Alluvial Boundary Layer Processes and Deposits. Bruce Rhoads and Jim Best Tuesdays :30 p.m. 329 Davenport Hall

Size: px
Start display at page:

Download "Alluvial Boundary Layer Processes and Deposits. Bruce Rhoads and Jim Best Tuesdays :30 p.m. 329 Davenport Hall"

Transcription

1 Alluvial Boundary Layer Processes and Deposits Bruce Rhoads and Jim Best Tuesdays :30 p.m. 329 Davenport Hall

2 Syllabus January 18 th : Introductions and backgrounds (from all of us!). Structure of course; aims, methods of assessment. Research Project topics. Overview of linkages among flow, sediment transport and channel morphology in rivers; scales, processes and feedbacks. Techniques for measurement. JB January 25 th : Techniques for measurement (contd) and Turbulent Boundary Layer (TBL) structure. JB February 1 st : Smooth and rough boundaries; methods of shear stress determination. Research topic discussions and choices. Writing a scientific paper. BR/JB SEMINARS February 8 th : Flow Separation; types of secondary flows. JB/BR SEMINARS February 15 th : Analysis of turbulent time series data: turbulence statistics, event recognition, spectral analysis and wavelets. BR SEMINARS February 22 nd : TBL structure and sediment entrainment; defect initiation and the initiation of bedforms in unidirectional flows. JB SEMINARS March 1 st : Types of bedforms and bar forms in rivers: generative mechanisms, self-organization, dynamics and stability. JB SEMINARS March 8 th : Turbulence modulation and sediment-fluid feedbacks. The influence of sediment on flow turbulence enhancement, attenuation; transitional and laminar flows. How does changing sediment concentration influence bedform dynamics? JB SEMINARS March 15 th : Flow under a river bed: what s going on in the hyporheic zone and how does it influence free-stream flow? JB SEMINARS Research Project Meetings SPRING BREAK March 19 th 27 th March 29 th : Research Project Meetings April 5 th : Flow and turbulence through vegetated boundaries BR SEMINARS April 12 th : Seminars Flow and turbulence in meander bends BR SEMINARS April 19 th : Shallow shear flows and mixing layers BR SEMINARS April 26 th : Flow and turbulence in confluences BR/JB SEMINARS May 3 rd : Final Research Project Meetings Seminars will commence from Week 3 Other individual projects meetings will be scheduled as necessary

3 Class format and schedule EACH week, the class will consist of: A c. 50 (ish) minute lecture from Bruce or Jim, which will introduce a topic and set reading for the next week. Two or three papers will be given as reading each week and ALL will be expected to read and critique these. One person will be assigned to present a short summary seminar on each paper. This should consist of a 10-minute (maximum) PowerPoint presentation (8 slides maximum) and a two-side (pdf) printed summary. These must be ed/given to Jim on the Monday before the Tuesday class, for inclusion on the course website and you should also print a copy of your pdf document for us to xerox for distribution. This will then allow approximately 10 minutes for discussion/questions on each topic/paper you will all be expected to contribute. You will all also have the opportunity to chair these sessions..keeping the speakers on time and helping guide discussion! EACH session will thus last approximately 2 hours.

4 Assessment Seminars: 10% each: each person will present two seminars (TOTAL 20%) Class contribution: 20% - based on attendance and input to group discussions Term paper: 60% - in the style of a scientific paper for JGR-ES. Maximum of 12 sides JGR-ES sides. Date due: Thursday May 5 th 12.00

5 Research Topics Projects can be lab-based, use field data, perform a detailed literature review, theoretical The flow dynamics of interacting particles and bedforms (x2) Mean flow and turbulence over a dune field in the Missouri River (x1) Interacting shear layers (x1) Flow in the hyporheic zone in a gravel bed (1-2) Flow over the ripple:dune transition turbulence and vorticity (x1) Flow and bed morphology in a meander bend (x1) Flow at a large river junction (x1) Flow separation at confluences (x2) The flow dynamics of bendway weirs (x2) Flow structure and turbulence within meander bends (x2) Your possible ideas for projects?...we are very keen to encourage projects with your own data or develop your own ideas for a topic, which can be worked into this format...

6 Sediment Transport Bed Morphology WHY?? the holy trinity Fluid Flow (Turbulence) turbulent flow structures turbulence modulation Fluid Turbulence large-scale structures in flow? flow generated over bed morphology local sediment transport rate flow separation

7 .at a range of scales.. from grains to channels

8 Applications landscape evolution environmental management pollution engineering modeling interpreting ancient environments ALLUVIUAL, YES, BUT we all live in a TBL that interacts with form...so lets think wider

9 TODAY A very brief introduction to measuring turbulent flows...

10 Laboratory 1. Flow Visualisation - dye, particles 2. Hydrogen bubbles 3. Constant temperature anemometry 4. Laser Doppler anemometry 5. Acoustic Doppler velocity profiling 6. Particle Imaging velocimetry

11 Field 1. Rotary current meters 2. Electromagnetic current meters 3.Acoustic Doppler instruments 4. MBES

12 1. Flow Visualisation - dye, particles Advantages: can tell your eyes a lot excellent for whole flow field/complex flows guides later measurement can be used to construct streamlines etc

13 1. Flow Visualisation - dye, particles Disadvantages: often qualitative often intrusive need to ensure dye/particles track flow (i.e must not inject at different velocity) diffusion of dye/3d movement of particles

14 2. Hydrogen bubbles Principle: Uses electrolysis in water pass a current through water to liberate hydrogen at cathode and oxygen at anode Produces hydrogen that can be used as a flow tracer in a small area before buoyancy effects become large

15 Hydrogen bubbles - modes of operation Sheet Pulsed Pulsed & speck insulated flow H 2 sheet timelines square bubbles! Platinum wire (cathode)..can give quantitative visualisation timeline avi timeline2 avi

16 TBL work of Tony Grass ejection 9mm sediment bed inrush

17 H 2 bubble visualisation in front of bridge pier

18 2. Hydrogen bubbles Advantages: excellent quantitative visualisation can image large parts of whole flow wire can be used in complex topographies a note: H 2 bubble technique yielded some of the great early progress in TBL studies: Kline and Grass

19 2. Hydrogen bubbles Disadvantages: difficult/impossible to use in high velocity/re # flows bubbles have limited travel distance before rising need electrolyte in water analysis can be slow/complex

20 3. Constant temperature anemometry (CTA) Principle: Uses heat loss from a heated wire/film to measure velocity

21 3. Constant temperature anemometry (CTA) Current I Sensor dimensions: length ~1 mm diameter ~5 micrometer Velocity U Sensor (thin wire) Wire supports (St.St. needles) 2,4 heat wire up flow cools wire monitor drop in voltage and reheat to a constant temperature change in voltage therefore gives velocity (need calibration) E volts 2,2 2 1,8 1, U m /s

22 3. Constant temperature anemometry (CTA) 1D 3D 2D

23 3. Constant temperature anemometry (CTA) Sampling of CTA, LDA & PIV

24 3. Constant temperature anemometry Advantages: excellent spatial and temporal resolution can use multi-probes can be 1, 2 or 3D probes relatively cheap!

25 3. Constant temperature anemometry Disadvantages: intrusive single at-a-point often need to control temperature of flow calibration can be very difficult probes are fragile (don t like sediment grains) contamination of probe (dirt, bubbles)

26 4. Laser Doppler anemometry (LDA) Principle: Uses Doppler shift from scattered light to calculate velocity

27 The Doppler Effect The apparent change in wavelength of sound or light caused by the motion of the source, observer or both. Waves emitted by a moving object as received by an observer will be blueshifted (compressed) if approaching, redshifted (elongated) if receding. It occurs both in sound and light. How much the frequency changes depends on how fast the object is moving toward or away from the receiver. Johaan Christian Doppler Sound wav

28 4. Laser Doppler anemometry (LDA) Flow Laser Transmitting optics Receiving optics with detector HeNe Ar-Ion Nd:Yag Diode Gas Liquid Particle PC Signal processing Signal conditioner

29 Measurement of wake flow around a ship model in a towing tank

30 Measurement of U-component of flow over a dune

31 4. Laser Doppler anemometry Advantages: non-intrusive superb spatial and temporal resolution no calibration (Doppler shift) can be 1, 2 or 3D can be used in complex geometries

32 4. Laser Doppler anemometry Disadvantages: need clear flows (non-opaque) need good laser light intensity considerations of tracer particle (signal) drop-out (i.e. may not be a continuous signal) safety expensive to establish

33 5. Acoustic Doppler velocity profiling (ADV, UDVP) Principle: Uses Doppler shift from scattered sound to calculate velocity Uses one or several transducers to emit a sound pulse. Detects frequency of sound from scatterers in the flow and use change in frequency (Doppler shift) to calculate velocity

34 Ultrasonic Doppler Velocity Profiling (UDVP) transducer Transducer: 4 MHz 5mm diameter Probe: 8mm diameter Measuring range: mm Accuracy: ± 4 mm s -1

35 Principles of Ultrasonic Doppler Velocity Profiling (UDVP) Velocity: detection of Doppler shift V = cf D /2f o c = velocity of ultrasound; f D = Doppler frequency shift; f o = ultrasound frequency Profile (128 points): detection of Doppler shift at gated time intervals x = ct/2 x = distance; t = time lapse between emission and reception of ultrasound pulses

36 U-component of flow in lee of dune at 128 points distance downstream, mm time, seconds velocity, cm/sec

37 flow 5 0 cm flow P3 P2 P1 0 P1 P2 P cm time (s) cm flow time (s) time (s) P3 P2 P distance (cm) distance (cm) distance (cm) U (cm/s) U (cm/s) U (cm/s)

38 5. Acoustic Doppler velocitimeters Uses three transducers focused onto one point to give 3D measurements

39 5. Acoustic Doppler velocity profiling Advantages: non-intrusive & good S/T resolution robust quantification of sediment-laden flows multipoint flow-field mapping (with profiler) instantaneous profiles can track evolution of coherent flow structures

40 5. Acoustic Doppler velocity profiling Disadvantages: beam spread gives changing sampling volume different frequencies needed for different depths (lower frequency=greater sound penetration) profiler is 1D ADV is at-a-point

41 6. Particle Imaging Velocimetry (PIV) Principle: Uses change in position of tracer particles between two video/photo images to calculate velocity: velocity = distance/time

42 PIV optical configuration

43 principles of PIV t1 t2 neutrally-buoyant particles & double-pulsed laser light sheet (particles track the flow) x x x U = x/δt

44 principles of PIV CCD detector area Interrogation region d y d x Peak detection on correlation plane d y d x

45 some results of PIV..flow around a cube Mark Lawless seeding.avi v velocity.avi

46 6. PIV Advantages: non-intrusive whole flow field mapping (WOW!) 1,2 and 3D (use 2 cameras and parallax) and volumetric PIV fair spatial resolution (~mm 2 ) temporal resolution ok - 15 Hz (new systems up to 4000 Hz)

47 6. PIV Disadvantages: need clear flows (non-opaque) temporal resolution lower than CTA & LDA considerations of lighting geometry safety (v. powerful lasers) expensive to establish

48 Field 1. Flow Visualisation - dye, floats 2. Rotary current meters 3. Electromagnetic current meters 4. Acoustic Doppler velocimeters 5. Acoustic Doppler current profilers 6. MBES and field PIV

49 2. Rotary current meters rotation of blade gives velocity Ads: rugged, mean velocity Disads: no turbulence data, slow response, intrusive, at-apoint

50 3. Electromagnetic Current Meters (ECM) Principle: Faraday s principle of electromagnetic induction: when an electrically conductive fluid moves through a magnetic field, an electromotive force is induced both normal to the magnetic field and the fluid. Different ECM heads

51 Sensing volume ~2.5D ECM probe with diameter D & electrodes Flow induces electromotive force normal to electrodes Measure the change; calibrate with U & V velocity

52 3. ECM Advantages: robust 1 & 2D good temporal resolution (~30 Hz)

53 3. ECM Disadvantages: intrusive (sensor alters flow field?) large sensing volume (~2.5D) electrical interference sensor contamination (i.e. organics etc)

54 5. Acoustic Doppler Current profiling (ADCP) Principle: Uses Doppler shift from scattered sound to calculate velocity uses three/four transducers to obtain 3D measurements

55 ADCP three transducers 25º deviation bin height = 0.25m sampling time = 5s diameter of near-bed sampling area ~ 12m Cell 1 Cell 2 Cell 3 Cell 4 Cell N

56 Echo Sounder 1.5 MHz ADCP Use DGPS to get boat velocity and subtract from Doppler velocity use sensor to correct for pitch/roll of boat

57 ADCP field quantification: June 1999 downstream lateral velocity, cm s -1 vertical

58 5. Acoustic Doppler Current Profiler (ADCP) Advantages: non-intrusive multipoint 3D works in sediment-laden flows works in deep flows (and now also shallow flows)

59 5. Acoustic Doppler Current Profiler (ADCP) Disadvantages: low sampling frequency (1-0.1 Hz) beam spread gives changing sampling volume ideally need excellent DGPS correction different frequencies needed for different depths (lower frequency=greater sound penetration)

60 6. MBES and field PIV New uses of Multibeam Echo Sounding (MBES)

61 RESON SeaBat 7125 MBES 200/400 khz 256 or 512 beams 10 Hz Tilt, roll, pitch, gyro Bottom detect and water column RTK dgps with PPS input Swath parallel to flow Range bins ~0.02m in length Calibrated swath Amplitude ran ge (m ) Phase ran ge (m ) -180

62

63 Methods Calculation of MBES Reverberation Level Inputs: 1. Backscatter Magnitude at approximately 2cm sampling interval along 2 dimensional fan of beams 2. Radius for averaging For each individual sample determine location of all samples within the given radius (0.13m) Allocate the mean/median value of all the values within the radius to the given sample point Repeat for all pings in data set Repeat for all samples in the fan Temporal moving average between successive pings option Apply sonar equation to obtain reverberation levels using spreading, range cell volume size, TVG correction Calibrate linear reverberation level to concentration samples, assuming uniform grainsize distribution

64 MBES Results -5 0m 5 flow -7

65 Methods Calculation of Flow Velocities Interpolate the polar averaged reverberation values along the beams to a rectangular grid for two successive pings In the first ping determine the samples forming a rectangle about a central sample point Correlate the samples in the rectangle with the same sized rectangles centred within a given distance of the central sample point in the next sequential ping The velocity vector is determined by drawing a line from the centre of the original rectangle to that of the rectangle with the highest correlation in the second ping and dividing by the time delay between the two pings Repeat for a two dimensional grid of vector origins within the swath Repeat for next successive ping PIV for Apply temporal moving average for each vector position MBES!

66 MBES Results One ping Motivation Gravels Dunes Field Applications

67 MBES Results Motivation Gravels Dunes Field Applications

68 MBES Results comparison of velcoities 0-2 ADCP MBES 0-2 ADCP MBES Depth (m) -4 Depth (m) U (m/s) V (m/s) Possible sources of error: Slightly different spatial locations Non-concurrent adp-mbes sampling MBES mount angle?

69 6. MBES and field PIV Advantages: non-intrusive multipoint whole flow field works in sediment-laden flows works in shallow and deep flows

70 6. MBES and field PIV Disadvantages: Vessel must be fixed at-a-point 2D Spatial and temporal resolution fair Assumes sediment packets follow the flow

71 Reading: Clifford, N.J. & French, J.R Monitoring & Modelling Turbulent Flow: Historical & Contemporary Perspectives, In: Turbulence: Perspectives on Flow & Sediment Transport (Eds: Clifford, N.J., French, J.R. & Hardisty, J.), Papers in rest of course Search the web!!

TODAY A very brief introduction to measuring turbulent flows... To back up some techniques used in papers today...

TODAY A very brief introduction to measuring turbulent flows... To back up some techniques used in papers today... TODAY A very brief introduction to measuring turbulent flows... To back up some techniques used in papers today... see last weeks handout for fuller list Laboratory 1. Flow Visualisation - dye, particles

More information

6. Laser Doppler Anemometry. Introduction to principles and applications

6. Laser Doppler Anemometry. Introduction to principles and applications 6. Laser Doppler Anemometry Introduction to principles and applications Characteristics of LDA Invented by Yeh and Cummins in 1964 Velocity measurements in Fluid Dynamics (gas, liquid) Up to 3 velocity

More information

6. Laser Doppler Anemometry. Introduction to principles and applications

6. Laser Doppler Anemometry. Introduction to principles and applications 6. Laser Doppler Anemometry Introduction to principles and applications Characteristics of LDA Invented by Yeh and Cummins in 1964 Velocity measurements in Fluid Dynamics (gas, liquid) Up to 3 velocity

More information

Laser Doppler Anemometry. Introduction to principles and applications

Laser Doppler Anemometry. Introduction to principles and applications Laser Doppler Anemometry Introduction to principles and applications Characteristics of LDA Invented by Yeh and Cummins in 1964 Velocity measurements in Fluid Dynamics (gas, liquid) Up to 3 velocity components

More information

Flow over ripples: KEY features ripple size independent of flow depth l ~ 1000d deceleration in leeside topographic acceleration over stoss flow

Flow over ripples: KEY features ripple size independent of flow depth l ~ 1000d deceleration in leeside topographic acceleration over stoss flow Ripples and dunes Flow over ripples: KEY features ripple size independent of flow depth l ~ 1000d deceleration in leeside topographic acceleration over stoss flow separation in leeside shear layer development

More information

On the influence of bed permeability on flow in the leeside of coarse-grained bedforms

On the influence of bed permeability on flow in the leeside of coarse-grained bedforms On the influence of bed permeability on flow in the leeside of coarse-grained bedforms G. Blois (1), J. L. Best (1), G. H. Sambrook Smith (2), R. J. Hardy (3) 1 University of Illinois, Urbana-Champaign,

More information

Wave Motion and Sound

Wave Motion and Sound Wave Motion and Sound 1. A back and forth motion that repeats itself is a a. Spring b. Vibration c. Wave d. Pulse 2. The number of vibrations that occur in 1 second is called a. A Period b. Frequency c.

More information

Ultrasonic Measuring System for Deposition of Sediments in Reservoirs

Ultrasonic Measuring System for Deposition of Sediments in Reservoirs MECAHITECH 11, vol. 3, year: 011 Ultrasonic Measuring System for Deposition of Sediments in Reservoirs M. Mărgăritescu* 1, A. Moldovanu * 1, P. Boeriu *, A.M.E. Rolea* 1 * 1 National Institute of Research

More information

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560 FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry

More information

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow HUI HU, a TETSUO SAGA, b TOSHIO KOBAYASHI, b AND NOBUYUKI TANIGUCHI b a Department of Mechanical Engineering, Michigan

More information

Measurement Technique in Multiphase Flows Dr. Rajesh Kumar Upadhyay Department of Chemical Engineering Indian Institute of Technology, Guwahati

Measurement Technique in Multiphase Flows Dr. Rajesh Kumar Upadhyay Department of Chemical Engineering Indian Institute of Technology, Guwahati Measurement Technique in Multiphase Flows Dr. Rajesh Kumar Upadhyay Department of Chemical Engineering Indian Institute of Technology, Guwahati Lecture 05 Laser Doppler Anemometry So, welcome back. Now

More information

MARITIME UNIVERSITY IN SZCZECIN ORGANIZATIONAL UNIT: FACULTY OF NAVIGATION - DEPARTMENT OF NAVIGATION DEVICES. Instruction

MARITIME UNIVERSITY IN SZCZECIN ORGANIZATIONAL UNIT: FACULTY OF NAVIGATION - DEPARTMENT OF NAVIGATION DEVICES. Instruction MARITIME UNIVERSITY IN SZCZECIN ORGANIZATIONAL UNIT: FACULTY OF NAVIGATION - DEPARTMENT OF NAVIGATION DEVICES Instruction 1 PRINCIPLE OF OPERATION AND HANDLING OF SPEED LOG Lab Prepared by M. Przywarty,

More information

An Essential Requirement in CV Based Industrial Appliances.

An Essential Requirement in CV Based Industrial Appliances. Measurement of Flow P M V Subbarao Professor Mechanical Engineering Department An Essential Requirement in CV Based Industrial Appliances. Mathematics of Flow Rate The Scalar Product of two vectors, namely

More information

Application of an ultrasonic velocity profile monitor in a hydraulic laboratory

Application of an ultrasonic velocity profile monitor in a hydraulic laboratory Application of an ultrasonic velocity profile monitor in a hydraulic laboratory Abstract Helmut Knoblauch 1, Roman Klasinc 1, Thomas Geisler 1 Velocity profile measurement using the ultrasound-pulse-doppler

More information

Laser Doppler Velocimetry (LDV) Part - 01

Laser Doppler Velocimetry (LDV) Part - 01 AerE 545 class notes #21 Laser Doppler Velocimetry (LDV) Part - 01 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Techniques for Flow Velocity Measurements Intrusive

More information

Module 3: Velocity Measurement Lecture 16: Validation of PIV with HWA. The Lecture Contains: Hotwire Anemometry. Uncertainity

Module 3: Velocity Measurement Lecture 16: Validation of PIV with HWA. The Lecture Contains: Hotwire Anemometry. Uncertainity The Lecture Contains: Hotwire Anemometry Hotwire Measurements Calibration Methodology Curve Fitting Directional Probe Senstivity Data Reduction Uncertainity Validation of Experiments Comparision of Hot

More information

Acoustic seafloor mapping systems. September 14, 2010

Acoustic seafloor mapping systems. September 14, 2010 Acoustic seafloor mapping systems September 14, 010 1 Delft Vermelding Institute onderdeel of Earth organisatie Observation and Space Systems Acoustic seafloor mapping techniques Single-beam echosounder

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

FLOW MEASUREMENT INC 331 Industrial process measurement 2018

FLOW MEASUREMENT INC 331 Industrial process measurement 2018 FLOW MEASUREMENT INC 331 Industrial process measurement 2018 1 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry (LDA) B.3 Hot-wire

More information

CHAPTER (13) FLOW MEASUREMENTS

CHAPTER (13) FLOW MEASUREMENTS CHAPTER (13) FLOW MEASUREMENTS 09/12/2010 Dr. Munzer Ebaid 1 Instruments for the Measurements of Flow Rate 1. Direct Methods: Volume or weight measurements. 2. Indirect Methods: Venturi meters, Orifices

More information

The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler 368 Evolving Water Resources Systems: Understanding, Predicting and Managing Water Society Interactions Proceedings of ICWRS014, Bologna, Italy, June 014 (IAHS Publ. 364, 014). The investigation of sediment

More information

Signature 55 Long Range Current Profiler Data from a Short Deployment Lee Gordon Doppler Ltd. January 7, 2015 This report presents

Signature 55 Long Range Current Profiler Data from a Short Deployment Lee Gordon Doppler Ltd. January 7, 2015 This report presents Signature 55 Long Range Current Profiler Data from a Short Deployment Lee Gordon Doppler Ltd. lee@dopplerltd.com January 7, 215 This report presents and evaluates data collected by a Nortek Signature 55

More information

Flow : the motion of a fluid (1) Blood flowmeters : - ultrasonic (doppler, transit time) -electromagnetic (2) Gas flowmeters : - pneumotachometer

Flow : the motion of a fluid (1) Blood flowmeters : - ultrasonic (doppler, transit time) -electromagnetic (2) Gas flowmeters : - pneumotachometer Flow Sensors Flow : the motion of a fluid (1) Blood flowmeters : - ultrasonic (doppler, transit time) -electromagnetic (2) Gas flowmeters : - pneumotachometer -spirometer - Wright's respirometer - rotameter

More information

River bed classification using multi-beam echo-sounder backscatter data. Niels KINNEGING Rijkswaterstaat Centre for Water Management

River bed classification using multi-beam echo-sounder backscatter data. Niels KINNEGING Rijkswaterstaat Centre for Water Management River bed classification using multi-beam echo-sounder backscatter data Niels KINNEGING Rijkswaterstaat Centre for Water Management Mirjam SNELLEN Delft University of Techonology Dimitrios ELEFTHERAKIS

More information

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Proceedings of International Symposium on Visualization and Image in Transport Phenomena, Turkey, -9 Oct. SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Hui HU a, Tetsuo

More information

(ADVANCED) FLOW MEASUREMENTS Dr. János VAD, associate professor, Dept. Fluid Mechanics, BME

(ADVANCED) FLOW MEASUREMENTS Dr. János VAD, associate professor, Dept. Fluid Mechanics, BME (ADVANCED) FLOW MEASUREMENTS Dr. János VAD, associate professor, Dept. Fluid Mechanics, BME Vad, J. (2008), Advanced flow measurements. Mőegyetemi Kiadó, 45085. Interactive presentations ( PREMIUM SCORES

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

Summary Results from Horizontal ADCP tests in the Indiana Harbor Canal and the White River

Summary Results from Horizontal ADCP tests in the Indiana Harbor Canal and the White River Summary Results from Horizontal ADCP tests in the Indiana Harbor Canal and the White River This report summarizes results of tests of horizontally deployed ADCPs in the Indiana Harbor Canal and the White

More information

Elec Eng 3BA3: Structure of Biological Materials

Elec Eng 3BA3: Structure of Biological Materials Elec Eng 3BA3: Structure of Biological Materials Page 1 of 12 Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December 5, 2008 This examination

More information

2d-Laser Cantilever Anemometer

2d-Laser Cantilever Anemometer 2d-Laser Cantilever Anemometer Introduction Measuring principle Calibration Design Comparative measurement Contact: Jaroslaw Puczylowski University of Oldenburg jaroslaw.puczylowski@forwind.de Introduction

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Control Engineering BDA30703

Control Engineering BDA30703 Control Engineering BDA30703 Lecture 4: Transducers Prepared by: Ramhuzaini bin Abd. Rahman Expected Outcomes At the end of this lecture, students should be able to; 1) Explain a basic measurement system.

More information

Measurements of Turbulent Pressure Under Breaking Waves

Measurements of Turbulent Pressure Under Breaking Waves MEASUREMENTS OF TURBULENT PRESSURE UNDER BREAKING WAVES 33 Measurements of Turbulent Pressure Under Breaking Waves Author: Faculty Sponsor: Department: Christopher Olsen Francis Ting, Ph.D., P.E. Civil

More information

Today s menu. Last lecture. A/D conversion. A/D conversion (cont d...) Sampling

Today s menu. Last lecture. A/D conversion. A/D conversion (cont d...) Sampling Last lecture Capacitive sensing elements. Inductive sensing elements. Reactive Deflection bridges. Electromagnetic sensing elements. Thermoelectric sensing elements. Elastic sensing elements. Piezoelectric

More information

Observations of Giant Bursts Associated with Microscale Breaking Waves

Observations of Giant Bursts Associated with Microscale Breaking Waves Observations of Giant Bursts Associated with Microscale Breaking Waves Ira Leifer and Sanjoy Banerjee a) Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, California,

More information

and methods. Manometers. Pressure-based measurement of velocity magnitude and direction. Anemometers, thermal probes. Temperature measurements.

and methods. Manometers. Pressure-based measurement of velocity magnitude and direction. Anemometers, thermal probes. Temperature measurements. FLOW MEASUREMENTS Dr. János VAD, associate professor, Dept. Fluid Mechanics, BME Vad, J. (2008), Advanced flow measurements. Mőegyetemi Kiadó, 45085. Interactive presentations ( PREMIUM SCORES ): 1: Introduction.

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

Sound wave bends as it hits an interface at an oblique angle. 4. Reflection. Sound wave bounces back to probe

Sound wave bends as it hits an interface at an oblique angle. 4. Reflection. Sound wave bounces back to probe : Ultrasound imaging and x-rays 1. How does ultrasound imaging work?. What is ionizing electromagnetic radiation? Definition of ionizing radiation 3. How are x-rays produced? Bremsstrahlung Auger electron

More information

COMPUTER ALGORITHM FOR ANALYSIS OF BEDFORM GEOMETRY

COMPUTER ALGORITHM FOR ANALYSIS OF BEDFORM GEOMETRY 13 th International Symposium on Water Management and Hydraulic Engineering, September 9-12, 2013 Bratislava, Slovakia COMPUTER ALGORITHM FOR ANALYSIS OF BEDFORM GEOMETRY G. Gilja 1, N. Kuspilić 2 and

More information

Within-event spatially distributed bedload: linking fluvial sediment transport to morphological change

Within-event spatially distributed bedload: linking fluvial sediment transport to morphological change Within-event spatially distributed bedload: linking fluvial sediment transport to morphological change C.D. Rennie 1, R. Williams 2, J. Brasington 3, D. Vericat 4, and M. Hicks 5 1 Department of Civil

More information

FLUVIA NAUTIC DATASET (16 March 2007) Description of the sensor logs

FLUVIA NAUTIC DATASET (16 March 2007) Description of the sensor logs FLUVIA NAUTIC DATASET (16 March 2007) Description of the sensor logs David Ribas, PhD Student. Underwater Robotics Lab, Computer Vision and Robotics Group, University of Girona Doppler Velocity Log (Argonaut

More information

Physics Curriculum Map

Physics Curriculum Map 1 Kinematics Distance vs Displacement Vector Quantities The Meter Velocity and Speed Acceleration Final Velocity of a distance traveled by an object at constant acceleration Safety Lab Make your own measuring

More information

River bed classification using multi-beam echo-sounder backscatter data

River bed classification using multi-beam echo-sounder backscatter data River bed classification using multi-beam echo-sounder backscatter data Niels Kinneging Mirjam Snellen Dimitrios Eleftherakis Dick Simons Erik Mosselman Arjan Sieben 13 November 2012 transport water management

More information

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound?

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound? Last lecture Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters Vortex flowmeters Measurement of mass flow Measurement of tricky flows" Today s menu Ultrasonic measurement

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

The CMP Slurry Monitor - Background

The CMP Slurry Monitor - Background The CMP Slurry Monitor - Background Abstract The CMP slurry monitor uses electroacoustic and ultrasonic attenuation measurements to determine the size and zeta potential of slurry particles. The article

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME (CAD/CAM) QUESTION BANK

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME (CAD/CAM) QUESTION BANK VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF MECHANICAL ENGINEERING ME (CAD/CAM) QUESTION BANK III SEMESTER CC 7007 METROLOGY AND NON DESTRUCTIVE TESTING Regulation 2013

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

AP Physics 2 Sample Syllabus 3

AP Physics 2 Sample Syllabus 3 Syllabus 066439v Curricular Requirements CR Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format. CRa The

More information

Physics Assessment Unit AS 2

Physics Assessment Unit AS 2 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY General Certificate of Education January 2011 Physics Assessment Unit AS 2 assessing Module 2: Waves, Photons and Medical Physics AY121 [AY121] MONDAY

More information

Sound-based Sensing. Some of these notes have been adapted from Carstens J.R. Electrical Sensors and Transducers

Sound-based Sensing. Some of these notes have been adapted from Carstens J.R. Electrical Sensors and Transducers Sound-based Sensing Some of these notes have been adapted from Carstens J.R. Electrical Sensors and Transducers Introduction Topics C Physics of sound and sound measurement Velocity of sound in different

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Instrumentation. Dr. Hui Hu Dr. Rye Waldman. Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A

Instrumentation. Dr. Hui Hu Dr. Rye Waldman. Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A AerE 344 Lecture Notes Lecture # 05: elocimetry Techniques and Instrumentation Dr. Hui Hu Dr. Rye Waldman Department of Aerospace Engineering Iowa State University Ames, Iowa 500, U.S.A Sources/ Further

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 11 pages Written test, 9 December 2010 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: none. "Weighting": All problems weight equally.

More information

(Refer slide Time 1:09)

(Refer slide Time 1:09) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 28 Hot Wire Anemometry and Laser Doppler Velocimetry

More information

25 years of PIV development for application in aeronautical test facilities

25 years of PIV development for application in aeronautical test facilities 25 years of PIV development for application in aeronautical test facilities Jürgen Kompenhans and team Department Experimental Methods Institute of Aerodynamics and Flow Technology German Aerospace Center

More information

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient PIV measurements of turbulence in an inertial particle plume in an unstratified ambient D.B. Bryant & S.A. Socolofsky Zachry Department of Civil Engineering, Texas A&M University, USA ABSTRACT: A high-speed

More information

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can " " ' " ' / The magnetic field which is in the ball or cylindrical floats actuates very small reed contacts through the wall of a guide tube and these pick up an uninterrupted measuring-circuit voltage

More information

Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques

Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques Pasi Raiskinmäki 1 and Markku Kataja 1 1 VTT PROCESSES, Pulp and Paper Industry, P.O.Box 163, FI-411 JYVÄSKYLÄ,

More information

NortekUSA Training Symposium 20 April 2006 Velocimeter Theory and applications. - Atle Lohrmann, Nortek

NortekUSA Training Symposium 20 April 2006 Velocimeter Theory and applications. - Atle Lohrmann, Nortek NortekUSA Training Symposium 20 April 2006 Velocimeter Theory and applications - Atle Lohrmann, Nortek What is a velocimeter? Some history Vectrino and Vector Overview How does it work? The measurement

More information

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 7-9, 00 PIV 0 Paper 096 THE EFFECT OF SAMPLE SIZE, TURBULECE ITESITY AD THE VELOCITY FIELD O THE EXPERIMETAL ACCURACY

More information

PHYSICS 370 OPTICS. Instructor: Dr. Fred Otto Phone:

PHYSICS 370 OPTICS. Instructor: Dr. Fred Otto Phone: PHYSICS 370 OPTICS Instructor: Dr. Fred Otto Phone: 457-5854 Office: Pasteur 144 E-mail: fotto@winona.edu Text: F.L. Pedrotti, L.S. Pedrotti, and L.M. Pedrotti, Introduction to Optics, 3 rd Ed., 2000,

More information

Turbulence control in a mixing tank with PIV

Turbulence control in a mixing tank with PIV Turbulence control in a mixing tank with PIV by Pentti Saarenrinne and Mika Piirto Tampere University of Technology Energy and Process Engineering Korkeakoulunkatu 6, 33720 Tampere; Finland E-Mail: pentti.saarenrinne@tut.fi

More information

TEACHER PAGE Trial Version

TEACHER PAGE Trial Version TEACHER PAGE Trial Version * After completion of the lesson, please take a moment to fill out the feedback form on our web site (https://www.cresis.ku.edu/education/k-12/online-data-portal)* Lesson Title:

More information

ANALYSIS OF FREQUENCY CHARACTERISTICS ON NON-INVASIVE ULTRASONIC-DOPPLER FLOW MEASUREMENT FOR METAL PIPES

ANALYSIS OF FREQUENCY CHARACTERISTICS ON NON-INVASIVE ULTRASONIC-DOPPLER FLOW MEASUREMENT FOR METAL PIPES 4th International Symposium on Ultrasonic Doppler Method for Fluid Mechanics and Fluid Engineering Sapporo, 6.-8. September, 2004 ANALYSIS OF FREQUENCY CHARACTERISTICS ON NON-INVASIVE ULTRASONIC-DOPPLER

More information

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 CEE 331 Lab 4 Page 1 of 6 Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 Safety The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water and

More information

Information on the Particle Dynamics Analysis (PDA) measurements

Information on the Particle Dynamics Analysis (PDA) measurements Information on the Particle Dynamics Analysis (PDA) measurements Contents Contents... Introduction... Properties of the PDA System... Measurement principles []... Information on the variables in each column

More information

Topic: Bathymetric Survey Techniques. (a) Single-beam echo-sounders (SBES) (b) Multi-beam echo-sounders (MBES)

Topic: Bathymetric Survey Techniques. (a) Single-beam echo-sounders (SBES) (b) Multi-beam echo-sounders (MBES) Topic: Bathymetric Survey Techniques (a) Single-beam echo-sounders (SBES) (b) Multi-beam echo-sounders (MBES) Bathymetry is the measurement of water depths - bathymetry is the underwater equivalent of

More information

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY Katsuhide YOKOYAMA, Dr.Eng. dredge Assistant Professor Department of Civil Engineering Tokyo Metropolitan University 1-1 Minami-Osawa Osawa, Hachioji,, Tokyo,

More information

Physics 401. Classical Physics Laboratory.

Physics 401. Classical Physics Laboratory. Physics 401. Classical Physics Laboratory. Spring 2018 Eugene V Colla Course Objective Organization: Times and locations Physics 401 staff Semester Schedule Laboratory routine Grading scheme Section assignments

More information

Dimension measurement. By Mr.Vuttichai Sittiarttakorn

Dimension measurement. By Mr.Vuttichai Sittiarttakorn Dimension measurement By Mr.Vuttichai Sittiarttakorn 1 LECTURE OUTLINE 1. Introduction 2. Standards and Calibration 3. Relative displacement : Translational and Rotational 4. displacement transducers Potentiometers

More information

AP Physics B Syllabus

AP Physics B Syllabus AP Physics B Syllabus Course Overview Advanced Placement Physics B is a rigorous course designed to be the equivalent of a college introductory Physics course. The focus is to provide students with a broad

More information

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD 3rd Workshop on Transport Phenomena in Two-Phase Flow Nessebar, Bulgaria, 2-7 September 1998, p.p. 133-138 INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

More information

AP Physics 2 Sample Syllabus 3

AP Physics 2 Sample Syllabus 3 Curricular Requirements CR CRa CRb CRc CRd CRe CRf CRg CR3 CR4 CR CR6a CR6b CR7 CR8 Students and teachers have access to college-level resources including collegelevel textbooks and reference materials

More information

Optics, Acoustics and Stress in Situ (OASIS)

Optics, Acoustics and Stress in Situ (OASIS) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Optics, Acoustics and Stress in Situ (OASIS) John H. Trowbridge 1 and Peter Traykovski 2 Woods Hole Oceanographic Institution

More information

ISUOG Basic Training The Principles of Doppler Ultrasound. Juriy Wladimiroff

ISUOG Basic Training The Principles of Doppler Ultrasound. Juriy Wladimiroff ISUOG Basic Training The Principles of Doppler Ultrasound Juriy Wladimiroff Learning objectives At the end of this session, you will be able to understand the principles of: Doppler effect Doppler shift

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

AP Physics 2 Syllabus

AP Physics 2 Syllabus AP Physics Syllabus Curricular Requirements CR1 Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format. CRa

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

By Mehak Chopra Indian Institute of Technology Delhi. Guide: Dr B. Uensal

By Mehak Chopra Indian Institute of Technology Delhi. Guide: Dr B. Uensal By Mehak Chopra Indian Institute of Technology Delhi Guide: Dr B. Uensal Outline Characteristics of an ideal instrument Hot Wire Anemometry Advantages and Drawbacks of Hot Wire Anemometry Principle of

More information

DEC Departamento de Engenharia Civil

DEC Departamento de Engenharia Civil LABORATÓRIO DE HIDRÁULICA DA FEUP. UM FUTURO COM ESTRATÉGIA. FEUP outubro 2013 Fernando Veloso Gomes outubro 2013 LABORATÓRIO DE HIDRÁULICA DA FEUP. UM FUTURO COM ESTRATÉGIA DEC Departamento de Engenharia

More information

Transition of laminar pre-mixed flames to turbulence - induced by sub-breakdown applied voltage

Transition of laminar pre-mixed flames to turbulence - induced by sub-breakdown applied voltage Transition of laminar pre-mixed flames to turbulence - induced by sub-breakdown applied voltage Biswa N. Ganguly Aerospace Systems Directorate, Air Force Research Laboratory WPAFB OH USA and Jacob Schmidt

More information

When fluid incompressible...flow velocity, volumetric, and mass flow are proportional.

When fluid incompressible...flow velocity, volumetric, and mass flow are proportional. 11-1 Flow 11-1 Measures of Fluid Flow Flow velocity. Speed of material flowing past a plane. Volumetric flow. Volume of material passing a plane per unit time. Mass flow. Mass of material passing a plane

More information

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE INSTRUMENTATION ECE Fourth Semester Presented By:- Sumit Grover Lect., Deptt. of ECE Detailed Contents Objectives Sensors and transducer Classification of transducers Temperature transducers Resistance

More information

YEAR 11- Physics Term 1 plan

YEAR 11- Physics Term 1 plan YEAR 11- Physics Term 1 plan 2016-2017 Week Topic Learning outcomes Week 1 5.1.2 Nucleus of the Atom Describe the composition of the nucleus in terms of protons and neutrons State the charges of protons

More information

Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors

Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors Jerome P. Lynch Department of Civil and Environmental Engineering Department of Electrical Engineering and

More information

PARTICLE IMAGE VELOCIMETRY MEASUREMENTS OF STRATIFIED GAS-LIQUID FLOW IN HORIZONTAL AND INCLINED PIPES

PARTICLE IMAGE VELOCIMETRY MEASUREMENTS OF STRATIFIED GAS-LIQUID FLOW IN HORIZONTAL AND INCLINED PIPES S. Vestøl, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 2 (2018) 411 422 PARTICLE IMAGE VELOCIMETRY MEASUREMENTS OF STRATIFIED GAS-LIQUID FLOW IN HORIZONTAL AND INCLINED PIPES S. VESTØL, W.A.S.

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS

PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS Proceedings of the Sixth Triennial International Symposium on Fluid Control, Measurement and Visualization, Sherbrooke, Canada, August -7,. PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS

More information

PIV measurements and convective heat transfer of an impinging air jet

PIV measurements and convective heat transfer of an impinging air jet PIV measurements and convective heat transfer of an impinging air jet by T. S. O Donovan (), D. B. Murray () and A.A. Torrance (3) Department of Mechanical & Manufacturing Engineering, Trinity College

More information

Underwater Acoustics OCEN 201

Underwater Acoustics OCEN 201 Underwater Acoustics OCEN 01 TYPES OF UNDERWATER ACOUSTIC SYSTEMS Active Sonar Systems Active echo ranging sonar is used by ships to locate submarine targets. Depth sounders send short pulses downward

More information

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 4608 4612 Part 1, No. 7A, July 2003 #2003 The Japan Society of Applied Physics Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic

More information

Density Field Measurement by Digital Laser Speckle Photography

Density Field Measurement by Digital Laser Speckle Photography Density Field Measurement by Digital Laser Speckle Photography by M. Kawahashi and H. Hirahara Saitama University Department of Mechanical Engineering Shimo-Okubo 255, Urawa, Saitama, 338-8570, Japan ABSTRACT

More information

Personalised Learning Checklists AQA Physics Paper 2

Personalised Learning Checklists AQA Physics Paper 2 4.5.1 Forces and their interactions 4.5.2 Work done and energy AQA Physics (8463) from 2016 Topics P4.5. Forces Topic Student Checklist R A G Identify and describe scalar quantities and vector quantities

More information

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING 1 YEDITEPE UNIVERSITY ENGINEERING FACULTY MECHANICAL ENGINEERING LABORATORY 1. Objective: Strain Gauges Know how the change in resistance

More information

DEPARTMENT OF MECHANICAL ENGINEERING. INDIAN INSTITUTE OF SCIENCE Bangalore

DEPARTMENT OF MECHANICAL ENGINEERING. INDIAN INSTITUTE OF SCIENCE Bangalore DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF SCIENCE Bangalore-560012 Experimental Methods Jaywant H. Arakeri Fluid Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute

More information

Anemometry Anemometer Calibration Exercise

Anemometry Anemometer Calibration Exercise Atmospheric Measurements and Observations II EAS 535 Anemometry Anemometer Calibration Exercise Prof. J. Haase http://web.ics.purdue.edu/~jhaase/teaching/eas535/index.html Class Objectives How is wind

More information

The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method

The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method Water Resources and Ocean Science 2012;1(1):1-6 Published online December 30, 2012 (http:// www.sciencepublishinggroup.com/j/wors) doi:.11648/j.wors.201201.11 The impact of vegetation on the characteristics

More information

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves. Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

7.0 Project Reports 7.1 Geophysical Mapping of Submarine Environments

7.0 Project Reports 7.1 Geophysical Mapping of Submarine Environments 7.0 Project Reports 7.1 Geophysical Mapping of Submarine Environments Suzanne Carbotte, Robin Bell, Roger Flood 7.1.1 METHODS In April 2000 we deployed the R/V Onrust, operated by MSRC at SUNY Stony Brook,

More information