Underwater Acoustics OCEN 201

Size: px
Start display at page:

Download "Underwater Acoustics OCEN 201"

Transcription

1 Underwater Acoustics OCEN 01

2 TYPES OF UNDERWATER ACOUSTIC SYSTEMS Active Sonar Systems Active echo ranging sonar is used by ships to locate submarine targets. Depth sounders send short pulses downward and time the bottom return. Side-scan sonars are used for finding objects on sea floor and mapping. Fish finding sonars are forward looking sonars for spotting fish schools. Diver sonars are hand held sonars used for locating of underwater objects. Position marking beacons transmit sound signal continuously. Position marking transponders transmit sound only when interrogated. Acoustic flow meters and wave height sensors are used. Multiple beam echo sounders used to map the seafloor in great detail. Seismic Systems Subbottom profilers are used to explore the rocks and sediments making up the ocean floor. The acoustic pulses used are basically unidirectional pressure pulses that are generated by air guns. Results show the geological features below the ocean floor.

3 SUBMARINE SONAR 3

4 TYPES OF UNDERWATER ACOUSTIC SYSTEMS 3. Underwater Communications and Telemetry Systems and Navigation a. Underwater telephone is a device used to communicate between a surface ship and a submarine or between two submarines (UQC). b. Diver communications - diver has a full face mask which allows the diver to speak normally underwater and a throat microphone is used to obtain speech signals. A transducer is used to transmit the signal. The same transducer is used to receive, and the signal is passed to the diver via an ear piece. c. Telemetry systems - data from a submerged instrument is transmitted to the surface. d. Doppler navigation - pairs of transducers pointing obliquely downward to obtain speed over the bottom from the Doppler shift of the bottom returns. 4

5 TYPES OF UNDERWATER ACOUSTIC SYSTEMS 4. Passive Systems a. Passive ship sonar is a hydrophone array that detects acoustic radiation from another vessel or object; i.e. JP or JT hydrophone used by WWII submarines. b. Acoustic mines - mines explode when acoustic radiation reaches a certain value. Torpedoes - home on acoustic radiation of submarine or ship. 5

6 ACOUSTIC TRANSDUCERS 6

7 ACOUSTIC DOPPLER CURRENT METER 7

8 SIDESCAN SONAR 8

9 Decibel Scales Sound intensities and sound pressures are expressed as logarithmic scales known as sound levels. Reasons: 1. A very wide range of sound pressures and intensities are encountered in the ocean..the human ear subjectively judges the relative loudness of two sounds by the ratio of their intensities. The most generally used logarithmic scale for describing sound levels is the decibel scale. The intensity level (N) of a sound of intensity I1 and reference intensity I is defined by: Intensity Level ( IL)N = 10log Sound Pressure Level ( ) I I SPL N = 0 log 1 p 1 / p 9

10 FUNDAMENTALS OF UNDERWATER SOUND (CONTINUED) For the case of a plane wave of sound, the acoustic pressure (p) is related to the particle velocity (u) by p = ρ c u Where p - pressure ρ - density c - propagation velocity of the plane wave ρc - is called the specific acoustic resistance u - particle velocity ρc seawater = 1.5 x 105 g/cms ρc air = 4 g/cms The energy involved in propagating acoustic waves through a fluid medium is of two forms: 1. Kinetic Energy - particle motion. Potential Energy - stresses set up in elastic medium 10

11 FUNDAMENTALS OF UNDERWATER SOUND (CONTINUED) For a plane wave, the acoustic intensity (I) of a sound wave is the average rate of flow of energy through a unit area normal to the direction of wave propagation. The instantaneous intensity is I = p / ρ c The average intensity is I = p ave / ρ c Where p ave is the time average of the instantaneous acoustic pressure squared. Units: p = dynes/cm ρ = gm/cm 3 c = cm/s I = ergs/cm s Since Intensity is also power/unit area and the units are often watts/cm. One watt is equal to 10 7 ergs/s then I = power/area = p ave / ρ c x 10-7 watts/cm 11

12 Decibel Scales (continued) In general, if we have a quantity x such that I = ( x / ) a 1 / I 1 x then the ratio of the values on the decibel (db) scale is I = ( ) 10 log 1 10 log 1/ I a x x db For a =, then 10 log (I 1 /I ) = 0 log (x 1 /x ) = 0 log (p 1 /p ) The reference level must be known to insure proper interpretation of the db value. (Note that 1 psi x 6895 = number of Pascal). Also 1 Pascal = 1 N/m The old reference levels are: 1) 1 dyne/cm ) dyne/cm The current reference level is: 1 micropascal (1 μpa). Note: 1 μpa = 10-5 dyne/cm 1

13 Decibel Scales (continued) N p3 p3 To convert from one reference (p ) to another (p 3 ). N p = 0 log (p 1 /p ) N p3 = 0 log (p 1 /p 3 ) Subtract N p3 from N p, N p p = 0 [ log( p / p ) log( p / p )] 1 3 [ log p log p log p log p ] N N = 0 + N p3 N p = 0 N = N + p3 1 [ log p log p ] p 0log 3 3 ( p / p ) Example: Express 15 db relative to dyne/cm in db relative to 1 dyne/cm. Let p = dyne/cm N p3 = 15 + N 3 p 3 = 1 dyne / cm 0 log( /1) p = = 51dB 13

14 Decibel Scales (continued) The level of a sound wave is the number of decibels by which its intensity, or energy flux density, differs from the intensity of the reference sound wave. In the case of a sound wave with an intensity of I 1 and a reference intensity of I, the level of the sound wave is equal to: N db = 10 log I For clarity the level should be written: N db re { / 1 I the intensity of a plane wave of pressure equal to 1μPa If a sound wave has an intensity 500 times that of a plane wave of rms pressure 1 μpa, then the level N is: N = 10 log 500/1 = 7 db re 1 μpa 14

15 Sonar Equations Active SL-TL+TS=NL-DI+DT Active (Reverberation) SL-TL+TS=RL+DT Passive SL-TL=NL-DI+DT 15

16 Active Sonar Equation Detection Threshold (DT) Directivity Index (DI) or Array Gain (AG) Receive Electronics Electronics Headphones Source Level (SL) Noise Level (NL) One-way Transmission Loss (TL) Target Strength (TS) 16

17 Example: A passive sonar system is being used to detect an object that has a source level of 80 db re dynes/cm and a directivity index of 1 db. If the detection threshold is 15 db and the transmission loss is 50 db, determine the noise level which will permit detection of the target. N p3 1μPa = N Given: Find: NL Solution: p 0 log N = N dyne / cm SL = 80 db re dynes/cm DI = 1 db DT = 15 db TL = 50 db p 3 p 1μPa 0 log dynes / cm N 1μPa N Pa 5 10 = 80 0 log μ = 80 0 N Pa ( 1.3) 1 μ = = 106 db re 1μPa SL = 106 db re 1μ Pa Passive Sonar Equation Sl TL = NL DI + DT = NL = NL + 3 NL = 53 db re 1μ Pa 17

18 Beam Patterns Line Array Circular Plane Array 18

19 19 Line Array with Equally Spaced Elements b( ) n d n d θ π λ θ π λ θ = sin sin sin sin beam width at -3 db acoustic axis db 9 x x x x x x x elements θ

20 Beam Pattern Spreadsheet 0

21 Spherical Spreading and Absorption Propagation measurements made in the ocean indicate that spherical spreading together with absorption yields a reasonable approximation to measured data for a wide variety of conditions. Therefore, transmission loss may be expressed by TL = 0log r + α r 10 3 where r is range in yards, α is absorption coefficient in db/kyd, and TL is transmission loss in db. This is a rough approximation but a good rule of thumb. 1

22 Francois & Garrison (198) Figure 5- shows the variation of the absorption coefficient (α) as a function of frequency from 0.1 to 1000 khz at zero depth (surface) for a salinity of 35 and ph of 8.0. The accuracy of the predicted absorption coefficients is estimated as ±5% for the ranges of 0.4 to 1000 khz, -1.8 to 30 o C, and 30 to 35.

23 Speed of Sound in the Sea Speed of sound in water has been determined theoretically and experimentally. Leroy equation ( ) 3 ( ) ( ) ( ) ( )( ) c= T T T S T 18 S 35 + Z/61 where c is sound velocity, m/s;t is temperature, o C at the depth; S is salinity, ppt; Z is depth, m. MacKensie (1981) ( ) ( ) c = T 5.304x10 T +.374x10 T S x10 d x10 d x10 T S x10 Td where c is sound speed (m/s), T is temperature ( o C) at the depth, S is salinity (ppt), and d is depth (m). The range of validity for the MacKensie (1981) equation is: 0 o C T 30 o C, 30 S 40, and 0 m d 8000 m. The MacKensie equation is good for practical work and shows that sound speed increases with temperature, salinity, and depth. 3

24 Velocity Structure in the Ocean Surface Layer - sound velocity subject to daily and local changes in heating and cooling, and wind action. Seasonal thermocline - negative thermal or velocity gradient that varies with season. Summer-fall - near surface waters are warm and it is well defined. Winter-spring - it tends to merge and be indistinguishable from the surface layer. Main thermocline - affected only slightly by seasonal changes. Here the major decrease in temperature occurs. Deep isothermal layer - nearly constant temp of 39 o F. Sound velocity increases due to depth. 4

25 Sound Ray Propagation in Ocean 5

26 Ray Tracing Spreadsheet 6

27 Common Sources of Ambient Noise in Deep Water I. Tides and hydrostatic effects of waves - Pressure fluctuations resulting from tides and waves - very low frequency - not too important at frequencies of interest in underwater sound. Tidal currents can cause flow induced noise. II. Seismic disturbances - results from earth's constant seismic activity - low frequency < 100 Hz. III. Oceanic turbulence - caused by turbulence a) induces motion of transducer and causes self noise. b) pressure changes associated with turbulence may be radiated. c) turbulent pressure fluctuations - most significant at low frequency. IV. Ship traffic - dominant source at 100 Hz; principal noise source Hz. V. Surface waves - ambient noise between 500 Hz - 5 khz correlates well with sea state or wind speed. Causes - breaking white caps flow noise - wind blowing over rough sea surface. cavitation - collapse of air bubbles. Rough sea surface is dominant noise source at 1-30 khz. VI. Thermal Noise - results from molecular agitation in the sea. Important at high frequencies (750 khz). 7

28 Average Deep Water Ambient Noise Spectra 8

29 Intermittent Sources of Ambient Noise Do not persist over periods of hours or days. a) Biological sounds - whales, porpoises, dolphins shellfish Hz Snapping shrimp Hz - 0 khz Commercially important fish don't make noise b) Rain 30 db increase 5-10 khz heavy rain 10 db increase 19.5 khz steady rain c) Seismic explosions - seismic surveys If shipping and biological noise are absent and wind is the primary contributor, then shallow and deep water noise levels are nearly the same. In general shallow water is a noisy and highly variable environment for most underwater acoustic operations. 9

30 Sounds from the Ocean Google sounds in ocean 30

31 QUESTIONS 31

Acoustic seafloor mapping systems. September 14, 2010

Acoustic seafloor mapping systems. September 14, 2010 Acoustic seafloor mapping systems September 14, 010 1 Delft Vermelding Institute onderdeel of Earth organisatie Observation and Space Systems Acoustic seafloor mapping techniques Single-beam echosounder

More information

Principles of Underwater Sound. LO: Apply characteristics of sound in water to calculate sound levels.

Principles of Underwater Sound. LO: Apply characteristics of sound in water to calculate sound levels. Principles of Underwater Sound LO: Apply characteristics of sound in water to calculate sound levels. What is Sound? A disturbance propagated through an elastic medium causing a detectable alteration in

More information

COPYRIGHTED MATERIAL. Introduction to Sonar. 1.1 Acoustic Waves

COPYRIGHTED MATERIAL. Introduction to Sonar. 1.1 Acoustic Waves 1 Introduction to Sonar SONAR (SOund NAvigation and Ranging) systems have many similarities to radar and electrooptical systems. The operation of sonar is based on the propagation of waves between a target

More information

Appendix D: Acoustic and Explosive Concepts

Appendix D: Acoustic and Explosive Concepts Appendix D: Acoustic and Explosive Concepts Draft Environmental Impact Statement/Overseas Environmental Impact Statement Hawaii-Southern California Training and Testing TABLE OF CONTENTS APPENDIX D ACOUSTIC

More information

Ljud i byggnad och samhälle (VTAF01) Sound propagation outdoors MATHIAS BARBAGALLO DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

Ljud i byggnad och samhälle (VTAF01) Sound propagation outdoors MATHIAS BARBAGALLO DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Ljud i byggnad och samhälle (VTAF01) Sound propagation outdoors MATHIAS BARBAGALLO DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY recap from last lectures Pressure waves For a sound to be perceived

More information

12/11/2013& egm502 seafloor mapping

12/11/2013& egm502 seafloor mapping egm502 seafloor mapping lecture 13 multi-beam echo-sounders The majority of the current charts of the ocean floors have been produced from single beam echo-sounder data. Even though these data have been

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Water is an efficient medium for the transmission of the sound. Sound travels more rapidly and with much less attenuation of energy through water than air. This characteristic resulted

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

Underwater Acoustics including Signal and Array Processing

Underwater Acoustics including Signal and Array Processing Underwater Acoustics including Signal and Array Processing William A. Kuperman Scripps Institution of Oceanography of the University of California, San Diego wkuperman@ucsd.edu OUTLINE Underwater Acoustics

More information

Estimating received sound levels at the seafloor beneath seismic survey sources

Estimating received sound levels at the seafloor beneath seismic survey sources Proceedings of ACOUSTICS 016 9-11 November 016, Brisbane, Australia Estimating received sound levels at the seafloor beneath seismic survey sources Alec J Duncan 1 1 Centre for Marine Science and Technology,

More information

Land seismic sources

Land seismic sources Seismic Sources HOW TO GENERATE SEISMIC WAVES? Exploration seismology mostly artificial sources à active technique Natural sources can also be used (e.g. earthquakes) usually for tectonic studies (passive

More information

Chapter 17: Waves II. Sound waves are one example of Longitudinal Waves. Sound waves are pressure waves: Oscillations in air pressure and air density

Chapter 17: Waves II. Sound waves are one example of Longitudinal Waves. Sound waves are pressure waves: Oscillations in air pressure and air density Sound waves are one example of Longitudinal Waves Sound waves are pressure waves: Oscillations in air pressure and air density Before we can understand pressure waves in detail, we need to understand what

More information

1 Introduction to Sonar

1 Introduction to Sonar 1 Introduction to Sonar History of Sonar If you cause your ship to stop, and place the head of a long tube in the water and place the outer extremity to your ear you will hear ships at a great distance

More information

7.0 Project Reports 7.1 Geophysical Mapping of Submarine Environments

7.0 Project Reports 7.1 Geophysical Mapping of Submarine Environments 7.0 Project Reports 7.1 Geophysical Mapping of Submarine Environments Suzanne Carbotte, Robin Bell, Roger Flood 7.1.1 METHODS In April 2000 we deployed the R/V Onrust, operated by MSRC at SUNY Stony Brook,

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

Bathymetry Measures the vertical distance from the ocean surface to mountains, valleys, plains, and other sea floor features

Bathymetry Measures the vertical distance from the ocean surface to mountains, valleys, plains, and other sea floor features 1 2 3 4 5 6 7 8 9 10 11 CHAPTER 3 Marine Provinces Chapter Overview The study of bathymetry determines ocean depths and ocean floor topography. Echo sounding and satellites are efficient bathymetric tools.

More information

The Ocean Floor THE VAST WORLD OCEAN

The Ocean Floor THE VAST WORLD OCEAN OCEANOGRAPHY Name Color all water LIGHT BLUE. Color all land LIGHT GREEN. Label the 5 Oceans: Pacific, Atlantic, Indian, Arctic, Antarctic. Label the 7 Continents: N.America, S.America, Europe, Asia, Africa,

More information

Chapter Overview. Bathymetry. Measuring Bathymetry. Measuring Bathymetry

Chapter Overview. Bathymetry. Measuring Bathymetry. Measuring Bathymetry CHAPTER 3 Marine Provinces Chapter Overview The study of bathymetry determines ocean depths and ocean floor topography. Echo sounding and satellites are efficient bathymetric tools. Most ocean floor features

More information

PROPAGATION OF SOUND IN FLUIDS March, 2008

PROPAGATION OF SOUND IN FLUIDS March, 2008 1 TABLE OF CONTENT CHAPTER ONE 1.0 INTRODUCTION 1 CHAPTER TWO 2.0 DEFINITION OF TERMS 1 2.1 frequency 1 2.2 Amplitude 2 2.3 Intensity 2 2.4 Liquids 2 2.5 Gases 2 2.6 Plasma 2 CHAPTER THREE 3.0 CHARACTERISTICS

More information

Basic principles of the seismic method

Basic principles of the seismic method Chapter 2 Basic principles of the seismic method In this chapter we introduce the basic notion of seismic waves. In the earth, seismic waves can propagate as longitudinal (P) or as shear (S) waves. For

More information

Ultrasonic Measuring System for Deposition of Sediments in Reservoirs

Ultrasonic Measuring System for Deposition of Sediments in Reservoirs MECAHITECH 11, vol. 3, year: 011 Ultrasonic Measuring System for Deposition of Sediments in Reservoirs M. Mărgăritescu* 1, A. Moldovanu * 1, P. Boeriu *, A.M.E. Rolea* 1 * 1 National Institute of Research

More information

Introduction to Acoustic Remote Sensing and Seafloor Mapping (AE4-E13) May 19, 2010

Introduction to Acoustic Remote Sensing and Seafloor Mapping (AE4-E13) May 19, 2010 Introduction to Acoustic Remote Sensing and Seafloor Mapping (AE4-E13) May 19, 2010 1 Delft Vermelding Institute onderdeel of Earth organisatie Observation and Space Systems Why Acoustic Remote Sensing?

More information

1 Wind Turbine Acoustics. Wind turbines generate sound by both mechanical and aerodynamic

1 Wind Turbine Acoustics. Wind turbines generate sound by both mechanical and aerodynamic Wind Turbine Acoustics 1 1 Wind Turbine Acoustics Wind turbines generate sound by both mechanical and aerodynamic sources. Sound remains an important criterion used in the siting of wind farms. Sound emission

More information

MEASUREMENT OF THE UNDERWATER SHIP NOISE BY MEANS OF THE SOUND INTENSITY METHOD. Eugeniusz Kozaczka 1,2 and Ignacy Gloza 2

MEASUREMENT OF THE UNDERWATER SHIP NOISE BY MEANS OF THE SOUND INTENSITY METHOD. Eugeniusz Kozaczka 1,2 and Ignacy Gloza 2 ICSV14 Cairns Australia 9-12 July, 2007 MEASUREMENT OF THE UNDERWATER SHIP NOISE BY MEANS OF THE SOUND INTENSITY METHOD Eugeniusz Kozaczka 1,2 and Ignacy Gloza 2 1 Gdansk University of Techology G. Narutowicza

More information

Passive Acoustic Monitoring Noise in the Ocean

Passive Acoustic Monitoring Noise in the Ocean Passive Acoustic Monitoring Noise in the Ocean Passive Acoustic Monitoring Monitor anthropogenic sound in the ocean and limit exposure of marine mammals to that sound Lots of sources of sound in the oceans

More information

UNDERWATER ACOUSTICS ANALYSIS, DESIGN AND PERFORMANCE OF SONAR. Richard P. Hodges. Sonalysts, Inc. A John Wiley and Sons, Ltd.

UNDERWATER ACOUSTICS ANALYSIS, DESIGN AND PERFORMANCE OF SONAR. Richard P. Hodges. Sonalysts, Inc. A John Wiley and Sons, Ltd. UNDERWATER ACOUSTICS ANALYSIS, DESIGN AND PERFORMANCE OF SONAR Richard P. Hodges Sonalysts, Inc. A John Wiley and Sons, Ltd., Publication UNDERWATER ACOUSTICS UNDERWATER ACOUSTICS ANALYSIS, DESIGN AND

More information

Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean.

Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean. Earth s Oceans & Ocean Floor Date: Feelin Blue What are Earth s five main oceans? Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean.

More information

Introduction to Acoustics. Phil Joseph

Introduction to Acoustics. Phil Joseph Introduction to Acoustics Phil Joseph INTRODUCTION TO ACOUSTICS Sound and Noise Sound waves Frequency, wavelength and wavespeed Point sources Sound power and intensity Wave reflection Standing waves Measures

More information

APPENDIX B. Noise Primer

APPENDIX B. Noise Primer APPENDIX B Noise Primer NOISE PRIMER TABLE OF CONTENTS 1. INTRODUCTION...1 2. BASIC SOUND PRINCIPLES...1 2.1. SOUND AS A WAVE...1 2.2. SOUND PRESSURE LEVEL...2 2.2.1. Decibel Math...4 2.2.2. Descriptive

More information

SEAFLOOR MAPPING MODELLING UNDERWATER PROPAGATION RAY ACOUSTICS

SEAFLOOR MAPPING MODELLING UNDERWATER PROPAGATION RAY ACOUSTICS 3 Underwater propagation 3. Ray acoustics 3.. Relevant mathematics We first consider a plane wave as depicted in figure. As shown in the figure wave fronts are planes. The arrow perpendicular to the wave

More information

Map shows 3 main features of ocean floor

Map shows 3 main features of ocean floor Map shows 3 main features of ocean floor 2017 Pearson Education, Inc. Chapter 3 Marine Provinces 2017 Pearson Education, Inc. 1 Chapter 3 Overview The study of bathymetry determines ocean depths and ocean

More information

Summary Results from Horizontal ADCP tests in the Indiana Harbor Canal and the White River

Summary Results from Horizontal ADCP tests in the Indiana Harbor Canal and the White River Summary Results from Horizontal ADCP tests in the Indiana Harbor Canal and the White River This report summarizes results of tests of horizontally deployed ADCPs in the Indiana Harbor Canal and the White

More information

Ocean Temperatures. Atlantic Temp Section. Seasonal (Shallow) Thermocline. Better Atlantic Temp Section

Ocean Temperatures. Atlantic Temp Section. Seasonal (Shallow) Thermocline. Better Atlantic Temp Section I. Fundamental Principles Physical Properties Conservation of Heat Why Does the Ocean Circulate? Waves & Tides Ocean Temperatures II. Ocean Circulation Conservation of Mass Forces & Balance of Forces Effects

More information

Lecture 23 Sound Beats Sound Solids and Fluids

Lecture 23 Sound Beats Sound Solids and Fluids Lecture 23 Sound Beats Sound Solids and Fluids To round out our discussion of interference and waves, we should talk about beats. When you combine two waves (sound is a good example), if the frequencies

More information

Yellow Sea Thermohaline and Acoustic Variability

Yellow Sea Thermohaline and Acoustic Variability Yellow Sea Thermohaline and Acoustic Variability Peter C Chu, Carlos J. Cintron Naval Postgraduate School, USA Steve Haeger Naval Oceanographic Office, USA Yellow Sea Bottom Sediment Chart Four Bottom

More information

An Overview of Oceans

An Overview of Oceans An Overview of Oceans Section 15.1 Bell Ringer: Name Earth s five oceans 1 An Overview of Oceans Oceanography is the scientific study of Earth s Oceans. In the 1800 s, the British ship H.M.S. Challenger

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Underwater Acoustics Session 2pUWb: Arctic Acoustics and Applications

More information

The World Ocean - II

The World Ocean - II The World Ocean - II Salt content (salinity) of seawater About 3.5% of average seawater consists of dissolved salts If these precipitated, they would form a layer about 56 m thick on the seafloor Average

More information

Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment

Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment Acoustical Society of America Meeting Fall 2005 Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment Vivek Varadarajan and Jeffrey Krolik Duke University Department

More information

LECTURE 7 ENERGY AND INTENSITY. Instructor: Kazumi Tolich

LECTURE 7 ENERGY AND INTENSITY. Instructor: Kazumi Tolich LECTURE 7 ENERGY AND INTENSITY Instructor: Kazumi Tolich Lecture 7 2 15.5 Energy and intensity Circular, spherical, and plane waves Power, energy, and intensity 15.6 Loudness of sound The decibel scale

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

University of Kentucky

University of Kentucky Introduction David Herrin Wave Animation http://www.acs.psu.edu/drussell/demos/waves-intro/waves-intro.html 2 Wave Motion Some Basics Sound waves are pressure disturbances in fluids, such as air or hydraulic

More information

FUNDAMENTALS OF OCEAN ACOUSTICS

FUNDAMENTALS OF OCEAN ACOUSTICS FUNDAMENTALS OF OCEAN ACOUSTICS Third Edition L.M. Brekhovskikh Yu.P. Lysanov Moscow, Russia With 120 Figures Springer Contents Preface to the Third Edition Preface to the Second Edition Preface to the

More information

Last Time. GY 305: Geophysics. Seismology (Marine Surveys) Seismology. Seismology. Other Seismic Techniques UNIVERSITY OF SOUTH ALABAMA

Last Time. GY 305: Geophysics. Seismology (Marine Surveys) Seismology. Seismology. Other Seismic Techniques UNIVERSITY OF SOUTH ALABAMA UNIVERSITY OF SOUTH ALABAMA Last Time GY 305: Geophysics Lecture 12: Introduction to (resolution versus penetration) Techniques (marine versus terrestrial) (Marine Surveys) http://www.glossary.oilfield.slb.com/displayimage.cfm?id=236

More information

3 THE P HYSICS PHYSICS OF SOUND

3 THE P HYSICS PHYSICS OF SOUND Chapter 3 THE PHYSICS OF SOUND Contents What is sound? What is sound wave?» Wave motion» Source & Medium How do we analyze sound?» Classifications» Fourier Analysis How do we measure sound?» Amplitude,

More information

A Planned Course Statement for. Oceanography. Course # 410 Grade(s) 9, 10, 11, 12. Length of Period (mins.) 40 Total Clock Hours: 60

A Planned Course Statement for. Oceanography. Course # 410 Grade(s) 9, 10, 11, 12. Length of Period (mins.) 40 Total Clock Hours: 60 East Penn School District Secondary Curriculum A Planned Course Statement for Oceanography Course # 410 Grade(s) 9, 10, 11, 12 Department: Science ength of Period (mins.) 40 Total Clock Hours: 60 Periods

More information

Objectives. Vocabulary

Objectives. Vocabulary The Oceans Objectives Identify methods used by scientists to study Earth s oceans. Discuss the origin and composition of the oceans. Describe the distribution of oceans and major seas. Vocabulary oceanography

More information

Marine Science and Oceanography

Marine Science and Oceanography Marine Science and Oceanography Marine geology- study of the ocean floor Physical oceanography- study of waves, currents, and tides Marine biology study of nature and distribution of marine organisms Chemical

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Chapter 12 Sound in Medicine

Chapter 12 Sound in Medicine Infrasound < 0 Hz Earthquake, atmospheric pressure changes, blower in ventilator Not audible Headaches and physiological disturbances Sound 0 ~ 0,000 Hz Audible Ultrasound > 0 khz Not audible Medical imaging,

More information

arxiv: v2 [physics.ao-ph] 16 Oct 2008

arxiv: v2 [physics.ao-ph] 16 Oct 2008 Oceanic Ambient Noise as a Background to Acoustic Neutrino Detection APS/13-QED arxiv:71.1833v [physics.ao-ph] 16 Oct 8 Naoko Kurahashi and Giorgio Gratta Departments of Physics and Applied Physics, Stanford

More information

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY Katsuhide YOKOYAMA, Dr.Eng. dredge Assistant Professor Department of Civil Engineering Tokyo Metropolitan University 1-1 Minami-Osawa Osawa, Hachioji,, Tokyo,

More information

ESTIMATION OF VELOCITY IN UNDERWATER WIRELESS CHANNELS

ESTIMATION OF VELOCITY IN UNDERWATER WIRELESS CHANNELS ESTIMATION OF VELOCITY IN UNDERWATER WIRELESS CHANNELS A Thesis Presented to The Academic Faculty by Bryan S. Blankenagel In Partial Fulfillment of the Requirements for the Degree Master of Science in

More information

Physics 115 Lecture 20. Reflection and Reverberation March 9, 2018

Physics 115 Lecture 20. Reflection and Reverberation March 9, 2018 Physics 115 Lecture 20 Reflection and Reverberation March 9, 2018 1 Attenuation by absorption The wave intensity decreases due to internal friction among the molecules of the medium Attenuation is described

More information

Cross-Spectral Phase Method for Distinguishing Waves from Turbulence in Single-Point Boundary Layer Flow Measurements

Cross-Spectral Phase Method for Distinguishing Waves from Turbulence in Single-Point Boundary Layer Flow Measurements Cross-Spectral Phase Method for Distinguishing Waves from Turbulence in Single-Point Boundary Layer Flow Measurements Weichang Li and Albert J. Williams 3 rd Woods Hole Oceanographic Institution 98 Water

More information

Physical Oceanography

Physical Oceanography Physical Oceanography SECTION 15.1 The Oceans In your textbook, read about modern oceanography. For each item in Column A, write the letter of the matching item in Column B. e b c d a Column A 1. German

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

Fundamentals of Acoustics

Fundamentals of Acoustics Fundamentals of Acoustics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy of Sciences

More information

OCEANOGRAPHY II NOTES

OCEANOGRAPHY II NOTES TIDES OCEANOGRAPHY II NOTES MRS. BURKEY EARTH SPACE SCIENCE CY CREEK HS THE RISE AND FALL IN SEA LEVEL IS CALLED A TIDE. CAUSED BY A GIANT WAVE. AVERAGE LOW-TIDE/HIGH-TIDE CYCLE TAKES ABOUT 12 HRS AND

More information

Tu 23 A12 Multi-frequency Seafloor Characterization Using Seismic Sources of Opportunity

Tu 23 A12 Multi-frequency Seafloor Characterization Using Seismic Sources of Opportunity Tu 23 A12 Multi-frequency Seafloor Characterization Using Seismic Sources of Opportunity M.N. Banda* (University of Bath/Seiche Ltd), Ph. Blondel (University of Bath), M. Burnett (Seiche Ltd), R. Wyatt

More information

Non-Technical Summary

Non-Technical Summary Non-Technical Summary Proposed Project TGS-NOPEC Geophysical Company ASA (TGS) proposes to undertake a two dimensional (2D) seismic survey and seabed sampling in the western Greenland Sea off North East

More information

Oceanography. Oceanography is the study of the deep sea and shallow coastal oceans.

Oceanography. Oceanography is the study of the deep sea and shallow coastal oceans. Oceanography Oceanography is the study of the deep sea and shallow coastal oceans. Studying the Ocean Floor To determine the shape and composition of the ocean floor, scientists use techniques such as

More information

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key NAME: psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100

More information

Physics 207 Lecture 28

Physics 207 Lecture 28 Goals: Lecture 28 Chapter 20 Employ the wae model Visualize wae motion Analyze functions of two ariables Know the properties of sinusoidal waes, including waelength, wae number, phase, and frequency. Work

More information

Backscatter calibration for MBES Project Shom / Ifremer

Backscatter calibration for MBES Project Shom / Ifremer Backscatter calibration for MBES Project Shom / Ifremer Christophe Vrignaud Sophie Loyer Julian Le Deunf (Shom) Xavier Lurton - Jean-Marie Augustin Laurent Berger (Ifremer) INTRODUCTION The main need:

More information

NEW SEAFLOOR INSTALLATIONS REQUIRE ULTRA-HIGH RESOLUTION SURVEYS

NEW SEAFLOOR INSTALLATIONS REQUIRE ULTRA-HIGH RESOLUTION SURVEYS NEW SEAFLOOR INSTALLATIONS REQUIRE ULTRA-HIGH RESOLUTION SURVEYS Donald Hussong (Fugro Seafloor Surveys, Inc.) dhussong@fugro.com Fugro Seafloor Surveys, Inc., 1100 Dexter Avenue North (Suite 100), Seattle,

More information

Sound Engineering Test and Analysis

Sound Engineering Test and Analysis Sound Engineering Test and Analysis Product sound and sound quality are key aspects of product perception. How a product sounds plays a critical role in conveying the right message about its functionality,

More information

SIO 210 Physical properties of seawater (Lectures 2 and 3) Fall, 2016 L. Talley

SIO 210 Physical properties of seawater (Lectures 2 and 3) Fall, 2016 L. Talley SIO 210 Physical properties of seawater (Lectures 2 and 3) Fall, 2016 L. Talley First lecture: 1. Accuracy and precision; other definitions 2. Depth and Pressure 3. Temperature 4. Salinity and absolute

More information

Sound Propagation in the Nocturnal Boundary Layer. Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert

Sound Propagation in the Nocturnal Boundary Layer. Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert Sound Propagation in the Nocturnal Boundary Layer Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert The Propagation of Sound Outdoors (over flat ground) The atmosphere is a gas under the influence

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 140-6 Second edition 1998-08-15 Acoustics Measurement of sound insulation in buildings and of building elements Part 6: Laboratory measurements of impact sound insulation of

More information

Characteristics of Sounds Emitted During High Resolution Marine Geophysical Surveys

Characteristics of Sounds Emitted During High Resolution Marine Geophysical Surveys CAUV/15-44 10 th Meeting of the Consultative Committee for Acoustics, Ultrasound and Vibration (CCAUV) Characteristics of Sounds Emitted During High Resolution Marine Geophysical Surveys Dr. Steven Crocker

More information

On acoustic scattering by a shell-covered seafloor Timothy K. Stanton Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

On acoustic scattering by a shell-covered seafloor Timothy K. Stanton Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 On acoustic scattering by a shell-covered seafloor Timothy K. Stanton Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 Received 14 September 1998; revised 27 September 1999; accepted

More information

Measurements of Ice Parameters in the Beaufort Sea using the Nortek AWAC Acoustic Doppler Current Profiler

Measurements of Ice Parameters in the Beaufort Sea using the Nortek AWAC Acoustic Doppler Current Profiler Measurements of Ice Parameters in the Beaufort Sea using the Nortek AWAC Acoustic Doppler Current Profiler Bruce Magnell & Leonid Ivanov Woods Hole Group Inc. 81 Technology Park Drive East Falmouth, MA

More information

THE HYDROFLOWN: MEMS-BASED UNDERWATER ACOUSTICAL PARTICLE VELOCITY SENSOR THE SENSOR, ITS CALIBRATION AND SOME POSSIBLE LOCALIZATION TECHNIQUES

THE HYDROFLOWN: MEMS-BASED UNDERWATER ACOUSTICAL PARTICLE VELOCITY SENSOR THE SENSOR, ITS CALIBRATION AND SOME POSSIBLE LOCALIZATION TECHNIQUES THE HYDROFLOWN: MEMS-BASED UNDERWATER ACOUSTICAL PARTICLE VELOCITY SENSOR THE SENSOR, ITS CALIBRATION AND SOME POSSIBLE LOCALIZATION TECHNIQUES Hans-Elias de Bree a, Berke M. Gur b, Tuncay Akal c a Microflown

More information

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics.

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics. OCN/ATM/ESS 587 Ocean circulation, dynamics and thermodynamics. Equation of state for seawater General T/S properties of the upper ocean Heat balance of the upper ocean Upper ocean circulation Deep circulation

More information

Glossary APPENDIX. T c = = ) Q. ) q. ( L avg L c c.

Glossary APPENDIX. T c = = ) Q. ) q. ( L avg L c c. APPENDIX D Glossary This appendix contains technical definitions of key acoustical and vibration terms commonly used with Larson Davis instruments. The reader is referred to American National Standards

More information

Name Class Date. The ocean floor has varied and distinct surfaces much like those found on land.

Name Class Date. The ocean floor has varied and distinct surfaces much like those found on land. 6 Explore the Seafloor BigIdeas The ocean floor has varied and distinct surfaces much like those found on land. Satellites orbiting Earth, as well as sonar technology, are used to map the seafloor. The

More information

Sound. p V V, where p is the change in pressure, V/V is the percent change in volume. The bulk modulus is a measure 1

Sound. p V V, where p is the change in pressure, V/V is the percent change in volume. The bulk modulus is a measure 1 Sound The obvious place to start an investigation of sound recording is with the study of sound. Sound is what we call our perception of the air movements generated by vibrating objects: it also refers

More information

3. UNDERWAY GEOPHYSICS 1

3. UNDERWAY GEOPHYSICS 1 Sawyer, D.S., Whitmarsh, R.B., Klaus, A., et al., 1994 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 149 3. UNDERWAY GEOPHYSICS 1 Shipboard Scientific Party 2 EQUIPMENT AND METHODS Navigation

More information

Ocean Basins, Bathymetry and Sea Levels

Ocean Basins, Bathymetry and Sea Levels Ocean Basins, Bathymetry and Sea Levels Chapter 4 Please read chapter 5: sediments for next class and start chapter 6 on seawater for Thursday Basic concepts in Chapter 4 Bathymetry the measurement of

More information

Effects of Hurricanes on Ambient Noise in the Gulf of Mexico

Effects of Hurricanes on Ambient Noise in the Gulf of Mexico Effects of Hurricanes on Ambient Noise in the Gulf of Mexico Mark A. Snyder Naval Oceanographic Office 1002 Balch Blvd. Stennis Space Center, MS 39522-5001 U.S.A. Abstract - Long-term omni-directional

More information

Number Title Year Organization Page

Number Title Year Organization Page Id Number Title Year Organization Page 19690 S1.1 Acoustical Terminology Errata; ASA 111 R(1999) 1994 ASA 0 19691 S1.4 Specification for Sound Level Meters ASA 47-1983 1983 ASA 0 19692 S1.6 Preferred Frequencies,

More information

4. In areas where tectonic plates collide, the seafloor has deep. 5. In areas where tectonic plates separate, the seafloor has mid- ocean

4. In areas where tectonic plates collide, the seafloor has deep. 5. In areas where tectonic plates separate, the seafloor has mid- ocean Name Date Hour Table Chapter 14 Lesson One- General Directions: Use the word bank below to complete each statement. NOT all terms are used. abyssal plains brackish water condensation energy freshwater

More information

Underwater Acoustics and Instrumentation Technical Group. CAV Workshop

Underwater Acoustics and Instrumentation Technical Group. CAV Workshop Underwater Acoustics and Instrumentation Technical Group CAV Workshop 3 May 2016 Amanda D. Hanford, Ph.D. Head, Marine & Physical Acoustics Department, Applied Research Laboratory 814-865-4528 ald227@arl.psu.edu

More information

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d Part 6 ATTENUATION Signal Loss Loss of signal amplitude: A1 A L[Neper] = ln or L[dB] = 0log 1 A A A 1 is the amplitude without loss A is the amplitude with loss Proportional loss of signal amplitude with

More information

What is a wave? Waves

What is a wave? Waves What is a wave? Waves Waves What is a wave? A wave is a disturbance that carries energy from one place to another. Classifying waves 1. Mechanical Waves - e.g., water waves, sound waves, and waves on strings.

More information

MARITIME UNIVERSITY IN SZCZECIN ORGANIZATIONAL UNIT: FACULTY OF NAVIGATION - DEPARTMENT OF NAVIGATION DEVICES. Instruction

MARITIME UNIVERSITY IN SZCZECIN ORGANIZATIONAL UNIT: FACULTY OF NAVIGATION - DEPARTMENT OF NAVIGATION DEVICES. Instruction MARITIME UNIVERSITY IN SZCZECIN ORGANIZATIONAL UNIT: FACULTY OF NAVIGATION - DEPARTMENT OF NAVIGATION DEVICES Instruction 1 PRINCIPLE OF OPERATION AND HANDLING OF SPEED LOG Lab Prepared by M. Przywarty,

More information

Waves PY1054. Special Topics in Physics. Coláiste na hollscoile Corcaigh, Éire University College Cork, Ireland. ROINN NA FISICE Department of Physics

Waves PY1054. Special Topics in Physics. Coláiste na hollscoile Corcaigh, Éire University College Cork, Ireland. ROINN NA FISICE Department of Physics Waves Special Topics in Physics 1 Waves Types of Waves: - longitudinal - transverse Longitudinal: Compression waves, e.g. sound Surface: Transverse: Attributes: Ocean Waves. Light, string etc. Speed, wavelength,

More information

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 11-6-2015 Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

More information

The Ocean Floor Earth Science, 13e Chapter 13

The Ocean Floor Earth Science, 13e Chapter 13 The Ocean Floor Earth Science, 13e Chapter 13 Stanley C. Hatfield Southwestern Illinois College The vast world ocean Earth is often referred to as the blue planet Seventy-one percent of Earth s surface

More information

12.3 The Doppler Effect

12.3 The Doppler Effect 12.3 The Doppler Effect Doppler Effect Fire engine doppler effect video Car doppler effect video Doppler Effect The pitch (frequency) of the horn of a passing car changes from high to low. This is due

More information

Modelling of coastal ocean environment for underwater surveillance

Modelling of coastal ocean environment for underwater surveillance Indian Journal of Geo Marine Sciences Vol. 39(4), December 2010, pp. 616-622 Modelling of coastal ocean environment for underwater surveillance C V K Prasada Rao Naval Physical & Oceanographic Laboratory,

More information

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow sea beds, floats! ii. Oceanic: er; dense rock such as

More information

Introduction to Audio and Music Engineering

Introduction to Audio and Music Engineering Introduction to Audio and Music Engineering Lecture 7 Sound waves Sound localization Sound pressure level Range of human hearing Sound intensity and power 3 Waves in Space and Time Period: T Seconds Frequency:

More information

Properties of the Ocean NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU

Properties of the Ocean NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU Properties of the Ocean NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU Kipp Shearman T ( C) May 05 10, 2006 Physical Oceanographer I am interested in all things coastal Lots of observations: big boats,

More information

Kathleen J. Vigness- Raposa, Ph.D. Marine Acous;cs, Inc. DOSITS Webinar Series November 13, 2015

Kathleen J. Vigness- Raposa, Ph.D. Marine Acous;cs, Inc. DOSITS Webinar Series November 13, 2015 Kathleen J. Vigness- Raposa, Ph.D. Marine Acous;cs, Inc. DOSITS Webinar Series November 13, 2015 Outline of Presenta;on Ø First step in determining if a sound might affect a marine animal is to calculate

More information

Oceanic crust forms at ocean ridges and becomes part of the seafloor. Review Vocabulary. basalt: a dark-gray to black fine-grained igneous rock

Oceanic crust forms at ocean ridges and becomes part of the seafloor. Review Vocabulary. basalt: a dark-gray to black fine-grained igneous rock Sea-Floor Spreading Oceanic crust forms at ocean ridges and becomes part of the seafloor. Review Vocabulary basalt: a dark-gray to black fine-grained igneous rock I. Mapping the Ocean Floor Until the mid-1900

More information

Modeling ocean noise on the global scale

Modeling ocean noise on the global scale Modeling ocean noise on the global scale Michael B. PORTER 1 and Laurel J. HENDERSON 2 1 Heat, Light, and Sound Research, USA ABSTRACT In recent years there has been a much greater interest in understanding

More information

Light and Sound. Some questions. All waves can... Why is the ocean blue? How would you hide a submarine?

Light and Sound. Some questions. All waves can... Why is the ocean blue? How would you hide a submarine? Light and Sound Some questions Why is the ocean blue? How would you hide a submarine? Why can t you hear people yelling when you are underwater? All waves can... Including light and sound waves Reflect:

More information