 Solution to Mid-erm Exam - Page 2 of 2 November 2, 207 (4 points) Convex sets (a) (2 points) Consider the set { } a R k p(0) =, p(t) for t

More information

Optimal Power Flow. S. Bose, M. Chandy, M. Farivar, D. Gayme S. Low. C. Clarke. Southern California Edison. Caltech. March 2012

Optimal Power Flow. S. Bose, M. Chandy, M. Farivar, D. Gayme S. Low. C. Clarke. Southern California Edison. Caltech. March 2012 Optimal Power Flow over Radial Networks S. Bose, M. Chandy, M. Farivar, D. Gayme S. Low Caltech C. Clarke Southern California Edison March 2012 Outline Motivation Semidefinite relaxation Bus injection

More information

Adaptive Coordination of Distributed Energy Resources in Lossy Power Distribution Systems

Adaptive Coordination of Distributed Energy Resources in Lossy Power Distribution Systems Adaptive Coordination of Distributed Energy Resources in Lossy Power Distribution Systems Hanchen Xu, Alejandro D Domínguez-García, and Peter W Sauer Department of Electrical and Computer Engineering University

More information

04-Economic Dispatch 2. EE570 Energy Utilization & Conservation Professor Henry Louie

04-Economic Dispatch 2. EE570 Energy Utilization & Conservation Professor Henry Louie 04-Economic Dispatch EE570 Energy Utilization & Conservation Professor Henry Louie 1 Topics Example 1 Example Dr. Henry Louie Consider two generators with the following cost curves and constraints: C 1

More information

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh 849 Power System Security Analysis B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh Abstract: In this paper real time security analysis is carried out. First contingency

More information

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 16 CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 2.1 INTRODUCTION Load flow analysis of power system network is used to determine the steady state solution for a given set of bus loading

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

Strategic Bidding for Producers in Nodal Electricity Markets: A Convex Relaxation Approach

Strategic Bidding for Producers in Nodal Electricity Markets: A Convex Relaxation Approach Strategic Bidding for Producers in Nodal Electricity Markets: A Convex Relaxation Approach Mahdi hamkhari, Student Member, IEEE, Ashkan Sadeghi-Mobarakeh, Student Member, IEEE and Hamed Mohsenian-Rad,

More information

Quadratic reformulation techniques for 0-1 quadratic programs

Quadratic reformulation techniques for 0-1 quadratic programs OSE SEMINAR 2014 Quadratic reformulation techniques for 0-1 quadratic programs Ray Pörn CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY ÅBO NOVEMBER 14th 2014 2 Structure

More information

Convex Relaxation of Optimal Power Flow

Convex Relaxation of Optimal Power Flow IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 1(1):15 27, MARCH 2014 (WITH PROOFS) 1 Convex Relaxation of Optimal Power Flow Part I: Formulations and Equivalence arxiv:1405.0766v1 [math.oc] 5 May 2014 Steven

More information

Sensitivity-Based Line Outage Angle Factors

Sensitivity-Based Line Outage Angle Factors Sensitivity-Based Line Outage Angle Factors Kai E. Van Horn, Alejandro D. Domínguez-García, and Peter W. Sauer Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Convex Relaxations for Optimization of AC and HVDC Grids under Uncertainty

Convex Relaxations for Optimization of AC and HVDC Grids under Uncertainty P L Power Systems Laboratory Center for Electric Power and Energy Department of Electrical Engineering Andreas Horst Venzke Convex Relaxations for Optimization of AC and HVDC Grids under Uncertainty Master

More information

Abstract. Index Terms. Energy storage systems, siting and sizing, voltage sensitivity matrix, multi-period optimal power flow. I.

Abstract. Index Terms. Energy storage systems, siting and sizing, voltage sensitivity matrix, multi-period optimal power flow. I. Optimal Allocation of Energy Storage Systems for Voltage Control in LV Distribution Networks Antonio Giannitrapani, Member, IEEE, Simone Paoletti, Member, IEEE, Antonio Vicino, Fellow, IEEE, Donato Zarrilli

More information

An Exact Convex Formulation of the Optimal Power Flow in Radial Distribution Networks Including Transverse Components

An Exact Convex Formulation of the Optimal Power Flow in Radial Distribution Networks Including Transverse Components 1 An Exact Convex Formulation of the Optimal Power Flow in Radial Distribution Networks Including Transverse Components Mostafa Nick, Rachid. Cherkaoui, Jean-Yves Le Boudec, and Mario Paolone École Polytechnique

More information

Convex Relaxation of Optimal Power Flow

Convex Relaxation of Optimal Power Flow IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 1(1):15 27, MARCH 2014 1 Convex Relaxation of Optimal Power Flow Part I: Formulations and Equivalence Steven H. Low EAS, Caltech slow@caltech.edu Abstract This

More information

EE 581 Power Systems. Admittance Matrix: Development, Direct and Iterative solutions

EE 581 Power Systems. Admittance Matrix: Development, Direct and Iterative solutions EE 581 Power Systems Admittance Matrix: Development, Direct and Iterative solutions Overview and HW # 8 Chapter 2.4 Chapter 6.4 Chapter 6.1-6.3 Homework: Special Problem 1 and 2 (see handout) Overview

More information

Tutorial 2: Modelling Transmission

Tutorial 2: Modelling Transmission Tutorial 2: Modelling Transmission In our previous example the load and generation were at the same bus. In this tutorial we will see how to model the transmission of power from one bus to another. The

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Convex Optimization Approach to the Optimal Power Flow Problem in DC-Microgrids with Energy Storage

Convex Optimization Approach to the Optimal Power Flow Problem in DC-Microgrids with Energy Storage Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 7-12-2018 Convex Optimization Approach to the Optimal Power Flow Problem in DC-Microgrids with Energy Storage

More information

Real Time Voltage Control using Genetic Algorithm

Real Time Voltage Control using Genetic Algorithm Real Time Voltage Control using Genetic Algorithm P. Thirusenthil kumaran, C. Kamalakannan Department of EEE, Rajalakshmi Engineering College, Chennai, India Abstract An algorithm for control action selection

More information

Optimal Power Flow Formulations in Modern Distribution Grids

Optimal Power Flow Formulations in Modern Distribution Grids P L Power Systems Laboratory Optimal Power Flow Formulations in Modern Distribution Grids Student Etta Shyti Supervisors Stavros Karagiannopoulos Dmitry Shchetinin Examiner Prof. Dr. Gabriela Hug Project

More information

Optimal Power Flow and Frequency Control

Optimal Power Flow and Frequency Control Optimal Power Flow and Frequency Control Steven Low Computing + Math Sciences Electrical Engineering NSF Workshop November 2013 Acknowledgment Caltech S. Bose, M. Chandy, J. Doyle, M. Farivar, L. Gan,

More information

Optimal Placement & sizing of Distributed Generator (DG)

Optimal Placement & sizing of Distributed Generator (DG) Chapter - 5 Optimal Placement & sizing of Distributed Generator (DG) - A Single Objective Approach CHAPTER - 5 Distributed Generation (DG) for Power Loss Minimization 5. Introduction Distributed generators

More information

Power Grid Partitioning: Static and Dynamic Approaches

Power Grid Partitioning: Static and Dynamic Approaches Power Grid Partitioning: Static and Dynamic Approaches Miao Zhang, Zhixin Miao, Lingling Fan Department of Electrical Engineering University of South Florida Tampa FL 3320 miaozhang@mail.usf.edu zmiao,

More information

Sparse Matrix Theory and Semidefinite Optimization

Sparse Matrix Theory and Semidefinite Optimization Sparse Matrix Theory and Semidefinite Optimization Lieven Vandenberghe Department of Electrical Engineering University of California, Los Angeles Joint work with Martin S. Andersen and Yifan Sun Third

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Stochastic dynamical modeling:

Stochastic dynamical modeling: Stochastic dynamical modeling: Structured matrix completion of partially available statistics Armin Zare www-bcf.usc.edu/ arminzar Joint work with: Yongxin Chen Mihailo R. Jovanovic Tryphon T. Georgiou

More information

, and ignoring all load currents, determine

, and ignoring all load currents, determine ECE43 Test 3 Dec 8, 5 Q. (33 pts.) The Zbus for the above 3-bus network with bus as reference, in per unit, is given to be 3.87 j.798 j.8 j Z.798 j.87 j.8 j bus.8 j.8 j j Assuming that the prefault values

More information

SF2822 Applied nonlinear optimization, final exam Saturday December

SF2822 Applied nonlinear optimization, final exam Saturday December SF2822 Applied nonlinear optimization, final exam Saturday December 20 2008 8.00 13.00 Examiner: Anders Forsgren, tel. 790 71 27. Allowed tools: Pen/pencil, ruler and eraser; plus a calculator provided

More information

Branch Flow Model. Computing + Math Sciences Electrical Engineering

Branch Flow Model. Computing + Math Sciences Electrical Engineering Branch Flow Model Masoud Farivar Steven Low Computing + Math Sciences Electrical Engineering Arpil 014 TPS paper Farivar and Low Branch flow model: relaxations and convexification IEEE Trans. Power Systems,

More information

ASYNCHRONOUS LOCAL VOLTAGE CONTROL IN POWER DISTRIBUTION NETWORKS. Hao Zhu and Na Li

ASYNCHRONOUS LOCAL VOLTAGE CONTROL IN POWER DISTRIBUTION NETWORKS. Hao Zhu and Na Li ASYNCHRONOUS LOCAL VOLTAGE CONTROL IN POWER DISTRIBUTION NETWORKS Hao Zhu and Na Li Department of ECE, University of Illinois, Urbana, IL, 61801 School of Engineering and Applied Sciences, Harvard University,

More information

Optimization Methods for Power Grid Reliability

Optimization Methods for Power Grid Reliability Optimization Methods for Power Grid Reliability Sean Harnett Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

Modelling and Simulation of TCPAR for Power System Flow Studies

Modelling and Simulation of TCPAR for Power System Flow Studies ISSN 1583-033 Issue 1, July-December 01 p. 13-137 Modelling and Simulation of TCPAR for Power System Flow Studies Narimen Lahaçani AOUZELLAG *, Lyes BENKHELLAT, Samir MAHLOUL Department of Electrical Engineering,

More information

ONE of the central features of the emerging Smart Grid

ONE of the central features of the emerging Smart Grid Towards a Retail Market for Distribution Grids Stefanos Baros, Yasuaki Wasa, Jordan Romvary, Rabab Haider, Kenko Uchida and AM Annaswamy Abstract In this paper, we propose a retail market structure for

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 XVI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 A slightly changed ADMM for convex optimization with three separable operators Bingsheng He Department of

More information

A Modular AC Optimal Power Flow Implementation for Distribution Grid Planning

A Modular AC Optimal Power Flow Implementation for Distribution Grid Planning A Modular AC Optimal Power Flow Implementation for Distribution Grid Planning Adrian Hauswirth Tyler Summers Joseph Warrington John Lygeros Automatic Control Laboratory Swiss Federal Institute of Technology

More information

EE5250 TERM PROJECT. Report by: Akarsh Sheilendranath

EE5250 TERM PROJECT. Report by: Akarsh Sheilendranath EE5250 TERM PROJECT Analytical Approaches for Optimal Placement of Distributed Generation Sources in Power System Caisheng Wang, student member, IEEE, and M. Hashem Nehrir, senior member, IEEE Report by:

More information

KINGS COLLEGE OF ENGINEERING Punalkulam

KINGS COLLEGE OF ENGINEERING Punalkulam KINGS COLLEGE OF ENGINEERING Punalkulam 613 303 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING POWER SYSTEM ANALYSIS QUESTION BANK UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A (TWO MARK

More information

arxiv: v2 [math.oc] 17 Nov 2014

arxiv: v2 [math.oc] 17 Nov 2014 1 Distributed reactive power feedback control for voltage regulation and loss minimization Saverio Bolognani, Ruggero Carli, Guido Cavraro, and Sandro Zampieri arxiv:1303.7173v math.oc 17 Nov 014 Abstract

More information

Semidefinite Relaxation of Optimal Power Flow for ac-dc Grids

Semidefinite Relaxation of Optimal Power Flow for ac-dc Grids Semidefinite Relaxation of Optimal Power Flow for ac-dc Grids Shahab Bahrami, Student Member, IEEE, Francis Therrien, Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, and Juri Jatsevich, Senior Member, IEEE

More information

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Dual methods and ADMM Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given f : R n R, the function is called its conjugate Recall conjugate functions f (y) = max x R n yt x f(x)

More information

A Stochastic-Oriented NLP Relaxation for Integer Programming

A Stochastic-Oriented NLP Relaxation for Integer Programming A Stochastic-Oriented NLP Relaxation for Integer Programming John Birge University of Chicago (With Mihai Anitescu (ANL/U of C), Cosmin Petra (ANL)) Motivation: The control of energy systems, particularly

More information

Distributed Optimization Method for Intelligent Control of DC Microgrids

Distributed Optimization Method for Intelligent Control of DC Microgrids University of South Carolina Scholar Commons Theses and Dissertations 2017 Distributed Optimization Method for Intelligent Control of DC Microgrids Yuanyuan Fan University of South Carolina Follow this

More information

Software Tools: Congestion Management

Software Tools: Congestion Management Software Tools: Congestion Management Tom Qi Zhang, PhD CompuSharp Inc. (408) 910-3698 Email: zhangqi@ieee.org October 16, 2004 IEEE PES-SF Workshop on Congestion Management Contents Congestion Management

More information

VOLTAGE regulation transformers also referred to as. Optimal Tap Setting of Voltage Regulation Transformers Using Batch Reinforcement Learning

VOLTAGE regulation transformers also referred to as. Optimal Tap Setting of Voltage Regulation Transformers Using Batch Reinforcement Learning 1 Optimal Tap Setting of Voltage Regulation Transformers Using Batch Reinforcement Learning Hanchen Xu, Student Member, IEEE, Alejandro D. Domínguez-García, Member, IEEE and Peter W. Sauer, Life Fellow,

More information

Understanding Load Flow Studies by using PSAT

Understanding Load Flow Studies by using PSAT Understanding Load Flow Studies by using PSAT Vijay Kumar Shukla 1, Ashutosh Bhadoria 2 1,2 Department of Electrical Engineering, Lovely Professional University, Jalandhar, India Abstract: Load Flow Study

More information

Optimal Load Shedding in Electric Power Grids

Optimal Load Shedding in Electric Power Grids ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Optimal Load Shedding in Electric Power Grids Fu Lin Chen Chen Mathematics Computer Science Division Preprint ANL/MCS-P5408-0915

More information

An Equivalent Circuit Formulation of the Power Flow Problem with Current and Voltage State Variables

An Equivalent Circuit Formulation of the Power Flow Problem with Current and Voltage State Variables An Equivalent Circuit Formulation of the Power Flow Problem with Current and Voltage State Variables David M. Bromberg, Marko Jereminov, Xin Li, Gabriela Hug, Larry Pileggi Dept. of Electrical and Computer

More information

3- BASICS. YTransformation. for balanced load. \V ab 120 = \V bc. \V ab 240 = \V ca \I a 120 = \I b \I a 240 = \I c V ab I a

3- BASICS. YTransformation. for balanced load. \V ab 120 = \V bc. \V ab 240 = \V ca \I a 120 = \I b \I a 240 = \I c V ab I a 3- BASICS YTransformation for balanced load Z =3Z Y Balanced 3- Systems \V ab 10 = \V bc \V ab 40 = \V ca \I a 10 = \I b \I a 40 = \I c V ab I a = p 3 V an = p 3 I ab \V ab 30 = \V an \I ab 30 = \I a S

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

Power System Security. S. Chakrabarti

Power System Security. S. Chakrabarti Power System Security S. Chakrabarti Outline Introduction Major components of security assessment On-line security assessment Tools for contingency analysis DC power flow Linear sensitivity factors Line

More information

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation James Ranjith Kumar. R, Member, IEEE, Amit Jain, Member, IEEE, Power Systems Division,

More information

Branch Outage Simulation for Contingency Studies

Branch Outage Simulation for Contingency Studies Branch Outage Simulation for Contingency Studies Dr.Aydogan OZDEMIR, Visiting Associate Professor Department of Electrical Engineering, exas A&M University, College Station X 77843 el : (979) 862 88 97,

More information

AN ELECTRIC power system is the main facility to

AN ELECTRIC power system is the main facility to 1 Distributed Algorithms for Optimal Power Flow Problem Albert Y.S. Lam, Baosen Zhang, and David Tse physical constraints, e.g. bus voltage limits, bus power limits, thermal line constraint, etc. Due to

More information

03-Economic Dispatch 1. EE570 Energy Utilization & Conservation Professor Henry Louie

03-Economic Dispatch 1. EE570 Energy Utilization & Conservation Professor Henry Louie 03-Economic Dispatch 1 EE570 Energy Utilization & Conservation Professor Henry Louie 1 Topics Generator Curves Economic Dispatch (ED) Formulation ED (No Generator Limits, No Losses) ED (No Losses) ED Example

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

SIGNIFICANT increase in amount of private distributed

SIGNIFICANT increase in amount of private distributed 1 Distributed DC Optimal Power Flow for Radial Networks Through Partial Primal Dual Algorithm Vahid Rasouli Disfani, Student Member, IEEE, Lingling Fan, Senior Member, IEEE, Zhixin Miao, Senior Member,

More information

Convex Relaxations of AC Optimal Power Flow under Uncertainty

Convex Relaxations of AC Optimal Power Flow under Uncertainty Convex Relaxations of AC Optimal Power Flow under Uncertainty Andreas Venzke, PhD student Center for Electric Power and Energy Technical University of Denmark (DTU) PhD advisors: Spyros Chatzivasileiadis

More information

New Developments on OPF Problems. Daniel Bienstock, Columbia University. April 2016

New Developments on OPF Problems. Daniel Bienstock, Columbia University. April 2016 New Developments on OPF Problems Daniel Bienstock, Columbia University April 2016 Organization: Intro to OPF and basic modern mathematics related to OPF Newer results, including basic methodologies for

More information

Smart Grid. Steven Low. Computing + Math Sciences Electrical Engineering

Smart Grid. Steven Low. Computing + Math Sciences Electrical Engineering Smart Grid Steven Low Computing + Math Sciences Electrical Engineering August 2014 Smart grid team (impact of CDS) Caltech! D. Cai, M. Chandy, N. Chen, J. Doyle, K. Dvijotham, M. Farivar, L. Gan, B. Hassibi,

More information

CÁTEDRA ENDESA DE LA UNIVERSIDAD DE SEVILLA

CÁTEDRA ENDESA DE LA UNIVERSIDAD DE SEVILLA Detection of System Disturbances Using Sparsely Placed Phasor Measurements Ali Abur Department of Electrical and Computer Engineering Northeastern University, Boston abur@ece.neu.edu CÁTEDRA ENDESA DE

More information

ECE-620 Reduced-order model of DFIG-based wind turbines

ECE-620 Reduced-order model of DFIG-based wind turbines ECE-620 Reduced-order model of DFIG-based wind turbines Dr. Héctor A. Pulgar hpulgar@utk Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville November 18, 2015 Dr.

More information

A STATIC AND DYNAMIC TECHNIQUE CONTINGENCY RANKING ANALYSIS IN VOLTAGE STABILITY ASSESSMENT

A STATIC AND DYNAMIC TECHNIQUE CONTINGENCY RANKING ANALYSIS IN VOLTAGE STABILITY ASSESSMENT A STATIC AND DYNAMIC TECHNIQUE CONTINGENCY RANKING ANALYSIS IN VOLTAGE STABILITY ASSESSMENT Muhammad Nizam Engineering Faculty Sebelas Maret University (Ph.D Student of Electrical, Electronic and System

More information

Alternating Direction Method of Multipliers. Ryan Tibshirani Convex Optimization

Alternating Direction Method of Multipliers. Ryan Tibshirani Convex Optimization Alternating Direction Method of Multipliers Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last time: dual ascent min x f(x) subject to Ax = b where f is strictly convex and closed. Denote

More information

MATH 260 Homework 2 solutions. 7. (a) Compute the dimension of the intersection of the following two planes in R 3 : x 2y z 0, 3x 3y z 0.

MATH 260 Homework 2 solutions. 7. (a) Compute the dimension of the intersection of the following two planes in R 3 : x 2y z 0, 3x 3y z 0. MATH 6 Homework solutions Problems from Dr Kazdan s collection 7 (a) Compute the dimension of the intersection of the following two planes in R 3 : x y z, 3x 3y z (b) A map L: R 3 R is defined by the matrix

More information

A DER based Voltage Control Strategy for Microgrids

A DER based Voltage Control Strategy for Microgrids A DER based Voltage Control Strategy for Microgrids Giovanni Massa Vincenzo Galdi Vito Calderaro Antonio Piccolo Department of Industrial Engineering University of Salerno Fisciano (SA), Italy gv.massa@gmail.com,

More information

PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS

PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS IMPACT: International ournal of Research in Engineering & Technology (IMPACT: IRET) ISSN 2321-8843 Vol. 1, Issue 3, Aug 2013, 85-92 Impact ournals PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION

More information

APPENDIX A PROOFS. Proof 1: No Generalized Inverse Will Allocate u. Denote by the subset of ( ) which maps to ( ), and by u the vectors in.

APPENDIX A PROOFS. Proof 1: No Generalized Inverse Will Allocate u. Denote by the subset of ( ) which maps to ( ), and by u the vectors in. APPENDIX A PROOFS Proof 1: No Generalized Inverse Will Allocate u m Denote by the subset of ( ) which maps to ( ), and by u the vectors in. The span( ) = R m unless there are columns of B which are all

More information

Ternary forms with lots of zeros

Ternary forms with lots of zeros Ternary forms with lots of zeros Bruce Reznick University of Illinois at Urbana-Champaign Conference/Workshop on Inverse Moment Problems, IMS National University of Singapore, Dec. 19, 2013 17 Outline

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

FAST OPTIMAL POWER FLOW ANALYSIS FOR LARGE-SCALE SMART GRID YI LIANG THESIS

FAST OPTIMAL POWER FLOW ANALYSIS FOR LARGE-SCALE SMART GRID YI LIANG THESIS c 2013 Yi Liang FAST OPTIMAL POWER FLOW ANALYSIS FOR LARGE-SCALE SMART GRID BY YI LIANG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations Chuangchuang Sun and Ran Dai Abstract This paper proposes a customized Alternating Direction Method of Multipliers

More information

J. Electrical Systems x-x (2010): x-xx. Regular paper

J. Electrical Systems x-x (2010): x-xx. Regular paper JBV Subrahmanyam Radhakrishna.C J. Electrical Systems x-x (2010): x-xx Regular paper A novel approach for Optimal Capacitor location and sizing in Unbalanced Radial Distribution Network for loss minimization

More information

Analyzing the Effect of Loadability in the

Analyzing the Effect of Loadability in the Analyzing the Effect of Loadability in the Presence of TCSC &SVC M. Lakshmikantha Reddy 1, V. C. Veera Reddy 2, Research Scholar, Department of Electrical Engineering, SV University, Tirupathi, India 1

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information